
A Security-Constrained Reinforcement Learning
Framework for Software Defined Networks

Anand Mudgerikar
Purdue University

West Lafayette, IN, USA
amudgeri@purdue.edu

Elisa Bertino
Purdue University

West Lafayette, IN, USA
bertino@purdue.edu

Jorge Lobo
ICREA - Universitat
Pompeo Fabra, Spain
jorge.lobo@upf.edu

Dinesh Verma
IBM TJ Watson Research Center

Yorktown Heights, NY, USA
dverma@us.ibm.com

Abstract—Reinforcement Learning (RL) is an effective tech-
nique for building ‘smart’ SDN controllers because of its model-
free nature and ability to learn policies online without requiring
extensive training data. However, as RL agents are geared to
maximize functionality and explore the environment without
constraints, security can be breached. In this paper, we propose
Jarvis-SDN, a RL framework that constrains explorations by
taking security into account. In Jarvis-SDN, the RL agent
learns ‘intelligent policies’ which maximize functionality but not
at the cost of security. Standard network flow based attack sig-
natures obtained from intrusion detection system (IDS) datasets
cannot be used as policies because they do not conform to the
state model of the RL framework and thus have poor accuracy
and high false positives. To address such issue, the security
policies for constraining explorations in Jarvis-SDN are learnt
in a semi-supervised manner in the form of ‘partial attack
signatures’ from packet captures of IDS datasets that are then
encoded in the objective function of the RL based optimization
framework. These signatures are learnt using Deep Q-Networks
(DQN). Our analysis shows that DQN based attack signatures
perform better than classical machine learning techniques, like
decision trees, random forests and deep neural networks (DNN),
for common network attacks. We instantiate our framework for a
SDN controller with the goal of intelligent rate control to further
analyze the effectiveness of the attack signatures.

Index Terms—Security and Safety, Deep Reinforcement Learn-
ing, Software Defined Networks

I. INTRODUCTION
The use of machine learning (ML) techniques in the control

plane of software defined networks (SDNs) provides enhanced
approaches to traffic engineering, such as maximizing qual-
ity of service (QoS). Generally, QoS is determined by the
interplay within various network functionalities such as rate
control, routing, load balancing, and resource management.
This interplay can become very complex. The benefit of ML
techniques is that they can model complexity given sufficient
representative data to train upon. However, the diversity and
scale of current networks together with the diversity of traffic
behavior hinder the task of gathering data that captures enough
sets of behaviors for training. This poses a challenge to
classical ML. Reinforcement Learning (RL), on the other
hand, relies on learning optimal policies online based on
system state using a model-free approach. These policies are
more likely to transfer over to a new environment, and these
characteristics make them more suitable for network control.
RL based frameworks have thus already been proposed for
specific functions within networks, such as for controlling
routing [1], traffic rate control [2] and load balancing [3].

Network control solutions require optimization across mul-
tiple functionalities, not just a single one. Current uses of RL
for network control focus on optimizing a single functionality,
which makes these existing solutions difficult to deploy in real
networks. For example, learning a policy which maximizes the
throughput of the network (functionality 1: optimal routing)
can come at the cost of unfair bandwidth consumption by
a set of users (functionality 2: per user bandwidth fairness).
Perhaps even more critical is the case of security policies. For
example, learning a policy which maximizes the throughput of
the network (functionality 1: optimal rate control for QoS) can
unknowingly facilitate the propagation of a high throughput
Denial of Service (DoS) attack.

To address those issues, we propose Jarvis-SDN, an
adaptation of our constrained RL framework for IoT [4] to
SDNs. In Jarvis-SDN, a RL based agent using Deep Q-
Learning learns optimal policies for a SDN controller to
optimize across multiple network functionalities while main-
taining security. Examples of such functionalities include
optimal rate control (measured by per user throughput), routing
optimization (measured by a metric like latency), availability
of device resources, or path quality (metrics such as loss
rate, or jitter). The basic idea is to define the reward to the
agent as a weighted combination of individual functionality
performance metrics, including a metric for security behavior
of the system. A key challenge in applying our previous
framework [4] to SDNs is that it is not obvious how to define
performance metrics for security (see [5], [6] for proposals
and discussions regarding security metrics). Our approach for
quantifying security is to measure the ability to protect against
known attacks. We first build offline ‘attack signatures’ from
packet captures of previously seen attacks using different ML
techniques: Decision Trees, Random Forests, Deep Neural
Networks (DNN) and Deep Q-Networks (DQN). These attack
signatures are then used by the RL agent to determine a quality
value for the network state depending on the perceived threat
a network flow has on the current and near future states of the
network.

To summarize, we make the following contributions:
1) A context independent RL framework, Jarvis-SDN,

constrained by security policies for SDN controllers.
2) A novel approach to build quantifiable security metrics

(attack signatures) for network flows using DQN.
3) Extensive evaluation of different ML techniques to build



attack signatures using the CICIDS dataset [7] consisting
of network attacks, such as DoS, DDoS, Brute-Force and
Web based attacks. We find that DQN based signatures
perform better than other ML techniques.

4) Through an instantiation of Jarvis-SDN for a SDN
controller with the goal of optimal rate control, we show
that the RL agent learns desirable behavior for malicious
and benign flows.

The rest of the paper is organized as follows. In Section II,
we give some background on Deep Q-Learning. Next, in
Section III, we formally define the system model and discuss
key challenges. In Section IV, we define and analyze our
RL based DQN approach for building attack signatures. In
Section V, we instantiate the Jarvis-SDN framework in
a simulated network for optimal rate control and analyze its
effectiveness. Finally, we discuss related work in Section VI
and in Section VII we conclude and outline directions for
future work.

II. BACKGROUND ON DEEP Q-LEARNING

A Reinforcement learning (RL) framework [8] (see Fig-
ure 1) is a probabilistic state transition environment where
state transitions are caused by actions executed by an agent
and every state-action pair (s, a) is assigned a reward value r
given by a reward function R(s, a). A RL agent traverses the
environment according to a policy π that selects an action
to execute in a given state for policy parameters θ and
receives the rewards accrued over all the state transitions that
happened according to θ. In a Q learning framework, the goal
is to find the optimal policy which maximizes the cumulative
reward through a function Q(s, a) that estimates the expected
cumulative reward the agent will get at the end of an episode
if the current state is s, the agent executes a and follows learnt
policy πθ.

Fig. 1: Deep Q Learning Environment

In a deep Q learning system, a deep neural network, referred
to as DQN, is used to determine the optimal Q function using
a temporal difference equation defined as follows:

Qt(s, a) = Qt−1(s, a) + α[R(s, a)

+γMaxa′{Qt(s′, a′)} −Qt−1(s, a)]

where Qt is the current estimation of the Q function, Qt−1
is the previous estimation of Q after t − 1 steps of training.
The estimated next state and action are denoted by s′ and
a′, respectively. The learning rate (α) determines to what
extent newly acquired information overrides old information.

The discount factor (γ) determines the importance of future
rewards.

III. SYSTEM MODEL AND PROBLEM FORMULATION

The need for intelligent SDN controllers arises in several
scenarios. One scenario is the rate control of traffic from
different users within a data center or cloud network envi-
ronment, where the behaviour is controlled by means of a
centralized controller, as typical in SDN architectures. The
controller needs to dynamically determine how to handle each
traffic flow, and determine the per-flow rate limits according to
the server capacity and QoS requirements. Another scenario is
related to a telecommunications or Internet service provider.
The service provider is responsible for accepting packets
from connected clients, and route them to the appropriate
egress points. The bandwidth rates per user are dynamically
determined according to the user subscription service level
agreement and to maximize overall network throughput. A
third scenario is related to the 5G cellular networks, where
network protocols are designed to implement their control and
data planes using SDN technologies. In these cases, the control
plane needs to determine the rate of traffic from a cellular
device, depending on various factors like user channel quality,
whether a mobile edge computing server is being leveraged,
or packets are being forwarded to an alternative location for
processing. While the protocols are different than in a data
center or the Internet, the operational paradigm is very similar.
In most of these environments, the SDN controller needs to
take decisions based on the inspection of the headers within the
IP network packets. Therefore, we focus on approaches that
learn optimal flow rate-control policies based on the inspection
of features extracted from network packet headers.

In general terms, the problem we want to address in this
paper using ML techniques is the design of an intelligent
security-aware SDN controller. The controller is responsible
for dealing with network flows from several users. Depending
on the amount of active flows, anticipated traffic in the near
future, and the properties of the current flows (such as potential
attacks), the controller configures the optimal rate limits for
each flow. In what follows, we first define the state model
underlying our approach. We then formulate our problem and
discuss key challenges.

A. System Model

State Model: We define the state of the SDN environment
as a tuple St = s1

t, s2
t, ..., sn

t of network flows at time t.
The SDN controller manages n network flows from η users.
In the current implementation, we assume that n = η at all
times for ease of execution in the simulation. The flow state
si
t of user i at time t is defined in terms of k network flow

parameters sit = P1i
t, P2i

t, ...Pki
t. These parameters can take

numeric values, such as packet counts, packet length, packet
rate, inter arrival times, or categorical values, such as whether
SYN/FIN/ACK flags are set or not, and protocol type.

State Transition Model: We monitor state transitions in the
network in terms of “episodes”. We define two configuration



parameters for an episode: time period T and interval I . The
state transitions occur every I time-units until the timestamp
reaches T time units, after which the state is reset to the initial
state and marks the end of an episode. An episode basically
consists of T/I time instances at which the state transitions
of the environment are recorded. For example, in our current
implementation, for {T, I} = {60, 1}, the episodes are one
minute long with state transitions every second.

Action Space: After each interval, the SDN controller can
take various actions corresponding to different rules used
to manipulate the flow table as specified in the action set
of the Openflow protocol [9]. For example, in our current
prototype, the actions correspond to allow/drop a percentage
of the packets for each flow. More specifically, an action
At at time t, is defined as At = a1

t, a2
t, ..., an

t. Here, ait

is the action taken on user flow i at time t. Each action
ai ∈ [0, 1] corresponds to the percentage of packets to drop
while allowing the rest. 0 corresponds to allowing all traffic to
pass and 1 corresponds to dropping all traffic. It is important
to note that dropping the packets is a crude mechanism of rate
control and is a commonly implemented method by network
switches. However, new techniques which enforce a rate cap
by smoothly delaying packets rather than discarding them can
be easily incorporated in our system model. So, in the rest
of the paper, we use the terms dropping and delaying packets
interchangeably.

B. Problem Definition

We formulate the functionality optimization goal of
Jarvis-SDN as a Markovian decision process (MDP). A
MDP is a sequential decision making problem where out-
comes are under the control of an agent. The agent’s goal
in this case is to maximize the functionality as specified
by the user/application by choosing a sequence of actions
for the upcoming episode of the environment. In our model,
functionality requirements defined by the user/application are
measured through a reward function. The specified function-
ality requirement determines the utility (F ()) gained by the
user/application in the environment, which is one part of the
reward function. The other part, derives from the security
metric of the environment (D()). The general structure of the
reward function is defined as follows:
R(St, At) = (1− δ)F (St, At) + δD(St, At)

where St and At are the current state and action at time
instance t in the environment. We analyze the effect that ma-
nipulating δ has on the overall functionality goals and security
of the environment in Section V. The goal of Jarvis-SDN
is to maximize the cumulative reward at the end of the episode
which is a MDP problem defined formally as follows.

Definition 1. A MDP consists of a tuple (R, T, I, S0). R is
the reward function; T is the time period; I is the interval;
and S0 is the initial state of the environment. The goal of
the agent is to find an execution strategy of actions, which
maximizes the total value of R of the next upcoming episode,
for the environment in state Si where 0 ≤ i ≤ dT/Ie.

C. Challenge

key challenges when applying the system model to a SDN
environment that we discuss in what follows together with
the envisioned approach. 1. Unknown Security Metric D():
Quantifying the security metric accurately in a complex and
dynamic environment is not trivial. We address this issue in
Section IV by developing an efficient security metric using RL
based attack signatures. In particular we will use the following
reward function: Notice that other security metrics can also be
incorporated into our framework.
2. Unknown Security Ratio δ: The value of the ratio to
optimally balance functionality vs security depends on the
environment and user/application requirements. Finding this
value accurately is not trivial. In Section V, we analyse tuning
the security ratio δ as a hyper parameter for Jarvis-SDN
instantiation with the functionality goal of optimal rate control.

IV. BUILDING ATTACK SIGNATURES

In this section, we address the first challenge in building
accurate security metrics, referred to as ‘attack signatures’.
Deep packet inspection at wire speed seems impractical with
the growing amount of data and size of networks. Instead,
flow based features, which can be maintained using counters
and meters, and are easily available through standard SDN
protocols such as Openflow [9], are less expensive to mon-
itor. Most supervised attack signatures are built from flow
parameters similar to the network flow parameters in our states
P1, P2, ..Pk. These parameters are collected from IDS datasets
like NSL-KDD [10] and CICIDS[7]. However, these datasets
contain features collected for the entirety of the network
flows and not for intervals of the flows as in our framework.
This inherently puts the IDS trained on those datasets at a
disadvantage since it delays detection time because the flows
can only be classified as malicious or benign after the attack
ends or enough packets of the malicious flow have reached
the controller. In contrast, we build and analyze ‘partial attack
signatures’ using features collected after every interval I in
the episode of length T rather than the entire flow. In this
respect, our attack signatures are only a partial representation
of the more comprehensive traditional attack signatures.

A. Design of an IDS Based on Partial Attack Signatures
We compare four different ML techniques for building

attack signatures in order to determine the most suitable one
for our framework: Decision Trees (DT), Random Forests
(RF), Deep Neural Networks (DNN), and Deep Q-Networks
(DQN). The first three are feature-based classification models
that predict benign or malicious flows. The DQN approach,
on the other hand, learns optimal quality values using deep
Q-Learning on replayed episodes. We model this DQN frame-
work in the same state-action model of our optimization prob-
lem. However, the reward function is modified such that the
agent receives negative rewards for allowing malicious traffic
and positive rewards for allowing benign traffic depending on
the hyper parameters β, µ ∈ [0, 1]. Here, µ and β represent
the importance of reducing false positives (Type 2 errors) and



false negatives (Type 1 errors), respectively. These rewards are
proportional to the amount of traffic let through. The state-
action-reward model is defined as follows:

State Model: The state of a user i at time instance t,
si
t = P1i

t, P2i
t, P3i

t, P4i
t. Here, P1−4 represent the fol-

lowing features, respectively: P1: #packets sent from user to
server, P2: #bytes sent from user to server, P3: #packets sent
from server to user, and P4: #bytes sent from server to user.

Actions: After every interval, the controller can take 11
possible actions ai ∈ {0, 0.1, 0.2, .., 1} corresponding to
percentage of packets to drop while allowing the rest. 0
corresponds to allowing all traffic to pass and 1 corresponds
to dropping all traffic. We discretize the action space to allow
better convergence of the DQN.

Rewards: The reward function is defined as follows.

R(si
t, ai

t) =

{
(1− ait) ∗ (P2i

t) ∗ β if benign episode
−(1− ait) ∗ (P2i

t) ∗ µ if malicious episode

We build a simulation environment using the OpenAI
gym [11]. For training the DQN, we replay 20177 malicious
and 126714 benign episodes from the CICIDS dataset [7].
During replay of the episodes, we simulate packet drops
by using a state transition function ∆, manually configured
according to the network flow features used in the model. The
exploration factor of ε = 1 with a decay rate 0.995 is used to
balance exploration (random actions) and exploitation (using
learnt policy) while training. A discount factor γ = 0.95 and
learning rate α = 0.001 are used. The deep neural network
used has 2 fully connected hidden layers comprising of 64
neurons each.

Attack Type Total Packet
Capture Size (Gb) Categories

Brute Force 11 FTP-Patator, SSH-Patator

DoS 13.4 SlowLoris, Hulk,
GoldenEye, SlowHTTPtest

DDoS 8.8 DDoS LOIT
Web 8.3 XSS, SQL Injection, Brute Force

TABLE I: Attack Taxonomy

B. Evaluation Metrics

For our analysis, we consider four common attacks, Brute
Force, DoS, DDoS (Distributed Denial of Service) and Web-
based (see Table I), taken from the CICIDS dataset. This
dataset has full packet captures of attacks and benign behavior
recorded over five days. We define four key performance
metrics as follows.

Naive Accuracy: It measures the accuracy of detecting
known attacks similar to the ones in the training dataset.

Robustness: Features collected from networks flows in real
time tend to be noisy because of network errors, packet drops,
jitter, throughput throttling, user behavior etc. Introduction of
noise or perturbations in the immutable features is a typical
obfuscation technique employed in adversarial ML attacks.
The attack signatures must be robust enough to deal with noisy
data. So, white Gaussian noise is introduced into the testing
dataset. The resulting accuracy is measured as a function of
the noise introduced.

Adaptability: It measures the ability of the system to detect
new types of attacks. We consider two forms of adaptability:
(1) known attacks with minor modifications, e.g. payload
differences (string changes, varying malware bytecode), and
packet fragmentation variations; (2) new attacks employing
similar concepts. Specifically, we exclude FTP-Patator (brute
force), SlowLoris (DoS) and SlowHTTPTest (DoS) attacks
during training and use them for testing. The resulting ac-
curacy in these scenarios is used to represent the adaptability
metric for the attack signatures.

Episode metrics: Instead of detecting malicious traffic on
a per interval basis, we attempt to determine whether any
malicious interval exists over the range of the episode for
unknown attacks under noisy conditions. We define three
episode metrics: (1) Episode Accuracy: Overall accuracy; (2)
Episode True Positive Rate (TPR): Rate of correctly iden-
tifying malicious episodes; and (3) Episode False Positive
Rate (FPR): Rate of incorrectly identifying benign episodes
as malicious.

TABLE II: Attack Signature Analysis
Signature
Type

Naive
Accuracy

Robustness
Noise(low-high) Adaptability Episode Metrics

(Accuracy, TPR, FPR)
Quality
Value

DT 99.92 70.58-26.60 53.22 44.88 100 99.2 No
RF 99.93 80.14-24.83 53.40 44.88 100 99.2 No
DNN 97.22 95.56-80.24 70.28 59.55 100 72.8 Yes
DQN 88.27 79.53-71.21 59.48 73.77 94 42.4 Yes

C. Comparison to other ML Techniques
Results from our evaluation are shown in Table II. We make

the following observations on those results.
Naive Accuracy: All signatures work well in terms of naive

accuracy for known attacks. The tree based signatures (DT/RF)
perform slightly better than neural network based signatures
(DNN/DQN).

Robustness: Performance of all signatures degrades with the
amount of noise added. Comparatively, neural network based
signatures are less affected.

Adaptability: All algorithms have decreased accuracy when
trying to identify unknown and modified attacks. The highest
accuracy, 70.28%, is achieved by DNN based signatures.

As we observe, all the attack signatures perform poorly
when dealing with unknown or zero-day attacks in terms
of per-interval accuracy. We can infer that these unknown
malicious flows resemble behavior of both known malicious
and benign flows in many intervals of an episode. So, building
attack signatures based on episodes rather than individual
intervals is a more suitable approach as we see when analyzing
the episode metrics. It is important to note here that unsuper-
vised learning techniques, like anomaly detection on benign
behavior (clustering, SVMs), could be a better approach for
identifying unknown attacks. Although these techniques could
be incorporated into our framework, in this work, we only
focus on supervised learning and leave that as future work.

Episode metrics: DQN attack signatures outperform the
other signatures in terms of Episode metrics even though they
perform poorly in terms of per interval accuracy. One reason
is that the DQN signatures are learnt from a cumulative reward
by replaying attack ranges rather than individual intervals. The



Fig. 2: Bytes allowed: Malicious (top) and Benign (bottom)
other reason is the structure of the reward function, which
gives a higher negative reward for false positives than false
negatives over the episode range.

The classification based signatures (DT/RF) perform badly
for the episode metrics because they learn optimal discrete
values (benign/malicious) rather than smooth quality values.
We can see that, although these signatures are able to correctly
identify all the malicious episodes (episode TPR = 100%),
they also result in a high FPR = 99.2%. Such overly strict
signatures are unacceptable as a high percentage of benign
flows end up being dropped. On the other hand, the DQN agent
learns quality values Q(St, At) for each interval within the
episode. We can then build an intelligent policy based on qual-
ity values that minimizes the episode FPR and simultaneously
maintains a good episode TPR by tuning the hyper-parameters
β and µ. We infer that DQN based agents perform better
for new attacks in terms of false positives. Note that DNN
signatures can also generate quality values using state values
V (St) from a final softmax layer. However, these quality
values do not incorporate the state and actions dynamics of the
model. Therefore, using these quality values as metrics in a
RL framework for functionality optimization results in random
quality values being assigned to new actions. This results in
poor performance of the RL agent (see Section V-F).
D. Evaluation and Analysis

To analyse the effectiveness of RL based (DQN) attack
signatures, we randomly choose 1000 malicious and benign
episodes, and apply the policy learnt to them. We monitor the
amount of malicious bytes let through in case of malicious
episodes and the amount of benign bytes let through for
benign episodes as shown in Figure 2. We see that the attack
signatures show the desired behavior in all the episodes. It
is important to note that these attack signatures have been
built using a minimal set of observable states at the SDN
controller. With the recent advances in programmable switches
and data plane programming languages, like P4 [12], detailed
information about packets and their headers is accessible to
the controller to make even better security decisions.

Fig. 3: Intra-Episode Actions: DQN and DNN Softmax

To further investigate the behavior of the RL based attack
signatures, we analyze the actions taken by the RL agent
in the episode itself. Figure 3 shows the behavior averaged
over 1000 malicious and benign episodes. This is desirable
behavior as malicious flows get throttled while benign flows
are not. Also, we see that at the beginning of the episodes,
the RL agent is not sure whether the flow is malicious or
not. In such situations, we see that the RL agent exhibits
the following desirable behavior. Malicious looking flows are
throttled until the agent is sure they are an attack and then
are blocked completely. Benign looking flows are throttled
until the agent is sure they are benign and then are allowed.
We compare the behavior with the policy based on state
values obtained from the softmax layer of the DNN classifier.
Surprisingly, the softmax layer approach also shows these
same desirable properties and performs better than the RL
based signatures. This could be attributed to the fact that since
no other functionality optimizations (F () = 0) are required
during this analysis, the agent does not fully explore the action
space and thus the state-action dynamics of the model have
little impact on the optimal policy. However, as we see later
in Section V-F, the softmax based signatures do not perform
well when other functionality optimizations are needed.

V. INSTANTIATION OF JARVIS-SDN

In this section, we instantiate our framework with the goal
of optimal rate control in our simulated environment.

A. Implementation Details

We have built a prototype of Jarvis-SDN and integrated
it with a network emulated in Mininet [13]. The emulated
network includes benign and malicious users accessing a
web server. Jarvis-SDN sits in the control plane of the
SDN controller. It is able to access counters maintained for
each flow in the flow table of the SDN controller similar to
architectures like [14]. Information from these counters is then
used to monitor the state of each flow in terms of the flow
parameters P1 − P4. Similar to approaches discussed in [15],
the actions specified by the RL agent are converted into per
flow bandwidth limits.
B. Simulation Environment

The simulated environment consists of n users accessing
a web server in a SDN enabled environment. Jarvis-SDN
running at the SDN controller is responsible for taking optimal
rate control actions on each flow so as to maximize two



functionalities: ¶ Rate control for the server according to a
maximum allowed server load threshold: SLT ∼ N (µ1, σ1

2);
· User throughput fairness according to user service level
agreements: SLA ∼ N (µ2, σ2

2). We use standard Gaussian
distributions to model the server load threshold and user SLA
per time interval. The mean µ1, µ2 and standard deviation
σ1, σ2 are chosen manually by observing the server threshold
and benign flows in the simulation. Along with this, we
maintain δ (or d), f1 and f2 as hyper parameters to incorporate
security metrics, rate control and user fairness weights in the
objective function, respectively.
C. System Model

The state and action model of Jarvis-SDN are the same
as the ones defined before for building attack signatures.
However, the reward function is modified to include optimal
rate control functionality metrics and security metrics from
RL based attack signatures. The reward function is defined as
follows.

R(St, At) = (1− δ)[f1F1(St, At) + f2F2(St, At)] + δD(St, At)

The normalized functionality and security metrics used in
the reward function are defined as follows. We observe that,
unlike the case when building attack signatures, here the
rewards are expressed as expectations over all the users flows
in the network.

Rate Control: It gives a positive reward proportional to the
amount of traffic allowed when the current load is less than
the threshold and a large negative reward C1 for overloading
the server. The positive rewards are proportional to the amount
of traffic let through, which encourages higher throughput.

F1(St, At) = E
i∈η

[F1(si
t, ai

t)]

=

{
Ei∈η[(1− ait) ∗ P2i

t] {SLT (t) > (1− ait) ∗ P2i
t}∀i ∈ η

−C1 otherwise.

User Fairness: It gives a positive reward proportional to the
amount of traffic allowed when the service level agreement
is upheld and a large negative C2 otherwise. The values of
parameters C1 and C2 are chosen to be greater than the
maximum throughput values possible in the environment.

F2(St, At) = E
i∈η

[F2(si
t, ai

t)]

=

{
Ei∈η[(1− ait) ∗ P2i

t] {SLA(t) ≤ (1− ait) ∗ P2
t
i}∀i ∈ η

−C2 otherwise.

Security: It is the quality value generated by RL based attack
signatures built before. Here Q is the learnt Q function using
the DQN approach. It gives a positive reward when the flow
matches a benign flow and a negative reward when it matches
a malicious flow.

D(St, At) = E
i∈η

[D(si
t, ai

t)] ≈ E
i∈η

[Q(si
t, ai

t)]

D. Training

We use a DQN approach to learn the optimal policy similar
to the attack signature generation model. We conduct experi-
ments with δ values ranging from 0 (no security guarantees)
to 0.99 (high security guarantees). For our experiments, we
configure the functionality weights f1, f2 = 0.5 as constants.

We refer the reader to our previous work [4] for more details
about functionality weights.
E. Evaluation and Analysis

Figure 4 shows the actions (averaged over 1000 episodes)
taken in a single malicious and benign episode. We observe
that higher values of δ result in better security guarantees for
malicious episodes but at the cost of more false positives per
interval during benign episodes. We further analyze the action
space of the environment in terms of range of δ. We represent
the action space (red region) below δ = 0 as the unsafe action
space of the model. Similarly, the blue region above δ = 1
represents the safe action space. The green region represents
the region of interest with a range of δ = [0, 1]. The optimal
action policy of the environment lies in this region.

Fig. 4: Action Space: Malicious (top) and Benign (bottom)

The analysis of the region of interest in the action space al-
lows one to build ethics or logical hypotheticals for exploration
of the environment by the RL agent. For example, the RL agent
can explore the action space with δ > 0.8, for highly security
conscious or risk-averse ethics. Similarly, with δ < 0.2, the
RL agent can explore actions with more adventurous high risk
high reward ethics. Learning hypothetical human objectives
or ethics to model the reward function or the exploration
process is a hard problem because of the intractability of
value of information (especially security information) to the
user for a given environment. This is the focus of various
active learning schemes [16], [17]. The exploration strategy
can be dynamically altered based on user/application feedback
on these hypothetical behaviors. Jarvis-SDN provides an
effective way of altering the exploration process by using such
hypotheticals along the region of interest.

F. Comparison to Traditional IDS Metrics

Figure 4 also shows the actions taken by the RL agent
using DNN softmax based security metrics. We see that for
both malicious and benign episodes, the RL agent converges
to similar actions. This means that these security metrics
perform poorly in the detection of malicious flows. This
confirms our intuition that when the optimization of multiple



functionalities is required, RL agents using softmax based
DNNs or traditional IDS security metrics do not converge to
secure policies.

VI. RELATED WORK

As part of previous work we designed and evaluated a
framework to constrain RL agents by security and safety
policies for IoT-based smart homes [4]. However in a smart
home scenario, ‘attack signatures’ are well defined in terms
of device states and can be learnt efficiently by observing
anomalies against naturally occurring behavior of users. Such
an approach does not work for detecting attacks in networks
based on network flows. The reason is that in networks, there
are numerous applications for which it is difficult to build an
accurate baseline of benign behavior. So, an anomaly based
detection is inherently prone to false positives. To address this
issue, in this paper we have used a semi-supervised learning
approach to build attack signatures which provide quantifiable
security metrics. The other reason is that the state space of a
network environment is not limited to discrete device states
like in smart homes and thus suffers from the state explosion
problem.

Attempts have been made to define quantifiable security
metrics [18], [5], [6]. Proposed approaches include building
metrics from user or host vulnerabilities, defense strengths,
attack (or threat) severity and situation understanding of the
environment. To the best of our knowledge, security metrics
or attack signatures based on network flow parameters have
not been explored. In terms of encoding security metrics in RL
frameworks, there are two main approaches: (1) transformation
of the optimization criterion, and (2) modification of the
exploration process [19]. Our approach falls under the first
category as we modify the objective/reward function using the
security metrics. But additionally, we also analyze the action
space according to the hyper parameter δ, which can be used to
inject external knowledge or advice to guide the exploration
process of the RL framework. Due to space limitations, we
leave the integration of such an approach into Jarvis-SDN as
our future work.

VII. CONCLUSION AND FUTURE WORK

In this paper we have designed and evaluated
Jarvis-SDN, a RL framework for optimizing network
functionalities constrained using RL-based network flow
attack signatures. While our initial results show that our
framework represents significant progress, we plan to carry
out additional experiments to assess its performance for
different network conditions, network functionalities like
routing and RL algorithms like policy gradient approaches.

ACKNOWLEDGMENTS

This research was sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence under Agree-
ment Number W911NF-16-3-0001, and the U.S. Army Re-
search Office under Agreement Number W911NF1910432.
The views and conclusions contained in this document are

those of the authors and should not be interpreted as repre-
senting the official policies, either expressed or implied, of
the U.S. Army Research Laboratory, the U.S. Government,
the U.K. Ministry of Defence or the U.K. Government. The
U.S. and U.K. Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright notation hereon.

REFERENCES

[1] G. Stampa, M. Arias, D. Sánchez-Charles, V. Muntés-Mulero,
and A. Cabellos, “A deep-reinforcement learning approach for
software-defined networking routing optimization,” arXiv preprint
arXiv:1709.07080, 2017.

[2] X. Huang, T. Yuan, G. Qiao, and Y. Ren, “Deep reinforcement learning
for multimedia traffic control in software defined networking,” IEEE
Network, vol. 32, no. 6, pp. 35–41, 2018.

[3] P. Sun, Z. Guo, G. Wang, J. Lan, and Y. Hu, “Marvel: Enabling
controller load balancing in software-defined networks with multi-agent
reinforcement learning,” Computer Networks, p. 107230, 2020.

[4] A. Mudgerikar and E. Bertino, “Jarvis: Moving towards a smarter
internet of things,” in 40th IEEE International Conference on Distributed
Computing Systems. IEEE, 2020.

[5] M. Pendleton, R. Garcia-Lebron, J.-H. Cho, and S. Xu, “A survey on
systems security metrics,” ACM Computing Surveys, vol. 49, no. 4, 2017.

[6] W. H. Sanders, “Quantitative security metrics: Unattainable holy grail
or a vital breakthrough within our reach?” IEEE Security & Privacy,
vol. 12, no. 2, pp. 67–69, 2014.

[7] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.”
in ICISSP, 2018, pp. 108–116.

[8] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[10] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed
analysis of the kdd cup 99 data set,” in 2009 IEEE symposium on
computational intelligence for security and defense applications.

[11] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[12] P. Bosshart and et al., “P4: Programming protocol-independent
packet processors,” ACM SIGCOMM Computer Communication Review,
vol. 44, no. 3, pp. 87–95, 2014.

[13] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, 2010, pp. 1–6.

[14] D. J. Hamad, K. G. Yalda, and I. T. Okumus, “Getting traffic statistics
from network devices in an sdn environment using openflow,” Informa-
tion Technology and Systems, pp. 951–956, 2015.

[15] M. Karakus and A. Durresi, “Quality of service (qos) in software
defined networking (sdn): A survey,” Journal of Network and Computer
Applications, vol. 80, pp. 200–218, 2017.

[16] S. Reddy, A. D. Dragan, S. Levine, S. Legg, and J. Leike, “Learning
human objectives by evaluating hypothetical behavior,” arXiv preprint
arXiv:1912.05652, 2019.

[17] B. Settles, “Active learning literature survey,” University of Wisconsin-
Madison Department of Computer Sciences, Tech. Rep., 2009.

[18] A. Ramos, M. Lazar, R. Holanda Filho, and J. J. Rodrigues, “Model-
based quantitative network security metrics: A survey,” IEEE Commu-
nications Surveys & Tutorials, vol. 19, no. 4, pp. 2704–2734, 2017.

[19] J. Garcıa and F. Fernández, “A comprehensive survey on safe reinforce-
ment learning,” Journal of Machine Learning Research, vol. 16, no. 1,
pp. 1437–1480, 2015.


