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ABSTRACT

Piano is one of the most popular instruments among peo-
ple that learn to play music. When playing the piano, the
level of loudness is crucial for expressing emotions as well
as manipulating tempo. These elements convey the expres-
siveness of music performance. Detecting the loudness of
each note could provide more valuable feedback for mu-
sic students, helping to improve their performance dynam-
ics. This can be achieved by visualizing the loudness lev-
els not only for self-learning purposes but also for effec-
tive communication between teachers and students. Also,
given the polyphonic nature of piano music, which often
involves parallel melodic streams, determining the loud-
ness of each note is more informative than analyzing the
cumulative loudness of a specific time frame.

This research proposes a method using Deep Neural Net-
work (DNN) with score information to estimate note-level
MIDI velocity of piano performances from audio input. In
addition, when score information is available, we condi-
tion the DNN with score information using a Feature-wise
Linear Modulation (FiLM) layer. To the best of our knowl-
edge, this is the first attempt to estimate the MIDI velocity
using a neural network in an end to end fashion. The model
proposed in this study achieved improved accuracy in both
MIDI velocity estimation and estimation error deviation, as
well as higher recall accuracy for note classification when
compared to the DNN model that did not use score infor-
mation.

1. INTRODUCTION

Many piano performances depart from symbolic represen-
tations: sheet music or scores. Dynamic markings are en-
graved in these symbolic representations denoting changes
in loudness of the played notes that significantly affect ex-
pressiveness and emotional impact. Furthermore, scores
encoded as MIDI contain note velocity information which
marks the loudness of each note. Rendering the appropri-
ate loudness for each piano note is a crucial piano skill and
it is something that pianists hone over time.

In terms of music education, providing visual feedback
of performance has been studied and found to be an effec-
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tive way to improve students’ skills [1, 2]. To that extend,
understanding and controlling loudness is particularly im-
portant in this context [3]. Loudness estimation and visual-
ization techniques satisfy a system requirement for giving
feedback to students.

On the other hand, piano performance transcription is
also an actively researched topic [4–6]. However, these
studies primarily focus on detecting individual notes, rather
than note loudness or dynamic symbols such as forte,
mezzoforte, piano, pianissimo, crescendo, etc. Addi-
tionally, the transcription process is not yet fully accurate
and reproducible of performance.

There are a few papers which investigated mapping from
audio to MIDI velocity on note level for piano performance [7–
10]. These researchers applied an NMF method to sepa-
rate piano performance audio to the 88 piano keys and es-
timated a MIDI velocity on each note, together with score
information.

In order to avoid confusion, here we refer to loudness as
aggregated MIDI velocities for a certain time frame mea-
sured by a electric piano device, whilst intensity refers to
maximum value of frequency sum for a note frame as de-
fined in [7]. A series of loudness values associated with
each note in the score alters the dynamics of a piece and
ultimately its expressiveness [11]. Note that using MIDI
velocity we predict loudness at a lower granularity than the
dynamic markings, which are explicitly written in most of
music scores as symbols that indicate how loud the piece
should be played. Furthermore, each note in a piano per-
formance may have a different loudness depending on the
texture of the music [12, 13]. Therefore, the note level
loudness itself has special meaning in the piano perfor-
mance, considering its polyphonic characteristics.

It is important to note that the MIDI velocity does not
directly correlate with the perceived loudness in terms of
the human auditory system. Research has been conducted
to investigate the relation between MIDI velocity and per-
ceptual loudness in dB [14]. This paper showed a con-
sistent trend of perceptual loudness in increasing dB as
MIDI velocity increases nevertheless it is non-linear map-
ping [15]. [16, 17] researched mapping from perceptual
loudness value in dB scale to these dynamic symbols for
piano performance. These research indicate that estimating
MIDI velocity is meaningful in terms of perceptual human
hearing.

The task of estimating MIDI velocity for individual piano
note involves two problems that need to be solved. The
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first task involves classification, which requires identifica-
tion of the specific piano key that has been pressed, and
is an essential component of automatic piano transcription
tasks. The second problem is a regression task that requires
the estimation of numbers within the range of 0-127 for
MIDI velocity on each note. To address these challenges,
we propose a novel end-to-end approach, using a deep neu-
ral network (DNN) with FiLM conditioning layers [18] to
incorporate score information into the DNN. We conduct
experiments to estimate MIDI velocity using this approach.
To evaluate the performance of these models, we measured
the MIDI velocity error for each note and computed the
mean value for each score. In addition to the computation
of the mean MIDI velocity error for each score, this study
also includes error analysis and visualizations.

2. RELATED WORK

There are only two papers which take note level MIDI ve-
locity into account in music performance analysis and they
tried to solve this by NMF [7, 10]. NMF methods have
been used for source separation problems and well applied
to music source separation areas as well [19]. [7] inves-
tigated an NMF method with its score information to es-
timate note level intensity first and then created a linear
regression model to acquire note level MIDI velocity es-
timation. This research showed detailed analysis on the
error of the NMF method and explained causes of these
errors.

[8] aimed to estimate the note level intensity the from
the spectrogram by filtering it according to the frequency
of each note. To the best of our knowledge, there has not
been any research that estimates note-level intensity using
a deep neural network (DNN) method. However, with re-
cent advancements in DNNs for audio signal processing,
it may be possible to use such an approach. In our study,
we compare our system with the NMF method proposed in
[7] as our benchmark.

The piano performance transcription is one of the clos-
est problems for classification from audio input. [20] pro-
posed a CNN-GRU combined acoustic model which branches
into four outputs: velocity regression, onset, offset and
note frame estimation. The note frame estimation is the
final goal of this model and the other three estimations are
gathered as an input to another acoustic model to estimate
the notes at the frame level. Therefore, the estimated MIDI
velocity regression is not evaluated in the paper [7].

No research has been done on note level MIDI velocity
estimation by a modern DNN when the score is given and
used to inform the model. However, existing research is
utilising score information to inform music instrument sep-
aration in polyphonic music [21–23]. These works utilised
score or video information to get better result of source
separation by creating another neural network to extract
features of the additional features which are fed into an
original DNN.

In this paper, we propose to use FiLM conditioning [18]
to insert score information in order to estimate note-level
MIDI velocity for piano performance. FiLM condition-
ing is used in the image processing area and has gained

improved results on object detection [18]. In previous re-
search, natural language is used as an external condition to
indicate the existence of target objects to be detected. This
idea has been applied to audio source separation tasks by
conditioning audio with video and score information [23].

3. METHOD

3.1 Model Architecture

We modified the piano performance transcription model
in order to classify the audio into the 88 keys [20]. This
model is known as the state of the art for a piano per-
formance transcription. Figure 1 shows the structure of
the entire model. This architecture first takes audio and
converts it to a Log Mel-frequency Spectrogram in order
to convert the waveform to be an image form. The audio
window length is two seconds and hop size is one second.
Sampling rate is set to 16k Hz. We take a frame of 100
segments corresponding to one second of audio. The two
dimensional form of audio is processed through convolu-
tional neural networks (CNN) as in the Figure 2. The chan-
nel size of the CNN layers are 1, 48, 64, 96, 128 as each
block of CNN processes the input as the Figure 1. After
the process of CNN layers, a bi-directional Gated Recur-
rent Unit (GRU) processes the data to check the time series
of the audio data. And then the input data is classified into
the 88 keys by a liner layer with the sigmoid activation
function.

Figure 1. The model architectures of the conditional DNN
and the unconditioned DNN for score informed MIDI ve-
locity estimation



Figure 2. The detailed structures of convolutional blocks
of the DNN with and without the FiLM conditioning

In order to take advantage of the classification character-
istics of this network, we kept Binary Cross Entropy (BCE)
classification loss for its loss function. On top of the BCE
loss, we added the loss function 2 to estimate MIDI veloc-
ity which takes the l1 distance between the output MIDI
velocity from the model and the ground truth MIDI veloc-
ity solely for the note frames. The MIDI velocity is scaled
between 0-127 and represents loudness for each performed
key on piano, the higher the value and the louder the sound.
The employed loss function 1 is a combination of l1 loss
and the BCE loss connected by a convex function so that
we can back propagate losses for both classification and
regression.

Loss = θ ∗ l1 loss+ (1− θ) ∗ bce loss (1)

where θ ∈ [0, 1] is the weight of the convex function and
currently it is set to 0.5 for experimental purposes.

The l1 loss function in this research is defined as follows;

l1 loss =

∑
i|V (i)ground truth − V (i)model output|

N

(2)

where i is an index of corresponding notes between ground
truth and output within a window and N is the number of
notes in the window. One data point for an input consists
of two seconds and each frame contains 100 segments per
second to represent the MIDI roll. We have tested other
well known loss functions, mean square error, Kullback-
Leibler divergence loss, the l1 loss. However, all of them
did not work for this experiment having classification and
regression aspects together.

For the purpose of inserting the score information, we
also added a FiLM conditioning layer as it is introduced in
Section 2. The FiLM comprises a set of neural network
layers that generate an affine transformation for a given in-
put layer in a neural network. It consists of a base DNN
which is trained in a supervised fashion and a condition

generator which takes conditions such as score as input and
generates β and γ to make an element-wise affine transfor-
mation in the latent space of the base DNN.

FiLM(x) = γ(z) · x+ β(z) (3)

where vector z is a conditional vector.

Figure 3. The diagram for the operation flow to insert a
FiLM condition to the base DNN.

The Figure 3 is the architecture of FiLM conditioning.
This condition embedding model generates parameters, β
and γ, to make an affine transformation on the latent vector
x from the base DNN.

In this research, the FiLM generator is designed as a fully
connected layer to generate conditioning parameters and it
is inserted each block of CNN at the end as the Figure 2.
The FiLM conditional vector is sliced for each convolu-
tional block for a scalar multiplication and addition (affine
transformation) for elements in latent vector. We also ex-
perimented with an element-wise operation by generating
as many elements as the latent vector contained and per-
forming the affine transformation for each element in the
latent vector with different elements in the FiLM condi-
tional vector. However, our current setup demonstrated the
best performance.

3.2 Model Evaluation

We used the MAESTRO data set [24] for training pur-
poses. We randomly chose 132 excerpts from the MAE-
STRO data set for training and the amount of data size is
2.8GB including audio and MIDI roll is selected. This lim-
itation is made due to our limited computational resources
and also in order to speed up the training process and see
the result of the training process to improve the MIDI ve-
locity estimations. The MIDI data contains the following
data; note onset, note offset, note frame, MIDI velocity,
pedal onset, pedal offset, pedal frame. In this data, MIDI
velocity is assigned on the note frame, not on the place
where onset is activated. We used the MIDI velocity data
on note frame level as supervised data for training.

For the test purposes, we used the Saarland Music Data
(SMD) data set [25]. The data set consists of students’ pi-
ano performance both audio data in mp3 format and MIDI
data which are perfectly aligned. We chose this data set



in order to compare the results against the score informed
NMF method by [7]. The original sampling frequency
is 44.1kHz. The amount of data is 50 classic piano ex-
cerpts and performed on an acoustic piano augmented with
a MIDI interface, Yamaha Disklavier. Among the data in
the SMD data set, excerpts used in previous research [7]
are chosen to be tested for comparison purposes. We evalu-
ated the model not only perfectly aligned cases with audio
and score information into FiLM layer, but also a case of
the score information is unaligned against audio input.

The evaluation is made by taking an l1 distance of MIDI
velocities between ground truth and inference by the model,
similarly to the previous research [7].

Error =

∑
i|V (i)ground truth − V (i)inference|

N

(4)

where i is each note and N is the number of notes in the
score.

The inferred MIDI velocity is the maximum value within
the interval of each detected and classified note frame. This
is because velocity fades after having the maximum value
in the estimated MIDI velocity in a note frame as if depict-
ing attack and fades of loudness of each note. Since this is
the score informed task, the error is calculated only where
note frames exist, i.e. the estimated notes are masked by
its score.

To evaluate the classification accuracy, recall score is cho-
sen as the evaluation metric. This is because the estimation
is masked by the given score, and recall is considered to be
the most appropriate evaluation metric for this classifica-
tion problem as it takes into account both true positive and
false negative. It measures the proportion of the total ac-
tual positive cases that are correctly identified as such by
the classifier.

4. RESULT AND DISCUSSION

4.1 Results on the Test Set

The results of evaluation are presented in Table 1. The
table consists of the result of three models: the FiLM con-
ditioned model (the proposed model, which uses the DNN
with score), the unconditioned model (the DNN without
score), and the model from [7] as a benchmark. The table
shows the mean of the note-level errors, the standard de-
viations and the recall score for both the conditioned and
unconditioned models. It should be noted that errors in the
DNN models used in this study include instances of mis-
classified notes, where the notes are present in the ground
truth but are not accurately detected by the models. This
phenomenon is reflected in the recall score of the model.

The results in Table 1 indicate that the FiLM condition-
ing improves the MIDI velocity estimation by 0.3. The best
MIDI velocity estimation of the proposed model is 5.8 for
BWV875-01 by Bach, which is better than the DNN model
without score conditioning, and there is a gap of 0.9 to
the NMF model with score conditioning. The largest dif-
ference between the conditioned and unconditioned model
is 3.3 for Bartok Sz80-03. The smallest, the biggest and

the average gap towards the NMF method is 3.9 by Bach
BWV875-01, 44.4 by Bach BWV888-02 and 11.0 respec-
tively on the test set. However, it is not clear that how
the gaps of the estimated MIDI velocities affects percep-
tual loudness. Moreover, there is a huge potential room to
improve the accuracy by adding more training data into it
considering the limitation of our experimental setup intro-
duced in Section 3.

There are pros and cons for the discussion of DNN vs.
NMF. For example, DNN takes longer time to train and is
data hungry in general, but once data is available and op-
timization of training process goes well, it processes faster
on test set and applicable to all unseen data in the same do-
main of training data. On the other hand, NMF starts op-
timising its parameters when it takes the test data. There-
fore it takes a longer time to get the inference result (in this
case, MIDI velocity) than the DNN model. Also, the op-
timized NMF for a data is not applicable to the other data.
The NMF needs another iteration process every time new
test data comes in.

Despite not improving significantly the MIDI velocity es-
timation itself, the FiLM conditioning has contributed to
the model by increasing the classification accuracy where
note frames exist. This is particularly evident in the im-
proved recall score, which is an important metric for this
classification problem. Overall, the average recall score
improved from 80.9% to 85.8%. The recall scores im-
proved on most of the excerpts, except for BWV871-01 by
Bach. This suggests that the FiLM conditioning is effec-
tive in improving the performance of the proposed model,
in particular, in terms of reducing the range of error and
increasing the classification accuracy where note frames
exist.

4.2 Visualisation of a Result

The Figure 4 illustrates the loudness of a gourd truth, a
model estimation with and without score information of
each note during a piano performance. It can intuitively be
seen that the conditioned model classifies the audio into 88
keys more accurately. This shows that the inserted score
information turned into a conditional vector on the base
DNN is helping for classification and focus on MIDI ve-
locity estimation. This visualization is particularly useful
in a pedagogical setting, as dynamics, or the sequence of
loudness, play a crucial role in piano performance. By
providing a direct feedback on dynamics, this system can
aid both students and teachers in understanding their per-
formance. Additionally, by aligning with real-world use
cases, this system is well-suited for educational purposes.
This system for education aligns for the real use case sce-
nario.

4.3 Results for Unaligned Score Cases

In practical scenarios, however, it is often the case that the
score information is not perfectly aligned with the audio.
The Figure 5 demonstrates the correlation between the un-
aligned time shift and the drop in overall accuracy of the
model with score information. The unaligned time shift is
a generated time gap between audio and MIDI roll in this



The DNN with Score The DNN without Score The NMF with Score [7]
Composer Excerpt Mean SD Recall Mean SD Recall Mean SD
Bach BWV849-01 8.7 5.8 89.1% 9.1 6.4 85.5% 2.6 3.0
Bach BWV849-02 8.2 6.1 87.7% 9.0 6.6 83.8% 2.3 2.5
Bach BWV871-01 8.3 5.7 90.7% 7.5 6.7 91.9% 1.7 2.1
Bach BWV871-02 9.0 5.6 90.7% 9.9 6.6 89.9% 2.0 2.1
Bach BWV875-01 5.8 5.1 91.0% 6.7 7.4 90.9% 1.9 1.9
Bach BWV875-02 7.2 5.5 90.2% 8.3 6.5 89.7% 1.9 2.1
Bach BWV888-01 11.4 10.9 87.8% 13.2 11.3 83.0% 2.8 3.1
Bach BWV888-02 46.2 25.4 82.1% 47.7 25.1 77.1% 1.8 2.2
Bartok Sz80-01 19.1 21.0 83.0% 22.2 22.5 79.4% 4.8 8.4
Bartok Sz80-02 13.6 11.7 90.3% 13.8 12.9 81.1% 5.0 5.9
Bartok Sz80-03 25.4 23.8 80.8% 28.7 24.3 77.6% 5.2 7.9
Beethoven Op27No1-01 11.9 10.1 89.6% 12.3 11.2 86.7% 3.6 4.3
Beethoven Op27No1-02 14.1 8.8 89.9% 13.6 8.4 84.0% 3.7 3.9
Beethoven Op27No1-03 11.9 10.3 88.1% 12.5 11.5 85.9% 3.3 5.5
Beethoven Op31No2-01 10.4 9.2 90.2% 10.5 9.0 81.7% 4.0 5.2
Beethoven Op31No2-02 18.0 15.7 91.7% 18.6 16.4 86.2% 4.0 4.3
Beethoven Op31No2-03 9.6 7.9 86.6% 10.2 8.4 82.9% 2.4 2.9
Brahms Op5No1 17.6 20.1 80.6% 19.3 20.7 74.4% 6.4 8.5
Brahms Op10No1 12.1 10.2 86.2% 11.7 9.6 78.2% 5.7 6.5
Brahms Op10No2 13.0 11.7 84.5% 13.0 13.0 77.7% 5.2 6.7
Chopin Op10-03 12.8 9.6 84.7% 12.1 9.1 80.2% 4.4 4.3
Chopin Op10-04 13.0 12.5 78.9% 14.9 15.2 75.6% 3.3 4.4
Chopin Op26No1 13.9 10.5 86.9% 13.0 9.6 81.7% 3.7 4.8
Chopin Op26No2 13.9 11.7 87.2% 13.7 12.1 84.2% 6.8 6.9
Chopin Op28-01 11.6 8.8 84.1% 10.5 8.8 78.3% 4.1 4.0
Chopin Op28-03 10.0 8.0 86.0% 9.1 7.5 80.9% 3.0 3.4
Chopin Op28-04 14.5 7.3 91.5% 13.1 7.6 86.4% 4.4 3.8
Chopin Op28-11 12.6 7.4 86.5% 10.7 7.3 83.0% 3.6 3.6
Chopin Op28-15 14.4 8.7 88.8% 13.9 9.6 81.2% 4.9 4.3
Chopin Op28-17 16.4 12.6 84.8% 17.2 13.5 79.4% 5.8 6.2
Chopin Op29 9.1 7.5 84.0% 9.4 8.1 78.9% 4.5 4.4
Chopin Op48No1 14.1 11.2 84.2% 12.6 10.5 76.1% 5.8 6.2
Chopin Op66 12.2 8.8 84.2% 11.9 8.3 76.7% 4.0 4.0
Haydn Hob17No4 10.3 8.0 89.4% 11.0 8.9 87.3% 2.5 4.2
Haydn Hob16No52-1 31.2 24.3 85.6% 31.8 24.3 81.2% 3.5 4.1
Haydn Hob16No52-2 17.5 16.5 90.4% 18.2 16.7 84.5% 3.6 4.0
Haydn Hob16No52-3 34.6 24.7 86.4% 37.1 24.5 81.7% 3.2 4.6
Liszt Lecture Dante 14.7 12.9 78.3% 14.2 12.4 70.7% 6.9 8.9
Liszt S.179 13.6 10.0 79.5% 12.6 9.8 74.9% 7.0 9.2
Liszt S.144-2 13.8 13.6 84.9% 13.3 11.5 79.3% 4.6 7.3
Mozart K.265 13.3 12.6 90.2% 14.5 13.9 88.6% 2.8 3.8
Mozart K.398 20.0 20.0 89.9% 21.7 21.1 85.9% 3.1 3.4
Rachman. Op36-1 18.3 18.2 81.2% 18.2 18.3 74.5% 5.5 7.0
Rachman. Op36-2 14.0 12.9 83.9% 12.6 12.5 76.0% 5.7 7.2
Rachman. Op36-3 29.3 26.1 74.7% 30.9 26.0 69.2% 5.7 8.8
Rachman. Op39No1 14.6 13.3 75.8% 14.7 14.1 70.7% 4.4 6.2
Ravel Jeux d’eau 19.6 17.7 76.9% 17.9 15.3 71.3% 5.6 6.9
Ravel Valse Nobles 13.9 11.2 84.2% 13.2 10.9 76.9% 4.9 7.0
Skryabin Op8No8 13.2 7.3 87.9% 12.6 7.5 83.8% 3.6 3.9
Average 15.1 12.3 85.8% 15.4 12.6 80.9% 4.1 5.0

Table 1. The results for each excerpt in the test set. Mean and Standard Deviation(SD) of the estimation error and recall
score are listed.



Figure 4. Visualization of MIDI velocity: The time in the
horizontal axis is in 10ms i.e. two seconds in total, and the
88 keys is in the vertical axis.

experiment. The chart shows that clear correlation for the
drop of overall accuracy of the model with score informa-
tion.

There have been several methods and models to over-
come this issue. The Dynamic Time Warping (DTW) is
one of the most widely used models for aligning audio to
score. [26] researched and implemented a score alignment
by a DNN method. These methods are feasible to try on
this model to improve accuracy.

4.4 Error Analysis

Additionally, we compared the distributions of notes in
both the training set and the inferred result of the test set for
factors that can induce error in the previous research [7];
pitch, ground truth MIDI velocity, and sustain pedal acti-
vation.

Figure 5. The relation between unaligned score and input
audio in time and each metrics; the error of mean, the stan-
dard deviation and the recall score.

Figure 6. The Estimation Errors Based on Pitch Groups
and the Ratio of Notes in the Training Set.

In Figure 6, the horizontal axis groups the pitch into 10
intervals and displays a box plot of the estimation error for
correctly classified notes in the 88 keys using the model
with score information. The accompanying line plot illus-
trates the proportion of each group present in the training
set. The figure demonstrates that a more extensive train-
ing data set results in more accurate error estimation by
the model. To address this, the distribution of the training
set should be optimized through data augmentation tech-
niques, with a focus on adding more samples with pitches
below 30 and above 70.

The argument applies similarly to Figure 7, which groups
the ground truth MIDI velocity into 10 intervals and dis-
plays the deviation of the estimation error for each group
using the proposed model with score information. A close
examination of the figure reveals a lack of data for ground
truth velocity groups below 20 and above 110, leading to
noticeable error deviations.

Figure 8 showcases the estimation errors when the sus-
tain pedal is activated and inactive for notes correctly clas-
sified by the proposed model with score information. The
training set includes approximately 65% of notes with the
sustain pedal activated and the remaining without. The fig-
ure demonstrates that a larger training data set results in



Figure 7. The Estimation Error Based on the Ground Truth
MIDI Velocity Groups and the Ratio of Notes in the Train-
ing Set.

Figure 8. The Estimation Error Based on the Sustain Pedal
On and Off and the Ratio of Notes in the Training Set.

improved accuracy and reduced deviation in the model’s
estimation of MIDI velocity.

The various aspects of estimation error require proper
data augmentation for optimization. The iterative manipu-
lation of the training set leads to enhanced accuracy for the
proposed model.

The estimation error figures exhibit numerous outliers in
each group, which can be addressed through post-processing
statistical methods to minimize error, finding correlations
between each notes.

5. CONCLUSION

In this research, we proposed an end-to-end method for
estimating MIDI velocity from audio using a DNN with
a FiLM conditioning mechanism that inputs score infor-
mation. The model improved upon previous method [7]
by being more generic and able to process all music per-
formed on piano, not modeling on a single excerpt by the
NMF. Furthermore, the proposed model demonstrated sub-
stantial improvement in note detection and classification
accuracy.

The performance of the model can be further improved
by increasing the amount of data and fine-tuning the train-

ing data to a specific domain. The results indicate that the
proposed model is a promising step towards accurate MIDI
velocity estimation in an end-to-end fashion and can be ap-
plied to real-world scenarios such as performance visual-
ization. In the real use case scenarios, it is possible to ap-
ply the system to music education and dynamic markings
transcription as in forte, piano, mezzoforte, crescendo,
decrescendo, etc.

In the context of music education applications, the model
should take care about a bigger training data set for the
domain of students’ performance. We also need to care
about the unaligned case between audio, MIDI and score.
However, visualisation of loudness such as Figure 4 gives
students an objective way to see their performance and it is
one of the best visualization tools if teachers model perfor-
mance is recorded in MIDI format. It also gives benefits to
teachers to check students’ performance in a shorter time
compared to listening to their performance one by one to
evaluate. Therefore this loudness detection and visualisa-
tion has a clear use case scenario to support music educa-
tion.

Regarding dynamic marking transcription problems, we
must consider a map between MIDI velocity to percep-
tual loudness since dynamics markings are relative loud-
ness and perceptual to some extent contrary to MIDI ve-
locity which is absolute loudness. As a future work, it is
important to create a map from MIDI velocity to the sym-
bolic notations. There have been several researches to cre-
ate maps from loudness to symbols of music score [14,
17]. However, this area of research needs interdisciplinary
knowledge by collaborating musicologists since this is rel-
ative mapping seeing the context of loudness of perfor-
mance. As can be seen, this research takes the core points
to contribute various music technology areas.

However, this research is the first research utilising the
DNN ability and thus there are various architectures of
DNNs to try out borrowing ideas from recent advance-
ment. There is room for further improvement by exploring
different DNN architectures and increasing the amount of
training data. For example, residual nets are known per-
forming well in the U-net for source separation [22]. If
we employ U-net architecture, it is possible to directly in-
put wave forms. Also, the FiLM condition generator can
be explored such as taking CNN blocks. Additionally, fu-
ture work should also address the issue of unaligned audio,
MIDI, and score information and the mapping of MIDI ve-
locity to perceptual loudness and symbolic notations. The
code and data used for this research can be provided upon
request.
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