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ABSTRACT IN ENGLISH: 

Bayesian optimization has emerged as an effective and efficient approach for 
finding the global optimum of highly complex derivative-free black-box functions. 
It typically models the objective function with Gaussian processes (GP) as a 
surrogate. Based on this surrogate, an auxiliary acquisition function proposes 
candidate optima locations to query the objective function at. In this paper, we 
explore recent developments that may help alleviate two key limitations of GP’s: 
poor performance with large datasets, and non-stationary target functions. To 
this end, we propose and implement several scalable uncertainty aware neural 
networks as alternative surrogates. In a series of tests, we showcase the 
relative performance of ensembles, Bayesian, and direct estimation neural 
network approaches against that of traditional GP’s and state of the art Sparse 
Variational Gaussian Processes (SVGP) in Bayesian optimization settings. Our 
results show that not only are neural networks a scalable solution with 
comparable performance to GP’s, but they also hold the potential to outperform 
SVGP’s. 
 

ABSTRACT IN SPANISH: 

La optimización bayesiana ha surgido como una alternativa eficaz y eficiente 
para encontrar el óptimo global de funciones sin derivadas y altamente 
complejas. Por lo general, la optimización bayesiana modela la función objetivo 
con procesos gaussianos (PG) como sustituto. En función de este sustituto, 
una función de adquisición auxiliar propone posibles ubicaciones óptimas para 
consultar la función objetivo. En este artículo, exploramos los desarrollos 
recientes que pueden ayudar a aliviar dos limitaciones clave de los PG: bajo 
rendimiento cuando contamos con grandes cantidades de datos, y funciones 
objetivo no estacionarias. Con este fin, proponemos e implementamos una 
serie de alternatives en forma de redes neuronales capaces de cuantificar la 
incertidumbre del modelo y que permiten trabajar con datos de mayor 
dimensionalidad. En una serie de pruebas y escenarios de optimización 
bayesiana, mostramos el rendimiento de modelos neurales de conjuntos 
(ensembles), bayesianos y de estimación directa de la incertidumbre y los 
comparamos a los PG tradicionales y a los procesos gaussianos variacionales 
dispersos (PGVD) de última generación. Nuestros resultados muestran que las 
redes neuronales implementadas no solo son una solución escalable con un 
rendimiento comparable al de los PG, sino que también tienen el potencial de 
superar a los PGVD. 

 
ABSTRACT IN CATALAN: 

La optimització bayesiana ha aparegut com una alternativa eficaç i eficient per 
trobar l’òptim global de funcions sense derivades i molt complexes. 
Normalment, la optimització bayesiana modela la funció objectiu amb 
processos gaussians (PG) com a substitut. En funció d’aquest substitut, una 
funció d’adquisició auxiliar proposa possibles ubicacions òptimes per consultar 



la funció objectiu. En aquest article, explorem els desenvolupaments recents 
que poden ajudar a al·leviar dues limitacions clau dels PG: rendiment baix quan 
disposem de grans quantitats de dades, i funcions objectiu no estacionàries. 
Amb aquest fi, proposem i implementem una sèrie d’alternatives en forma de 
xarxes neuronals amb capacitat de quantificar l’incertesa del model i que 
permeten treballar amb dades de major dimensionalitat. En una sèrie de proves 
i escenaris d’optimització bayesiana, mostrem el rendiment de models neurals 
de conjunts (ensembles), bayesians i d’estimació directa de l’incertesa i els 
comparem amb els PG tradicionals i amb els processos gaussians variacionals 
dispersos (PGVD) de darrera generació. Els nostres resultats mostren que les 
xarxes neuronals implementades no només són una solució escalable amb un 
rendiment comparable als PG, sinó que també tenen el potencial de superar als 
PGVD. 
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Abstract

Bayesian optimization has emerged as an effective and efficient approach for finding
the global optimum of highly complex derivative-free black-box functions. It typically
models the objective function with Gaussian processes (GP) as a surrogate. Based on
this surrogate, an auxiliary acquisition function proposes candidate optima locations to
query the objective function at. In this paper, we explore recent developments that
may help alleviate two key limitations of GP’s: poor performance with large datasets,
and non-stationary target functions. To this end, we propose and implement several
scalable uncertainty aware neural networks as alternative surrogates. In a series of tests,
we showcase the relative performance of ensembles, Bayesian, and direct estimation
neural network approaches against that of traditional GP’s and state of the art Sparse
Variational Gaussian Processes (SVGP) in Bayesian optimization settings. Our results
show that not only are neural networks a scalable solution with comparable performance
to GP’s, but they also hold the potential to outperform SVGP’s.

I Introduction

Bayesian optimization (BO) is a powerful method that has been successfully applied to a diverse
array of fields such as hyperparameter tuning for automated machine learning (Snoek et al., 2015),
robotics (Lizotte et al., 2007), combinatorial optimization (Hutter et al., 2011), molecular search
Hernández-Lobato et al. (2017), and experimental design (Azimi et al. 2012, Greenhill et al. 2020).
Simplistic procedures such as systematic or randomized grid search have traditionally been employed
(Bergstra and Bengio, 2012), but as objective functions become more complex and more expensive
to evaluate, these naive approaches become intractable. Bayesian optimisation sidesteps these
difficulties by using a surrogate model to approximate the objective function. Then, through a
Bayesian decision framework, it queries the search space in an informed manner to efficiently find
the global optimum (Shahriari et al. 2016, Frazier 2018).

Gaussian process-based Bayesian optimisation has been applied successfully in a myriad of small-
data and stationary settings due to GP’s flexibility and ability to represent model uncertainty.
However, recent years have seen a growing demand for optimizing increasingly complex problems,
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which typically require a significant number of function evaluations to find a high-quality optimum
such as highly noisy problems (Jalali et al., 2017) or complex problems with large search spaces
(Griffiths and Hernández-Lobato, 2017). Unfortunately, the computational cost of Gaussian pro-
cesses is known to scale cubicly with the number of observations, making it prohibitively expensive
to use with large evaluation budgets. Additionally, GP’s are ill-equipped to deal with non-stationary
data (Damianou and Lawrence, 2013). These shortcomings motivate the exploration for alternative
easy-to-scale surrogates that are capable of handling non-stationary target functions.

Recently, Vakili et al. (2021) proposed Sparse Variational Gaussian Processes (SVGP) as a scal-
able alternative to vanilla GP-based BO. Through approximation, SVGP’s are able to address the
primary concern of high computational cost. However, SVGP’s still do not address issues of non-
stationarity. On the other hand, artificial neural networks are both highly scalable and flexible
allowing them to handle both large data and non-stationarities. Unfortunately, neural networks
provide no straightforward approach for quantifying model uncertainty, which has traditionally lim-
ited their use in Bayesian optimization. Considered one of the great challenges for machine learning
research, the last decade has seen a surge in the literature that studies methods for quantifying
uncertainty of black-box functions, both generally (Romano et al., 2019) and specifically in the
context of neural networks (Gawlikowski et al., 2021).

In this work, we explore the novel application of four neural networks that are equipped with the
necessary tools to estimate model uncertainty, making them valid alternatives to GP’s. In particular,
we consider deep ensembles, an ensemble method by Lakshminarayanan et al. (2017); Monte Carlo
dropout, a pseudo-Bayesian method put forth in Gal and Ghahramani (2016); and two deterministic
methods: deep evidential regression (Amini et al., 2020) and direct epistemic uncertainty prediction
(Jain et al., 2021). Although other works have compared the varying performance of these models
in accurately quantifying uncertainty (Henne et al. 2020, Abdar et al. 2021), it is unclear whether
this behavior necessarily translates into better performance in the context of Bayesian optimisation.
Outside of Bayesian optimisation, accuracy of uncertainty quantification is compared in absolute
terms, but within Bayesian optimisation, this may be superfluous. It may be sufficient to have
representations of relative accuracy of uncertainty to sufficiently guide exploration to the optimum.

We benchmark these models on a number of classical BO functions with large and small evaluation
budgets to test their scalability and efficacy in handling non-stationary settings. We evaluate
their performance relative to a random sampling baseline, traditional GP’s and state-of-the-art
SVGP’s. Our primary contributions can be summarized as follows. We first provide evidence that
neural networks are viable substitutes for GP’s in Bayesian optimization by showing that they have
comparable performance in most settings. Second, we show that neural networks scale better than
GP’s when evaluation budgets are large. Finally, we find that neural networks outperform SVGP’s
for some non-stationary noisy functions with large evaluation budgets, suggesting the former are
viable alternatives to state-of-the-art surrogate models.

The rest of this article is structured as follows. Section II provides a detailed introduction to
Bayesian optimization, the types of uncertainty in neural networks and an overview of the exist-
ing literature. Section IV describes the theoretical grounds and practical implementation of the
proposed uncertainty-aware artificial neural networks. Section V presents the experimental frame-
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work and results of a series of tests on benchmark noiseless and noisy multi-dimensional functions.
Section VI concludes.

II Bayesian optimization

Bayesian optimisation consists of a statistical model that defines a distribution over the unknown
function f from the input space X and an acquisition function that determines the sequence of new
input queries x ∈ X that may yield a global optimum f(x∗), i.e.

x∗ ∈ argmax
x∈X

f(x) (1)

Given a prior over the functional form of f and a set of n observations of input-output pairs
Dn = {(xi, f(xi))}ni=1, Bayesian optimization makes use of the posterior of the surrogate function f̂

to map likely outcomes of f for some new candidate xn+1, while the acquisition function evaluates
the potential of these candidate points to guide the next best step xn+1. After some N number of
iterations, the algorithm outputs the set of coordinates x̂ that yield the best estimate of the global
optimum. See Algorithm 1 for the pseudo-code of the algorithm.1

Algorithm 1 Bayesian optimization
1: observe f(x) at n0 initial points
2: for n = 1, 2, . . . do
3: select new xn+1 by optimizing acquisition function α

xn+1 = argmax
x

α (x;Dn)

4: query objective function to observe yn+1 = f(xn+1)

5: Dn+1 ← {Dn, (xn+1, yn+1)}
6: update the posterior distribution on f

7: return x̂ with highest f(x̂)

Surrogate models. The default choice for a probabilistic surrogate model are GP’s, which are
flexible enough to model complex functions, quantify model uncertainty, and exhibit sufficient struc-
ture to avoid over-fitting (Jones 2001, Osborne et al. 2009). Two significant shortcomings of GPs
are their scalability, and their suitability to non-stationary problems. In particular, inverting the
kernel matrix for exact inference with GP’s is computationally O

(
n3
)2, which limits its ability in

BO when the dimensionality of the search space or model complexity require a large number of ob-
servations to achieve a high quality solution. Furthermore, standard GP’s have covariance functions
that induce a uniform level of smoothness over the function space, which makes them ineffective for
non-stationary functions.

Sparse Variational Gaussian Processes (SVGP’s) are the current state-of-the-art method for ad-
dressing scalability, bypassing the cubic limitation by approximating the GP posterior through a
fixed set of inducing points (Hensman et al., 2013). Recently, Vakili et al. (2021) showed that sparse
processes can achieve the same regret bounds as classical processes with Thompson sampling, and

1See Garnett (2022) for an in-depth review of the literature on Bayesian optimization.
2Details about this result are derived in Appendix Section VII.A.
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showed in their experiments that Bayesian optimization using SVGP outperforms their classical
counterparts when the number of function evaluations is unbounded.

Nonetheless, SVGP’s do not address issues of non-stationarity. One classical approach is to for-
mulate the covariance function as a non-stationary kernel, but this requires a high degree of
parametrization which may make it unsuitable for higher dimensional problems quickly. Another
approach is to use multiple local stationary covariance functions to capture the non-stationarities.
A third approach is to warp the input space with a non-linear mapping into a more stationary
environment. These two latter methods are limited when dealing with computationally expensive
or sparse data settings common to Bayesian optimisation (Hebbal et al., 2019).

On the other hand, neural networks are known to both scale and handle non-stationarities well. In
this article, we study the use of several uncertainty aware neural network, presented in Section IV,
and their efficacy as surrogate models.

Acquisition functions. An optimization policy guides sequential exploration of the objective
function using the surrogate model. In each step, the acquisition policy uses the surrogate model
and its current beliefs about the objective function to propose the next point to evaluate. The
acquisition function seeks to trade off exploration and exploitation: a policy that over-explores may
be prohibitively inefficient and delay convergence, while over-exploitation may lead to excessive
evaluation of local optima. In order to balance between the two, the policy requires some reasonable
estimate of out-of-sample model uncertainty to help guide exploration beyond the space of initial
points. The literature has put forth many acquisition functions, and in this paper we consider two
popular candidates: Expected Improvement and Thompson Sampling. Both approaches are easy
to evaluate, which allow for more efficient optimization over the original unknown function.

Expected Improvement combines a greedy one-step look-ahead policy with a simple reward utility
function, where for a posterior mean function of the surrogate µDn we define the utility as u (Dn) =

maxµDn(x). The Expected Improvement acquisition function then chooses x such that it maximizes
Equation 2, ie. it selects x ∈ argmax

x′∈X
αEI (x

′;Dn) as the next query point.

αEI(x;Dn) =

∫ [
maxµDn+1

(
x′)] p(y | x,Dn)dy −maxµDn(x) (2)

Alternatively, Thompson sampling takes a non-deterministic sampling approach. Instead of trying
to maximize over the entire posterior distribution of the objective function, this approach samples
random realizations of the unknown objective function by drawing from its posterior distribution
given the available data Dn (Garnett, 2022), see Equation 3. The next query point is acquired over
the sampled candidates, using the most promising realization.

αTS(x;Dn) ∼ p(f | Dn) (3)

Conveniently, Thompson sampling can be easily expanded to batch sampling, where some k real-
izations of the posterior are drawn and evaluated simultaneously, yielding a batch of k new query
locations. Since, there is significant overhead for training a neural network, it is quite wasteful to
optimize with only a single new observation, as would be the case with vanilla Thompson sampling.
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Hence, the combination of batch sampling and neural networks can provide significant computa-
tional advantages. Although this precipitates a coarser schedule of optimization, the loss in accuracy
is typically made up for by the gains in computational costs.

Using the surrogate model to capture beliefs about the unknown distribution, and some easy-to-
evaluate acquisition function that optimizes the search, Bayesian optimization efficiently seeks out
the global optimum. It sequentially updates its posterior beliefs in a Bayesian fashion, and upon
termination infers the optimum using the posterior, which can be written as:

p (f |D) =
∫

p (f | X , ϕ) p (ϕ|D) dϕ (4)

where ϕ represents the surrogate model. In the following sections, we seek to identify recent advances
in neural networks that are most useful in the above framework, and provide evidence on their
relative performance based on a series of tests on different data.

III Related Work

The literature on Bayesian optimization originated with work by Kushner (1964), A.G. (1975) and
Mockus et al. (1978), but the algorithm was first popularized by Jones et al. (1998) in their work on
the Efficient Global Optimization schedule. Their work paved the way for many innovations in the
field, including multi-objective optimization (Knowles 2006, Keane 2006), multi-fidelity optimization
(Sobester et al., 2004) and the analysis of convergence rates (Calvin and Zilinskas, 2000). In turn,
Bayesian optimization impacted a broad range of other literature strains, including robotics (Lizotte
et al., 2007), automatic machine learning (Bergstra and Bengio 2012, Swersky et al. 2013, Snoek
et al. 2015), experimental design (Azimi et al., 2012), reinforcement learning (Brochu et al., 2010)
and model simulation (Salemi et al. 2014, Kleijnen 2015, Mehdad and Kleijnen 2018).

Standard deep neural networks may scale substantially better than GP’s (Bottou and Bousquet,
2008), but are agnostic about model uncertainty. In a bid to address the latter, Mullachery et al.
(2018) developed Bayesian Neural Networks (BNN’s). Unfortunately, although BNN’s are theoreti-
cally well founded, they are typically computationally intractable to compute the posterior over any
sizeable network, giving them limited usefulness. Snoek et al. (2015), building from work by Neal
(1995) and Williams (1996), put forth a solution that consisted of replacing only the final hidden
layer in a deep neural network with a Bayesian linear regressor. This theoretically amounted to
forming an adaptive basis function with the first K − 1 layers to feed into a simple Bayesian lin-
ear regression, forming the so-called Deep Networks for Global Optimization (DNGO) method. In
practical terms, this meant the computational cost was reduced to growing linearly with the number
of observations and cubicly with the dimensionality of the K − 1 basis function which determine
the size of the matrix to be inverted in the added Bayesian linear regression layer. The authors
show this is computationally cheaper than GP’s, and is also able to explicitly trade off between
computational cost and model expressivity by adjusting the size of the basis function. Experiments
showed that with a small budget of 200 evaluations, BNN-based BO in place of vanilla GP achieved
comparable results.
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Alternative work by Hernandez-Lobato and Adams (2015) showed that probabilistic backpropa-
gation (PBP) is more cost-efficient than Bayesian neural networks. PBP works by propagating
probabilities forward to obtain the marginal likelihood, and then backpropagating the gradients of
the marginal likelihood with respect to the parameters of the posterior approximation. In a follow-
up paper, Hernández-Lobato et al. (2017) are able to further improve the computational tractability
of PBP through parallelization of Thompson Sampling, which does not depend on the underlying
model structure. Although, intrinsic computational time is not reduced, distributed Thompson
Sampling is able to reduce the wall clock time.

Beyond the scope of Bayesian optimization, extensive research has been conducted in recent years
in broader attempts at equipping deep learning models with the tools of uncertainty quantification,
see Abdar et al. (2021) for a survey of recent developments. In the next section we consider salient
examples of uncertainty-aware deep learning methods, which we study and contrast in subsequent
sections.

IV Uncertainty-Aware Neural Networks

Neural networks scale much better than vanilla Gaussian processes, making them an attractive
choice for Bayesian optimisation with large evaluation budgets. Moreover, while GP’s are not apt
for modelling non-stationary target functions, neural networks’ high degree of expressivity make
them quite suitable. An additional advantage of using neural networks as surrogate models is that
they are particularly capable of learning in batches, which facilitates the use of parallel acquisition
functions (Hernández-Lobato et al., 2017). Despite these attractive features, the use of neural
networks as surrogate models in Bayesian optimisation has long been considered infeasible due to
the lack of tractable strategies to quantify uncertainty.

Recent advances in uncertainty aware neural networks has made their use in Bayesian optimisation
potentially feasible. Although some of the recent approaches have been shown to produce superior
uncertainty estimates over others (Osband et al., 2021), the extent to which this may affect perfor-
mance in Bayesian optimization is not explored in the literature. In this section, we present four
different neural network architectures that we will evaluate in the Bayesian optimisation setting:
deep ensembles, an ensemble method by Lakshminarayanan et al. (2017); Monte Carlo dropout,
a pseudo-Bayesian method put forth in Gal and Ghahramani (2016); deep evidential regression
(Amini et al., 2020); and direct epistemic uncertainty prediction (Jain et al., 2021). Details of their
implementation are in Appendix Section VII.E.

IV.A Monte Carlo Dropout

Dropout is a standard regularisation technique that is employed to prevent neural networks from
over-fitting (Srivastava et al., 2014). At training time, each input of a feed-forward layer will either
be dropped with probability p or used with probability (1− p). This is analogous to bootstrapping
the model into exponentially many different architectures. Normally, dropout is disabled at inference
time to provide consistent predictions, but Gal and Ghahramani (2016) suggest that dropout may
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be repurposed to approximate a probabilistic deep Gaussian process (Damianou and Lawrence,
2013).

In practice, this implies making T stochastic forward passes with dropout enabled at inference time,
and estimating the first two empirical moments of the distribution by using the sample mean and
variance of the T forward passes (Figure 1).

Figure 1: Monte Carlo Dropout Architecture

Monte Carlo Dropout approximates Bayesian inference by maintaining Bernoulli dropout at both training and
inference time. The mean and variance of the posterior distribution can be characterised by the sample mean
and sample variance of T stochastic samples.

Monte Carlo Dropout has proven particularly successful in the applied literature due to its ease of
implementation. Although MC Dropout has been shown to produce poorer estimates of uncertainty
than some of the alternative approaches considered here, it is not entirely clear that it would not
be effective in a Bayesian optimisation setting. Furthermore, since samples can be easily drawn by
repeatedly conducting forward passes, it is cheap and straightforward apply large batch sampling
with Thompson sampling.

IV.B Deep Ensembles

Deep ensembles are ensembles of deep neural networks that have been found to have a good repre-
sentation of uncertainty. Lakshminarayanan et al. (2017) has shown that deep ensembles performs
at least as well as Bayesian neural network approaches, including Monte Carlo Dropout. Beluch
et al. (2018) and Gustafsson et al. (2020) similarly find ensembles to be more reliable and applica-
ble than Bayesian networks in practical scenarios. Deep ensembles consists of M fully connected
multi-layer probabilistic networks that are used as base learners and whose last layer has a Gaussian
distribution. A negative log-likelihood loss is used to train the base networks, and the model relies
on differences in the random initialization of these to learn about the model uncertainty. See Figure
2 for details about the architecture.
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Figure 2: Deep Ensembles Architecture

Deep ensembles capture model uncertainty by considering differences in prediction across base learners.

Despite their proven ability to quantify model uncertainty, employing neural network ensembles
incurs high computational overheads. Additionally, their usefulness may be limited when used with
acquisition functions that exploit sampling of the surrogate model, as in principle the number of
samples at any given x is upper bounded by the number of base models.

IV.C Deep Evidential Regression

Deep Evidential Regression (DER) is a deterministic method that trains non-Bayesian neural net-
works to learn the parameters of a higher order evidential regressions. This permits the model to
directly estimate the target, the epistemic uncertainty, and the aleatoric uncertainty (Amini et al.,
2020). Unlike MC Dropout and Deep Ensembles, DER can analytically disentangle the reducible
(epistemic) uncertainty from the irreducible (aleatoric). By assuming a Gaussian likelihood function
on the data and evidential priors, a Gaussian prior is placed on the mean and an Inverse Gamma
prior is placed on the variance (equation 5). By further assuming that the approximating distribu-
tions can be factorized: q(µ, σ2) = q(µ)q(σ2), we get the so-called Normal Inverse-Gamma (NIG)
distribution.

(y1, y2, . . . , yN ) ∼ N (µ, σ2) (5)

µ ∼ N (γ, σ2ν−1) σ2 ∼ Γ−1(α, β) (6)

The neural network is then trained to output the four evidential parameters γ, ν, α, and β of the NIG
distribution (Figure 3). The prediction of the NIG distribution is simply E(µ) = γ; the epistemic
uncertainty is var(µ) = β

ν(α−1) ; and the aleatoric uncertainty is E(σ2) = β
(α−1) .
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Figure 3: Deep Evidential Regression Architecture

Deep Evidential Regression trains the model to produce a 4-dimensional output for every observation. At
inference time, these are used to characterize completely the Normal Inverse Gamma distribution.

Although the prior distribution permits an analytical solution giving the Student t-distribution,
St(y; γ, β(1+ν)

να , 2α), training solely on the negative log likelihood of the Student’s t-distribution is
ill-defined and a regularizer to penalize model evidence on incorrect predictions is required. For
this, Amini et al. (2020) formulates a novel evidence regularizer (7) to be used in conjunction with
the negative log likelihood of the Student’s t-distribution (8) as the complete loss function of the
neural network (9).3

LRi (w) = |yi − γ| · (2ν + α) (7)

LNLL
i (w) =

1

2
log
(π
ν

)
− α log (Ω) +

(
α+

1

2

)
log
(
(yi − γ)2ν +Ω)

)
+ log

(
Γ(α)

Γ(α+ 1
2)

)
(8)

Li(w) = LNLL
i (w) + λLRi (w) (9)

where Ω = 2β(1 + ν) and λ is a hyperparameter that adjusts the weight attributed to the loss
regularizer. A large value of λ can cause uncertainty to explode, whereas a small value of λ can
lead to overconfidence in the model. In practice, to help with tuning this hyperparameter, we follow
the work of Amini et al. (2020) and implement an iterative procedure to adjust the λ parameter
throughout training.4 Constraints are placed on ν, α, and β to be strictly positive (with α > 1) to
ensure that the distributions and variances are well behaved.

Since the deep evidential framework amounts to a simple feed-forward network, it is the compu-
tationally cheapest of the neural networks we consider. Although, Amini et al. (2020) has shown
that it is capable of representing uncertainty well, in practice, we find that its representations of
uncertainty is not particularly robust to initialisations and highly sensitive to its many hyperparam-
eters. But, through experimentation, we find that taking a logarithmic transform of the epistemic
uncertainty for use with either expected improvement or Thompson sampling produced better and

3w are the weights of the neural network.
4https://github.com/aamini/evidential-deep-learning
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more reliable performance in the context of Bayesian optimisation.

IV.D Direct Epistemic Uncertainty Prediction

The algorithms described above exploit model variance to approximate epistemic uncertainty, but
are agnostic about the additional error bias that may stem from parsimonious network architectures
and mechanisms used to prevent over-fitting. In light of this, Jain et al. (2021) propose an alternative
measure of uncertainty, which is estimated in terms of the loss of the learner as a decomposition
into reducible and irreducible uncertainty. Considering a learning algorithm L mapping a dataset
Dn = {(xi, yi)}ni=1 to a predictive function f̂ = L(Dn) which tries to minimize the expected value
of a loss L(f(x), y), the authors express total uncertainty as in Equation 10.

U(f̂ , x) =
∫
L(f̂(x), y)dP (y | x) = E(f̂ , x) +A(x) = E(f̂ , x) + U (f∗, x) (10)

where E(f̂ , x) and A(x) represent epistemic and
aleatoric uncertainty. Given some generalization
error caused by the choice of network parame-
ters, the best one may aspire to estimate is f̃ ,
the orthogonal projection of f̂ on f∗ in the sub-
space of the network. Previous methods explore
the model variance around f̂ to estimate the
reducible error, whereas DEUP additionally ac-
counts for the generalization error, or distance
between f̂∗ on f∗, when estimating epistemic un-
certainty.

Direct Epistemic Uncertainty Prediction (DEUP) employs two predictors to approximate E(f̂ , x):
a main predictor f̂ that learns about the original task, and an auxiliary error predictor u which
is used to predict the epistemic uncertainty of the main predictor. The core principle of DEUP is
to use observed out-of-sample errors in order to train u, which can be used to estimate epistemic
uncertainty elsewhere. The error predictor u is trained using the original coordinates of x as well
as additional features to predict the mean squared error loss values of the main predictor. These
auxiliary variables aim to provide contextual information about the input space and are themselves
proxies for epistemic uncertainty. We use both kernel density estimates (Charpentier et al., 2020)
and the main predictor variance (Gal and Ghahramani, 2016) at each point x. These variables
address non-stationarity concerns of the error predictor targets, which arise from the changing
behavior of uncertainty around some x point as the model explores the neighboring space.

Additionally, we give the error predictor u a warm start by creating a synthetic dataset of cross-
validated observations, which improves early prediction of the epistemic uncertainty in the model.
We use cross-validation to train the main predictor f̂ , and append the loss values to the synthetic
dataset. See Algorithm 2 for the complete pseudo-code of the algorithm.
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Algorithm 2 Training procedure for DEUP in a BO setting
1: data: Dinit initial dataset with pairs (x, y) ∈ X × R

2: f̂ : X → R, main predictor (of y given x)
3: u : X → R, total uncertainty estimator
4: ϕ : X → Rk, auxiliary stationarizing features
5: acq: acquisition function
6: xacq from X , using the current f̂ and u estimates
7: Du ← ∅, training dataset for u

8: D ← Dinit, dataset of training points for ŷ seen so far
9: optional: pre-fill Du using shuffled sets of initial points and fits of u

10: xacq ← ∅, yacq ← ∅
11: while n = 1, 2, . . . do
12: fit predictor f̂ and features ϕ on D

13: Du ← Du ∪
{
ϕ(xacq),

(
yacq − f̂(xacq)

)2}
if xacq ̸= ∅

14: fit auxiliary predictor u on Du

15: xacq ← acq(X , f̂ , u), yacq ∼ P (· | xacq)

16: Du ← Du ∪
{
ϕ(xacq),

(
yacq − f̂(xacq)

)2}
17: D ← D ∪ {xacq, yacq}

Although any probabilistic model can be used as a main predictor, we consider Deep Ensembles in
the experiments below because it is known to have good uncertainty quantification. The auxiliary
predictor u is a standard feed-forward network, and Gaussian density estimates are computed in each
iteration following a grid search of the optimal bandwidth parameter. This optimization schedule
makes DEUP the most computationally expensive models among the ones considered in this article,
and the visual description of this specification is shown in Figure 4.

Figure 4: Direct Epistemic Uncertainty Prediction Architecture

Direct Epistemic Uncertainty Prediction trains two separate models to estimate uncertainty in an auxiliary
model as the reducible loss of the main model. The uncertainty model is trained with observations that are
included before and after retraining the main model, and additional variables are used to account for the resulting
non-stationary behavior.
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V Experiments

To test the scalability of these novel models, we incorporate Gaussian noise into the observations of
already difficult functions: Shekel-4, Ackley-5, and Hartmann-6. The Shekel and Ackley functions
are highly non-stationary whereas the Hartmann, although stationary, is a higher dimension function
that is difficult to optimize. Hence, a large number of function evaluations is required to achieve low
final regret. In order to reduce the computational overhead of BO in this large evaluation budget
setting we use large batches, leveraging the highly parallelizable TS. We run a BO schedule of 50
steps using batches of 100 samples with discrete Thompson sampling for all of the models. We
compare the performance of neural networks against GP’s and SVGP’s using minimum regret.

We also evaluate these models’ abilities to handle non-stationary functions with small evaluation
budgets using Branin-2, Michalwicz-2, Dropwave-2, Eggholder-2, Goldstein-Price-2, Hartmann-3,
Rosenbrock-4, Shekel-4, Ackley-5, and Hartmann-6 functions (Figure 5). These classical BO syn-
thetic functions have varying degrees of non-stationarity and often exhibit many local optima which
make them challenging for GP-based BO (Adorio and Diliman 2005, Surjanovic and Bingham 2013).
We compare the models to random sampling and Gaussian process baselines by running BO sched-
ules for 500 steps. We allow for early stopping when the minimum is found.

Figure 5: Synthetic objective functions approximated in 3D

We manually tune the hyperparameters of the networks for these functions, but additional fine-
tuning could further improve their performance. Throughout all tests we maintain the same net-
work architectures for all models, the details of which are included in Appendix Section VII.F. All
simulations are averaged over at least ten randomly selected seeds. In the figures and tables below,
minimum regret is standardized by the output range of the functions to range between zero and
one. Confidence bands are represented in the figures by the shaded regions.

V.A Large Evaluation Budgets

To increase the difficulty of Shekel-4, Ackley-5, and Hartmann-6 we add observational Gaussian
noise proportional to the output ranges of these functions, resulting in variance of 0.6 for each of
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these functions. This gives them a similar degree of difficulty to those used in Vakili et al. (2021).
We compare our models with SVGP using 500 inducing points following the advice of Vakili et al.
(2021). The results are presented in Figure A3 and Table 1.

Figure 6: Comparison of Minimum Regret in Noisy Functions

Performance of neural networks is mostly comparable with GPR and superior to SVGP in the case of Shekel-4
and Ackley-5.

Figure A3 shows that GP maintains good performance and finds high quality solutions on all of
the noisy functions. Nonetheless, we find that Deep ensembles and DEUP continue to perform
comparably, and in fact, Deep Ensembles finds a better final regret in the noisy Shekel-4 setting.
Moreover, DER and MC Dropout are also able to achieve comparable performance to GP in the
noisy Ackley and Hartmann settings. On the other hand, SVGP maintains good performance with
the stationary Hartmann function, but is outperformed in both the noisy Shekel and noisy Ackley
settings. In particular, it performs worse than random sampling for the Ackley function, showcasing
its lack of expressivity and its limitations with these non-stationary functions.

Table 1: Minimum Regret on Noisy Functions

Average Minimum Regret

Acquisition Thompson Sampling Random

Model DE DER DEUP MC SVGP GPR

Shekel-4 0.36 0.57 0.41 0.59 0.59 0.40 0.95
Ackley-5 0.35 0.38 0.35 0.39 0.63 0.35 0.85

Hartmann-6 0.04 0.05 0.05 0.05 0.05 0.04 0.38

Deep Ensembles provides comparable performance to GPR, which are both superior to SVGP across
the board. The neural network model with the lowest achieved regret for each target function is high-
lighted in bold.

Although GP’s are able to find good solutions to the noisy functions, average runtimes showcase
expectedly cubic behaviour, as seen in Figure 7. Conversely, the computational cost of neural
networks is shown to increase only linearly; MC Dropout and DER scale particularly well. SVGP
was far superior to the rest in terms of computational speed and scalability, in line with results in
Vakili et al. (2021). Nonetheless, in all of these scenarios GP is more computationally expensive
than the neural network models with the exception of DEUP, but its cubic cost suggests it will also
surpass DEUP in situations with larger evaluation budgets.
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Figure 7: Comparison of Optimisation time

With the exception of DEUP, after 40 BO steps, GPR surpasses neural networks in optimisation time and
continues to scale cubicly while neural networks scale linearly.

Table 2: Total Optimization Runtime on Noisy Functions

Average Bayesian Optimization Runtime (Minutes)

Acquisition Thompson Sampling

Model DE DER DEUP MC SVGP GPR

Shekel-4 221.9 143.1 586.9 74.8 10.7 221.0
Ackley-5 176.5 102.3 610.5 53.7 8.2 157.2

Hartmann-6 215.1 77.8 570.6 66.9 7.7 189.5

Both DER and MC Dropout have much faster total runtimes than GPR. The fastest neu-
ral network model per target function is highilighted in bold.

V.B Small Evaluation Budgets

As expected, GP’s showcase a superior performance in a majority of the functions (Table 3). With
the exception of Dropwave-2, Shekel-4, and Ackley-5, GP is able to achieve minimum final regret
reasonably fast. Even when neural networks perform comparably, they tend to have slower runtimes,
as shown in table 4. Notable instances were neural networks appear to struggle with finding the
true minimum where GP did not are Hartmann-6 and Eggholder-2. Here we report the most salient
results, the rest of the results can be found in Appendix Section VII.C.

Table 3: Minimum Regret on Noise-Free Functions

Average Minimum Regret

Acquisition Expected Improvement Thompson Sampling Random

Model DE DER DEUP MC GPR DE DER DEUP MC GPR

Log Goldstein-Price-2 (48) 0.10 (89) 0.07 (10) (26) (39) (66) (80) (22) 0.02
Scaled Branin-2 (58) (128) (141) (87) (17) (11) (36) (41) (28) (27) 0.01

Michalwicz-2 (116) 0.14 0.14 (129) (25) (54) 0.03 (123) (68) (23) 0.02
Dropwave-2 0.01 0.17 0.06 0.05 0.19 0.04 0.06 0.04 0.06 0.06 0.06
Eggholder-2 0.06 0.07 0.03 0.07 0.02 0.01 0.01 0.01 0.02 0.02 0.02
Hartmann-3 (170) 0.01 0.01 0.03 (46) (78) (127) (315) (232) (81) 0.01

Rosenbrock-4 (135) (396) 0.01 0.01 (36) (318) (428) 0.01 (433) (444) 0.01
Shekel-4 0.08 0.70 0.68 0.66 0.11 0.26 0.34 0.25 0.27 0.26 0.83
Ackley-5 0.14 0.19 0.19 0.11 0.19 0.28 0.28 0.28 0.28 0.27 0.65

Hartmann-6 0.01 0.04 0.02 0.03 (150) 0.03 0.04 0.02 0.03 0.03 0.14

Deep Ensembles and MC Dropout achieve somewhat comparable performance to GPR, albeit often slower. The table reports the average performance of each model
under different objective-acquisition function pairings. Reported results correspond to the minimum regret after 500 function evaluations, standardized by the output
range of the function. For instances where a model find the minimum in less than 500 evaluations, we report the number of steps taken in parentheses instead. Best
performing neural network models per target and acquisition function are reported in bold.
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Otherwise, neural networks achieve similar final regret to GP-based BO, although often requiring
more steps. In particular, Deep Ensembles and DEUP performed comparatively well, although the
latter is orders of magnitude more computationally expensive. MC Dropout’s performance was
often similar to Deep Ensembles, while DER’s was not consistent.

Table 4: Total Optimization Runtime on Noise-Free Functions

Average Bayesian Optimization Runtime (Minutes)

Acquisition Expected Improvement Thompson Sampling

Model DE DER DEUP MC GPR DE DER DEUP MC GPR

Log Goldstein-Price-2 4.1 43.9 20.9 19.9 0.2 4.1 5.6 33.8 11.9 0.5
Scaled Branin-2 4.3 21.0 48.0 5.5 0.4 0.9 6.5 21.8 1.7 0.6

Michalwicz-2 12.6 42.0 158.0 9.0 0.5 10.6 40.0 98.9 9.0 0.5
Dropwave-2 152.2 76.6 296.6 76.1 19.8 526.2 296.6 935.8 263.1 90.3
Eggholder-2 104.0 57.9 222.3 69.0 7.0 482.6 421.3 1066.3 299.6 76.2
Hartmann-3 22.5 33.3 208.9 49.1 1.1 21.7 35.9 674.8 81.4 2.6

Rosenbrock-4 22.2 60.3 369.7 84.0 0.7 288.1 231.4 1428.6 232.6 85.3
Shekel-4 189.6 93.1 373.3 73.4 21.3 603.4 485.3 1075.7 291.1 124.9
Ackley-5 209.7 125.9 582.2 92.2 12.3 538.4 380.2 1470.9 220.0 182.8

Hartmann-6 214.8 75.9 351.9 95.8 4.9 619.8 523.4 1201.6 292.3 108.5

Although MC Dropout is the fastest neural network per step, a strong model such as Deep Ensembles will stop early when the minimum is found re-
ducing its total runtime. Nonetheless, GPR is still the fastest model across the board in this small data regime. The fastest neural network for each
target and acquisition function pairing is highlighted in bold.

Considering the noiseless versions of the Shekel, Ackley, and Hartmann functions, GP’s underper-
form with Ackley and Shekel relative to Deep Ensembles. In the Ackley case, all neural networks
achieve similar or better performance than GP’s. Here, MC Dropout actually outperforms Deep
Ensembles. Figure 8 plots the regret curves.

Figure 8: Most Challenging Synthetic Functions

GP is outperformed by neural networks, particularly Deep Ensembles in the Shekel and Ackley functions.

Interestingly, Dropwave was one of the few instances where GP performed particularly poorly: even
random sampling was able to produce better minima. The evolution of minimum regret across
models for Dropwave is plotted in Figure 9. This lackluster performance reflects the fact that the
function is highly non-stationary. MC Dropout, DEUP, and particularly Deep Ensembles are able
to produce better minima under both acquisition function regimes.
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Figure 9: Minimum Regret for Dropwave-2

GPR performs exceptionally poorly (worse than random) with the highly non-stationary Dropwave-2 function.

The empirical results suggest that neural networks work better in conjunction with Thompson
sampling for most functions. While Dropwave is an exception to this observation, examples that
especially align with the observation above include Hartmann-3 and Goldstein-Price (Figure 10).
These are revealing examples where switching acquisition functions yields significantly improved
results.

Figure 10: Comparison of Expected Improvement and Thompson Sampling

Thompson sampling often drastically improves results for neural networks over the use of Expected Improvement.
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A possible reason for this behavior is that Expected Improvement can over-exploit (Berk et al., 2019),
whereas Thompson Sampling has a natural mechanism to induce exploration. Coupled with the
fact that neural networks are highly prone to over-fitting and predicting with excessive confidence, a
potential conjecture is that the models evaluated are best used in tandem with acquisition functions
that lean towards exploration.

V.C Predictive Accuracy and Uncertainty Quantification

Without specifically testing within Bayesian optimisation, a common approach to judge the potential
effectiveness of a surrogate model is to consider its representation of uncertainty. Osband et al.
(2021) has shown that Deep Ensembles have better uncertainty quantification than MC Dropout,
and more recently developed models such as DEUP and DER will likely have varying degrees of
performance. To tractably investigate this further, we take a Sobol sample of 100,000 points in the
search space at the termination of each experiment and compute the negative log probability density
assuming a Gaussian distribution. We take the Gaussian kernel-weighted sum of these points to
the nearest true minimum to account for the fact that areas around the true minimum are most
important.

Table 5: Correlation between prediction and optimization

Correlations between NLPD and Minimum Regret

Model All DE DEUP DER MC GPR

NLPDsamples -0.029 -0.084 0.021 -0.029 -0.057 -0.073
NLPDmin 0.013 -0.070 0.029 0.026 -0.042 -0.038

Whether considering NLPD at the minimum or weighted samples across the search space, there
is no apparent correlation between NLPD and final minimum regret achieved. NLPD is com-
puted assuming a Gaussian distribution and weighted by distance to the true minimum by a
Gaussian kernel.

We see in Table 5, that there is no apparent correlation to final regret. Although this method of
quantifying overall accuracy is a simple heuristic, we would have hoped to see at least some weak
correlations here. In light of this, it would seem that looking at uncertainty quantification and
predictive accuracy outside of the context of BO as a proxy for BO performance might not be as
informative as hoped for.

VI Conclusion

We have shown that neural networks can provide comparable performance to standard GP-based
models when objective functions are complex, and a large number of function evaluations are re-
quired. The advantage of neural networks in this setting is that they are more scalable and tractable
in the long run than GP’s. Clearly, with truly large evaluation budgets, GP’s would quickly become
infeasible. In this scenario, the current state of the art tool is SVGP, but although SVGP’s can
provide superior scalability by leveraging approximation, it comes at a high cost of expressivity.
We have shown that neural network based BO has the potential to maintain a high degree of ex-
pressivity and performance whilst staying computationally tractable with large evaluation budgets.
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Neural networks are clearly a viable alternative to traditional GP-based routines or state-of-the-art
SVGP’s.

Our experiments in smaller data regimes suggest that neural networks have the potential for compa-
rable performance to the gold standard of GP-based BO if hyperparameters are sufficiently tuned.
Techniques that have been proposed such as using a combination of regularization techniques (Kadra
et al., 2021) or Bayesian optimisation itself over architecture hyperparameters (Kandasamy et al.,
2018), and whether their computational overhead would be worthwhile in a Bayesian optimisation
context, would be venues for future research.

Furthermore, since performance in Bayesian optimisation cannot simply be inferred or extrapolated,
future work would also include testing these models against SVGP in significantly larger data
regimes. Additional work would also explore the use of a continuous Thompson sampler with large
batch trajectory sampling, which would likely provide significant computational advantages with
neural network based Bayesian optimisation (Zhang et al., 2019).
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VII Appendix

VII.A Exact Gaussian processes

Consider the collection of n input-output pairs Dn = {(xi,yi)}ni=1, where xi is D dimensional and
yi is a n-dimensional vector of evaluations on f . Under the assumption of sub-Gaussian distributed
disturbances, the following generative model is defined

f̂1:n | x1:n ∼ N (m,K)

y | f̂1:n, σ2 ∼ N
(
f̂1:n, σ

2I
)

where the mean and covariance matrix elements are defined as mi = µ0(xi) and Ki,j = k(xi, xj) for
some Gaussian kernel function k(·, ·). Given the existing history Dn, the posterior of the Gaussian
process f̂1:n is another Gaussian process with the following mean µn and variance σ2

n expressions

µn(x) = µ0(x) + kn(x1:n,x)
T
(
kn(x1:n,x1:n) + σ2I

)−1
(y −m)

σ2
n(x) = kn(x,x)− kn(x1:n,x)

T
(
kn(x1:n,x1:n) + σ2I

)−1
kn(x1:n,x)

where kn(x1:n,x1:n) is the covariance matrix of the initial n points and kn(x1:n,x) is a vector of
covariance terms between a new value x and x1:n. The posterior means and variances represent the
model’s prediction and uncertainty in the unknown function at the query point x, which can be
used to select the next point in the iteration, xn+1.

Note that accessing the posterior expressions as described above requires an O
(
n3
)

matrix inversion
of kernel and covariance values, rendering this approach intractable when scaling the algorithm to
large evaluation budgets.

VII.B Cubic tests

a Deep Ensembles b Deep Evidential c Direct Epistemic d Monte Carlo

Figure A1: Cubic function with out-of-distribution predictions
This figure plots the point predictions and epistemic uncertainty bands under the different neural network models
proposed.

In Figure A1, we compare the ability of the different methods considered to predict uncertainty
in a toy one dimensional cubic function. The models are all capable of quantifying uncertainty to
varying degrees and with different compositions of epistemic and aleatoric noise.
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It is worth noting that not all models are equally robust, and in practice some of the neural networks
can yield poor representations of uncertainty at times. This does not seem to materialize in the
experiments, and we believe this may not necessarily translate to poor performance in Bayesian
optimisation.

VII.C Regret Plots

Figure A3: Minimum Regret of Synthetic Functions with Small Evaluation Budgets

VII.D Optimisation Times

The reported optimization times both in Section V and in the Appendix refer to only the time taken
to update and optimize the surrogate model, and do not include the time taken by the acquisition
function. The previous tables showed the overall runtime across models and for all target-acquisition

Page 24



function pairs. We complement those findings with runtime results per Bayesian Optimization step,
showing results below for both noise-free and noisy functions.

Table A1: Average Step Runtime on Noise-Free Functions

Average Runtime per BO step (Minutes)

Acquisition Expected Improvement Thompson Sampling

Model DE DER DEUP MC GPR DE DER DEUP MC GPR

Log Goldstein-Price-2 4.86 6.96 11.02 4.16 1.03 7.36 6.87 24.01 6.68 1.28
Scaled Branin-2 3.71 5.15 14.73 2.94 1.23 4.94 10.24 21.77 2.79 1.27

Michalwicz-2 5.68 7.00 24.55 4.03 1.04 9.36 10.29 38.19 6.35 1.24
Dropwave-2 18.23 9.18 35.52 9.12 2.37 63.02 35.52 112.08 31.51 10.82
Eggholder-2 13.49 7.50 30.71 8.67 1.39 57.80 50.45 127.70 36.88 9.12
Hartmann-3 7.57 7.11 31.72 6.98 1.38 13.81 14.32 99.59 14.81 1.77

Rosenbrock-4 8.78 8.56 44.28 10.06 1.10 45.83 30.90 171.10 29.70 10.56
Shekel-4 22.70 11.46 44.70 8.79 2.55 72.27 58.12 128.82 34.87 14.96
Ackley-5 25.11 15.08 69.73 11.04 1.47 64.47 45.53 176.15 26.34 21.89

Hartmann-6 25.72 10.21 43.35 11.47 1.58 74.23 62.68 143.91 35.01 12.99

Note: The table shows the mean per step runtime of the Bayesian optimization schedules under different models and for different acquisition and
target function combinations, computed in minutes.

Table A2: Average Step Runtime on Noisy Functions

Average Runtime per BO step (Minutes)

Acquisition Thompson Sampling

Model DE DER DEUP MC SVGP GPR

Shekel-4 221.9 143.1 586.9 74.8 10.7 221.0
Ackley-5 176.5 102.3 610.5 53.7 8.2 157.2

Hartmann-6 215.1 77.8 570.6 66.9 7.7 189.5

Note: The table shows the mean per-step runtime of the Bayesian optimization sched-
ules under different models and for different noisy target functions, computed in minutes.

VII.E Implementation Details

All neural networks are implemented by us to be used within the framework of trieste’s Bayesian
optimization package with the exception of Deep Ensembles which was implemented by Hrvoje
Stojic. Trieste’s implementations of GP-based Bayesian optimisation, Sparse Variational Gaussian
Processes, and all other Bayesian optimisation related routines were used otherwise. For the source
code to our contributions see github.com/clinton0313/trieste.

VII.F Experiment Details

Experiments were run on a Linux cluster server, with model-specific simulations running in parallel
on 16 CPU nodes of 16 GB RAM each. Simulations were CUDA accelerated using NVIDIA Quadro
RTX 4000 GPUs. We manually tune the hyperparameters of the neural networks after performing
a grid search of candidate combinations tested on small data functions. Final parameter choices are
defined as in Table , with parameter choices defined as in Table A3.
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Table A3: Architecture parameters

Model DE DER DEUP MC

Number of Hidden Layers 5 4 5 (5) 5
Number of Units 50 100 50 (128) 100

Learning Rate 0.001 0.001 0.001 0.001
Ensemble Size 7 - 7 -

Regulation Weight - 0.001 - -
Dropout Rate - - - 0.1

Number passes - - - 50

The plot shows cubic functions and both in-distribution and out-of-distribution
predictions under the different neural networks considered in the model. The net-
work parameters do not necessarily correspond to the ones used in the experiments.

In the case of GP, we employ a Matérn 5/2 kernel and constant mean function, following recom-
mended settings in the trieste implementation. For SVGP we choose the same combination of priors,
and select 500 inducing points to make results comparable to those in Vakili et al. (2021).

The small and medium size functions employed throughout this paper are drawn from Adorio and
Diliman (2005) and Surjanovic and Bingham (2013).
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