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Abstract

Registry-based epidemiologic studies suggest associations between chronic inflammatory 

intestinal diseases and pancreatic ductal adenocarcinoma (PDAC). As genetic susceptibility 

contributes to a large proportion of chronic inflammatory intestinal diseases, we hypothesize that 

the genomic regions surrounding established genome-wide associated variants for these chronic 

inflammatory diseases are associated with PDAC. We examined the association between PDAC 

and genomic regions (+/− 500 kb) surrounding established common susceptibility variants for 

ulcerative colitis, Crohn’s disease, inflammatory bowel disease, celiac disease, chronic 

pancreatitis, and primary sclerosing cholangitis. We analyzed summary statistics from genome-

wide association studies data for 8,384 cases and 11,955 controls of European descent from two 

large consortium studies using the summary data-based adaptive rank truncated product method to 

examine the overall association of combined genomic regions for each inflammatory disease 

group. Combined genomic susceptibility regions for ulcerative colitis, Crohn’s disease, 

inflammatory bowel disease, and chronic pancreatitis were associated with PDAC at P-values < 

0.05 (0.0040, 0.0057, 0.011, and 3.4 × 10−6, respectively). After excluding the 20 PDAC 

susceptibility regions (+/− 500 kb) previously identified by GWAS, the genomic regions for 

ulcerative colitis, Crohn’s disease, and inflammatory bowel disease remained associated with 

PDAC (P-values = 0.0029, 0.0057, and 0.0098, respectively). Genomic regions for celiac disease 

(P-value = 0.22) and primary sclerosing cholangitis (P-value = 0.078) were not associated with 

PDAC. Our results support the hypothesis that genomic regions surrounding variants associated 

with inflammatory intestinal diseases, particularly, ulcerative colitis, Crohn’s disease, 

inflammatory bowel disease, and chronic pancreatitis are associated with PDAC.

Introduction

Pancreatic cancer, characterized by its increasing incidence and high fatality, is the 3rd

leading cause of cancer-related mortality in the United States (US) (1). Pancreatic ductal 

adenocarcinoma (PDAC) is the most common type of pancreatic cancer (2). In addition to 

risk factors, such as cigarette smoking, excess weight and diabetes, genetic susceptibility 

contributes to the disease with an estimated heritability of up to 21% (3).
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Chronic inflammation plays an important role in PDAC pathogenesis. The most direct link 

between inflammation and pancreatic cancer is derived from known associations with 

chronic pancreatitis, with risks being particularly strong for hereditary pancreatitis (4). 

Swedish registry-based studies have identified significant excess incidence of PDAC in 

patients with ulcerative colitis (5), Crohn’s disease (6), and primary sclerosing cholangitis 

(7) compared with the general Swedish population, albeit based on a relatively small number

of PDAC cases. Ulcerative colitis and Crohn’s disease are characterized as idiopathic,

immune-mediated recurrent or chronic inflammatory disorders of the gastrointestinal tract

and are collectively classified as inflammatory bowel disease. Primary sclerosing cholangitis

is a chronic autoimmune disease with progressive inflammation and fibrosis in the

intrahepatic and extrahepatic biliary ducts and has also been associated with inflammatory

bowel disease (8). Celiac disease, an autoimmune disorder characterized by chronic

inflammation in small intestine, has been variably associated with PDAC (9,10). A limitation

of registry-based studies and epidemiologic studies that rely on self-report is chronic

inflammatory intestinal diseases may not be accurately ascertained (e.g., misdiagnosed with

irritable bowel syndrome due to overlapping symptoms) (11,12), and thus affect risk

estimates. Genetic susceptibility is known to contribute to each inflammatory disease

mentioned above (13–16).

In this study, we examined the association between genomic regions surrounding common 

susceptibility variants identified from published genome-wide association studies (GWAS) 

of ulcerative colitis, Crohn’s disease, inflammatory bowel disease, celiac disease, chronic 

pancreatitis and primary sclerosing cholangitis, and risk of PDAC using GWAS data from 

two large PDAC consortia (17–21). We hypothesize that combined genomic susceptibility 

regions for each chronic inflammatory intestinal disease group will be associated with 

PDAC. The statistical approach we employed considers the joint association of multiple 

genomic regions with PDAC risk (22), and thus has the potential to detect associations that 

could be overlooked by traditional single-marker approaches.

Materials and Methods

Study sample

Our study was based on 9,038 primary PDAC cases (ICD-O-3 code C250-C259) and 12,389 

controls of European ancestry from four GWAS conducted in the Pancreatic Cancer Cohort 

Consortium (PanScan I, II, III) and the Pancreatic Cancer Case Control Consortium (PanC4) 

(17–21). Participants with non-exocrine pancreatic tumors (histology types 8150, 8151, 

8153, 8155 and 8240) were excluded because their etiologies are thought to be different. The 

details of the cases, controls and study design have been previously described (17–21). The 

three PanScan GWAS included participants from 16 cohorts [Alpha-Tocopherol, Beta-

Carotene Study (ATBC, Finland), Agricultural Health Study (US), Give us a Clue to Cancer 

and Heart Disease Study (CLUE II, US), Cancer Preventions Study II (CPS-II, US), 

European Prospective Investigation into Cancer and Nutrition Study (EPIC, which 

comprises cohorts from Denmark, France, Germany, Great Britain, Greece, Italy, The 

Netherlands, Spain, and Sweden), Health Professional Follow-Up Study (HPFS, US), 

Multiethnic Cohort (US), Melbourne (MCCS, Australia), Nurse’s Health Study (NHS, US), 
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New York University Women’s Health Study (US), Physician’s Health Study I (PHS, US), 

Prostate Lung Colorectal Ovarian Cancer Cohort (PLCO, US), Selenium and Vitamin E 

Cancer Prevention Trial (US), Vitamins and Lifestyle Cohort (US), Women Health Initiative 

Cohort (US), Women’s Health Study (WHS, US)] from the National Cancer Institute’s 

cohort consortium, 9 case-control studies and 1 case series (Gastrointestinal Cancer Clinic of 

Dana-Farber Cancer Institute, US). PanC4 included 9 case-control studies. The case-control 

studies included in either PanScan II or PanC4 were the Central Europe study coordinated 

by IARC (hospital-based, EU), Johns Hopkins Hospital (clinic-based, US), Mayo Clinic 

(clinic-based, US), MD Anderson Cancer Center (hospital-based, US), Memorial Sloan 

Kettering Cancer Center (clinic-based, US), PANDoRA- pancreatic cancer case-control 

study (clinic-based, EU), PACIFIC Study of Group Health and Northern California Kaiser 

Permanente (HMO, US), QIMR Berghofer Medical Research Institute (population-based, 

Australia), Spanish Pancreatic Cancer Study (hospital-based, Spain), University of 

California San Francisco (population-based, US), University of Toronto (population-based, 

Canada), and Yale University (population-based hospitals, US) (17–21). Controls for 

PanScan I and II and PanC4 were matched to cases by age, sex, self-reported race, area of 

residence (case-control studies) and/or smoking (HPFS, PHS, NHS, WHS cohorts only) and 

incidence density sampled within each respective cohort studies. PanScan Ⅲ used 

previously genotyped controls, mostly from cohort studies (ATBC, CPS-II, EPIC, HPFS, 

MCCS, MEC, NHS, PLCO, WHI). To facilitate stratified analyses by study design (cohort 

versus case-control) and evaluate potential survival bias, we excluded 654 cases and 434 

controls from PanScan Ⅲ studies because they did not have comparable controls or cases by 

study designs because PanScan III used previously genotyped controls (e.g., exclusion of 

cases from case-control or case series studies that used cohort controls). We only included 

participants of European ancestry to avoid confounding by population stratification. Our 

final analytic data set included 8,384 (2,320 cohort, 6,064 case-control) PDAC cases and 

11,955 (6,121 cohort, 5,834 case-control) controls.

Each participating study obtained written informed consent from participants and approval 

from their local Institutional Review Board. The National Cancer Institute’s Special Studies 

Institutional Review Board approved the consortia study.

GWAS summary statistics

Genotype imputation across the four study phases was based on the 1000 Genomes Project 

(Phase 3, v1) reference dataset (23) and IMPUTE2 (http://mathgen.stats.ox.ac.uk/impute/

impute_v2.html) (24) as previously described (21). Due to the large overlap of variants on 

the arrays (Illumina HumanHap550 Infinium II, Human 610-Quad) used for PanScan I and 

II, these studies were combined and jointly analyzed, whereas PanScan III (OmniExpress, 

Omni1M, Omni2.5M and Omni5M) and PanC4 (Illumina HumanOmniExpressExome-8v1) 

were each analyzed separately. For quality control, SNPs with minor allele frequency (MAF) 

< 5% and low-quality imputation score (IMPUTE2 INFO score < 0.3) were excluded (21). 

For each GWAS phase, SNPTEST (http://mathgen.stats.ox.ac.uk/genetics_software/snptest/

snptest.html) (25) was used to perform association analysis and generate summary statistics 

based on probabilistic genotype values from IMPUTE2. The analysis was adjusted for age 

(10-year categories, (⩽50, 51-60, 61-70, 71-80, and ⩾81)), sex, top eigenvectors for each 
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study phase, study (PanScan), and geographic region (PanScan Ⅲ) as previously described 

(17–21). PanScan Ⅲ was adjusted for geographic region (US, central and northern Europe, 

and southern Europe) because of the use of the previously genotyped controls that were not 

necessarily from the same study or region as the cases (20).

SNP selection

We identified “index-” single-nucleotide polymorphisms (SNPs) associated with ulcerative 

colitis, Crohn’s disease, inflammatory bowel disease, celiac disease, chronic pancreatitis and 

primary sclerosing cholangitis at genome-wide association level (P-value < 5×10−8) using 

the most recent and largest studies curated by NHGRI-EBI Catalog of published GWAS 

(https://www.ebi.ac.uk/gwas/) as of October 9, 2017 (Supplementary Table S1). As some 

GWAS had inflammatory bowel disease as an outcome alone, we defined inflammatory 

bowel disease as a unique disease group rather than combining GWAS regions for ulcerative 

colitis and Crohn’s disease. We reviewed the original GWAS publications and added 

additional SNPs that met the significance level criterion (26). For SNPs that were not 

genotyped or imputed in our data set (i.e., genotyped on different platforms), we selected an 

alternative index-SNP in high linkage disequilibrium (LD, r2 ≥ 0.74) using LDlink (https://

ldlink.nci.nih.gov) (27). We then included genomic regions +/− 500 kb surrounding each 

index-SNP and applied LD filtering to highly correlated SNP pairs (r2 > 0.80) in each 

disease group. In total, our analysis included the following number of index-SNP defined 

regions (SNPs in regions): 99 (728) for ulcerative colitis, 151 (997) for Crohn’s disease, 211 

(1,403) for inflammatory bowel disease, 21 (148) for celiac disease, 11 (35) for chronic 

pancreatitis, and 15 (109) for primary sclerosing cholangitis. Fifty-five index-SNP defined 

regions associated with inflammatory bowel disease did not overlap with ulcerative colitis or 

Crohn’s disease.

Statistical analysis

We first conducted a meta-analysis combining SNP-level summary statistics from the four 

GWAS using an inverse-variance fixed-effects model. To eliminate the effect of population 

stratification, the square root of the genomic inflation factors for each study phase (λ = 1.02, 

1.02, 1.01 and 1.06 for PanC4, PanScan I and II case-control, PanScan I and II cohort, and 

PanScan III cohort, respectively) was used to rescale the standard error of the estimated log 

odds ratio at each SNP before the meta-analysis. We then applied the summary data-based 

adaptive rank truncated product (sARTP) method (22) to the meta-analysis result. The 

genomic region surrounding an index-SNP was treated as a “gene”, and the disease-level 

analysis was the gene-set/pathway analysis by combining the signals across multiple regions 

defined by the index-SNPs for a given inflammatory intestinal disease group (22). The 

sARTP analysis selected up to five of the most significant outcome (PDAC)-associated SNPs 

within each index-SNP defined region and adjusted for multiple comparison through a 

resampling procedure. The disease-level sARTP adjusted for multiple comparison for tests 

done around all considered index-SNP/regions within a disease group through a similar 

resampling procedure. One-hundred million resampling steps were used to estimate the P-

value of each index-SNP region and disease-level associations. A panel of 503 European 

subjects (population codes: CEU, TSI, FIN, GBR, IBS) in the 1000 Genomes Project (phase 

Yuan et al. Page 4

https://www.ebi.ac.uk/gwas/
https://ldlink.nci.nih.gov
https://ldlink.nci.nih.gov


3, v1) was used in sARTP to estimate the LD between SNPs. We considered a disease-level 

P-value less than or equal to 0.05 statistically significant. All statistical tests are two-sided.

We also conducted a sensitivity analysis excluding the 20 PDAC-associated risk signals 

identified by previous GWAS at 1q32.1 (NR5A2), 1p36.33 (NOC2L), 2p14 (ETAA1), 3q28 

(TP63), 5p15.33 (CLPTM1L-TERT), 7p14.1 (SUGCT), 7q23.2 (LINC-PINT), 8q21.11 

(HNF4G), 8q24.21 (MYC), 9q34.2 (ABO), 13q12.2 (PDX1), 13q22.1 (non-genic), 16q23.1 

(BCAR1), 17q12 (HNF1B), 17q24.3 (LINC00673), 18q21.32 (GRP), and 22q12.1 (ZNRF3) 

(17–21,28) and genomic regions within +/− 500kb (22).

LD score regression

To estimate the genetic correlation between the disease groups and PDAC, we performed LD 

score regression (29) using summary statistics (excluding major histocompatibility complex 

regions) from PDAC GWAS (21) and GWAS for ulcerative colitis, Crohn’s disease, 

inflammatory bowel disease, chronic pancreatitis and primary sclerosing cholangitis with 

comparable HapMap3 genotype imputation (30–32). Celiac disease was excluded from the 

analysis because the originating study did not have imputed genotyping data.

Pairwise LD analysis, functional annotation and eQTL analysis

We performed a pairwise LD analysis to evaluate haplotype patterns between alleles of the 

index-SNPs and sARTP-selected SNPs using LDlink (27). We conducted an exploratory 

analysis of expression quantitative trait locus (eQTL) data to assess the cis effects of the 

most statistically significant sARTP-selected SNPs (P-value ≤ 0.002) and their 

corresponding index-SNPs on gene expression in pancreas tissue and determined whether 

the same gene(s) were expressed in gastrointestinal tract, and whole blood tissues using data 

from the NIH Genotype-Tissue Expression (GTEx) v8 (33). We also examined the 

regulatory potential of these SNPs (and SNPs in LD) using experimental data and 

information from Ensembl (34), HaploReg v4.1 (35), and RegulomeDB v1.1 (36).

Data Availability

The majority of the data that support the findings of this study are available in dbGAP at 

https://www.ncbi.nlm.nih.gov/gap/, reference number [phs000206.v5.p3 and 

phs000648.v1.p1]. Biomedical research scientists from recognized research institutions can 

request data as bona fide researchers from dbGAP or by contacting the corresponding 

author.

Results

Table 1 shows the characteristics of our study population by genotyping phase and study 

design. The age and sex distribution of cases compared to controls within each study phase 

(PanScan I and II, PanC4) was similar except for PanScan Ⅲ which used previously 

genotyped controls. Overall, the majority of cases were diagnosed after age 60 years 

(74.1%), 39.1% of the cases were diagnosed after age 70 years, and 54.3% of the cases were 

men. A higher proportion of the cases from the cohort studies were diagnosed at older ages 

(87.7% > 60 years and 53.0% > 70 years) compared to the case-control studies (68.9% > 60 
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years and 33.8% > 70 years). The proportion of female cases was greater among the cohort 

studies (51.8%), while the proportion of male cases was greater in the case-control studies 

(56.6%).

Disease group and PDAC

Genetic susceptibility to the ulcerative colitis, Crohn’s disease, inflammatory bowel disease, 

and chronic pancreatitis groups (P-values = 0.0040, 0.0057, 0.011, and 3.4 × 10−6, 

respectively) was significantly associated with PDAC while that to the celiac disease and 

primary sclerosing cholangitis groups (P-values = 0.22 and 0.078) was not (Table 2). After 

excluding the previous PDAC GWAS risk signal regions, the associations for ulcerative 

colitis, Crohn’s disease, and inflammatory bowel disease remained (P-values = 0.0029, 

0.0057, and 0.0098), but that for chronic pancreatitis did not (P-value = 0.073). Associations 

for ulcerative colitis, Crohn’s disease, inflammatory bowel disease, chronic pancreatitis and 

primary sclerosing cholangitis (P-values = 0.022, 0.0069, 0.014, 3.2 × 10−6, and 0.018) were 

present in the case-control studies but not in the cohort studies (Supplementary Table S2).

The PDAC associations for the index-SNP defined regions, and for SNPs selected by sARTP 

within each region are shown in Supplementary Table S3 and Supplementary Table S4, 

respectively. The index-SNPs were highly correlated with their sARTP-selected SNPs, with 

LD r2 value ≥ 0.78 among all SNP pairs.

In total, 32 out of 99 index-SNP defined regions for ulcerative colitis, 28 out of 151 regions 

for Crohn’s disease and 30 out of 211 regions for inflammatory bowel disease were selected 

by sARTP and contributed to the associations between disease groups and PDAC (Table 3). 

There was some overlap of the regions across these disease groups. For example, 6 index-

SNP defined regions were in common for ulcerative colitis and Crohn’s disease (rs2872507, 

rs12946510, rs2413583, rs7517847, rs9868809, rs3766606) (Figure 1). The most significant 

index-SNP defined regions associated with PDAC (P-value < 0.01) and corresponding gene 

(location) contributing to the associations included rs9858542 (BSN, 3p21.31; Crohn’s 

disease, inflammatory bowel disease), rs6651252 (LINC00824, 8q24.21; Crohn’s disease, 

inflammatory bowel disease), rs2872507 (intergenic variant, 17q21.1; ulcerative colitis, 

Crohn’s disease, inflammatory bowel disease), rs10883365 (LINC01475, 10q24.2; Crohn’s 

disease, inflammatory bowel disease), rs9988642 (IL23R, 1p31.3; Crohn’s disease, 

inflammatory bowel disease), rs4256018 (FERMT1, 20p12.3; inflammatory bowel disease), 

rs7809799 (KPNA7, 7q22.1; ulcerative colitis, inflammatory bowel disease), rs9822268 

(APEH, 3p21.31; ulcerative colitis), rs4409764 (intergenic variant, 10q24.2; ulcerative 

colitis), rs80174646 (IL23R, 1p31.3; ulcerative colitis), and rs568617 (FIBP, 11q13.1; 

Crohn’s disease).

Five out of 21 index-SNP defined regions for celiac disease, 1 out of 11 regions for chronic 

pancreatitis, and 1 out of 15 regions for primary sclerosing cholangitis contributed to the 

associations. The index-SNP defined region for chronic pancreatitis that contributed to the 

chronic pancreatitis-PDAC association was rs8055167 (CTRB1, CTRB2, 16q23.1, P-value = 

1.0 × 10−7). The index-SNP defined region that contributed to the primary sclerosing 

cholangitis-PDAC association was rs3197999 (MST1, 3p21.31, P-value = 0.0028).
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LD score regression

The genetic correlation rg (standard error, se) of each disease group with PDAC was 0.08 (P-

value = 0.42, se = 0.10) for ulcerative colitis, −0.16 (P-value = 0.055, se = 0.08) for Crohn’s 

disease, −0.07 (P-value = 0.39, se = 0.08) for inflammatory bowel disease, 0.28 (P-value = 

0.49, se = 0.41) for chronic pancreatitis, and −0.13 (P-value = 0.25, se = 0.12) for primary 

sclerosing cholangitis.

eQTL and functional annotation

The exploratory eQTL results for select index-SNPs and their corresponding sARTP-

selected SNPs with the strongest evidence of association with PDAC are shown in Table 3 

and Supplementary Table S5. Their functional annotations were shown in Supplementary 

Table S6 and Supplementary Table S7. In three regions defined by correlated index-SNPs (r2

≥ 0.95) associated with ulcerative colitis, Crohn’s disease, inflammatory bowel disease, or 

primary sclerosing cholangitis, variants rs9858542-A, rs9822268-A, rs3197999-A were 

associated with increased UBA7 expression in normal tissues of pancreas, transverse colon, 

and small intestine (P-values ≤ 6.0 × 10−6). These SNPs were associated with increased 

UBA7 expression in esophageal mucosa, stomach, and whole blood (Supplementary Table 

S5). In the region defined by the chronic pancreatitis index-SNP rs8055167, variant 

rs8055167-C was associated with lower CTRB2 expression and increased CTRB1 
expression in normal pancreatic tissue (P-values ≤ 2.0 × 10−6). In the region defined by 

ulcerative colitis/Crohn’s disease/inflammatory bowel disease index-SNP rs2872507, variant 

rs2872507-A was associated with decreased PGAP3 expression in normal pancreatic, 

transverse colon and small intestine tissues (P-values ≤ 2.5 × 10−7). Similar eQTL effects 

were present in the esophagus-gastroesophageal junction, stomach, and whole blood.

Discussion

Our analysis of GWAS data showed that the joint effects of common variants in genomic 

regions containing susceptibility loci for ulcerative colitis, Crohn’s disease, inflammatory 

bowel disease, and chronic pancreatitis were associated with PDAC. After excluding the 

previously established PDAC-associated regions, the genomic regions for ulcerative colitis, 

Crohn’s disease, and inflammatory bowel disease remained associated with PDAC, but the 

association for chronic pancreatitis was no longer significant. No significant associations 

were observed for genetic susceptibility to celiac disease or primary sclerosing cholangitis. 

Our results are consistent with the previous Swedish registry-based studies of patients 

previously diagnosed with ulcerative colitis and Crohn’s disease that found positive 

associations with PDAC compared with the general population (5,6), and the known 

association between chronic pancreatitis and PDAC (4).

Although previous GWAS suggest overlap of genetic susceptibility between ulcerative 

colitis and Crohn’s disease (37), a connection with PDAC remains to be elucidated. In this 

study, we observed that multiple common regions between ulcerative colitis and Crohn’s 

disease are associated with PDAC, suggesting some shared underlying biology between the 

two inflammatory diseases that contributes to the risk of PDAC. Of note, index-SNP 

rs7517847 (ulcerative colitis, Crohn’s disease) resides in IL23R (Supplementary Table S3), 
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which encodes a subunit of the receptor for interleukin-23 (IL-23). The IL-23 signaling 

pathway mediates intestinal inflammation (38) and promotes inflammation-induced 

tumorigenesis in colon in murine models (39). In addition, expression of IL-23 was 

significantly higher in pancreatic tumor compared with normal adjacent tissue (40).

With regard to the three inflammatory bowel disease groups, susceptibility variants residing 

at loci 3p21.31 and 17q12-q21 are of interest due to their associations with PDAC 

(Supplementary Table S4), and significant cis-eQTL effects in pancreas, transverse colon 

and small intestine (Table 3). Index-SNPs rs9858542 (Crohn’s disease, inflammatory bowel 

disease), rs9822268 (ulcerative colitis) and rs3197999 (primary sclerosing cholangitis) 

reside at 3p21.31 (Supplementary Table S3), a region in which multiple susceptibility loci 

for chronic inflammatory intestinal diseases have been identified (26,31,37,41). The three 

index SNPs and their sARTP-selected SNPs are eQTLs for UBA7. Previous studies 

suggested a tumor suppressive effect of UBE1L (the protein encoded by UBA7) in both lung 

cancer and acute promyelocytic leukemia (42,43). Index-SNP rs2872507 is an intergenic 

variant located at 17q12-q21, a locus found to be associated with many immune-mediated 

diseases (44). rs2872507 and its sARTP-selected SNPs are associated with decreased 

PGAP3 expression in pancreas, transverse colon and small intestine. PGAP3 is frequently 

coamplified with the oncogene ERBB2 in breast and gastric cancer (45,46), and co-silencing 

of PGAP3 with ERBB2 in vitro results in an additive inhibition of cell viability and induced 

apoptosis (47). In an agnostic pathway analysis, we previously identified PGAP3 as a top 

contributing gene associated with PDAC within the Nikolsky breast cancer chr17q11-q21 

amplicon gene set with four SNPs associated with decreased PGAP3 expression (48). In a 

separate transcriptome-wide association study, genetically predicted expression of PGAP3 
was found to be associated with PDAC risk (49). Our findings based on eQTL analysis are 

suggestive and further colocalization analysis may help identify a shared etiology between 

inflammatory bowel disease and PDAC.

Our sensitivity analyses suggest that the associations we observe between ulcerative colitis, 

Crohn’s disease, inflammatory bowel disease groups and PDAC are not driven by previously 

identified PDAC GWAS loci. The chronic pancreatitis group, however, was no longer 

associated with PDAC. The association observed in the primary analysis was driven by the 

PDAC-associated SNP rs8051363, which is in close proximity to the PDAC risk signal 

rs7190458 (BCAR1/CTRB1/CTRB2) at 16q23.1 (20,21).

Our analysis is based on regions surrounding established susceptibility variants from GWAS 

of each inflammatory intestinal disease. As a result, we may not be able to observe an 

association for disease groups with only few established GWAS loci (e.g., primary 

sclerosing cholangitis). In contrast to Mendelian randomization and polygenic risk scores 

that sum trait-associated single SNPs from GWAS weighted by their effect sizes to provide 

an overall measure of an individual’s genetic risk to develop disease (50), our approach uses 

genomic regions surrounding established gastrointestinal disease SNPs from GWAS and 

selects only SNPs associated with PDAC in those regions to examine trait-disease 

associations. These aforementioned approaches rely on previous GWAS and may overlook a 

significant portion of heritability, given that heritability is often distributed over thousands of 

genetic variants with small effects in complex traits (29). To complement our current 
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approach, we performed LD score regression which took the effect of all SNPs into account, 

regardless of their genome-wide significance level. The LD regression analyses did not show 

significant genome-wide shared heritability between inflammatory intestinal diseases and 

PDAC, which might be due to limited number of participants in the originating studies and 

lack of power to observe associations, particularly for pancreatitis and primary sclerosing 

cholangitis. Our results suggest that only selective regions surrounding established 

susceptibility variants for inflammatory intestinal diseases are associated with PDAC.

Strengths of the study include the large number of PDAC cases and controls, and our 

statistical approach using GWAS data. Our associations are based on genomic regions 

identified from GWAS of inflammatory intestinal diseases, which provides the opportunity 

to identify susceptibility to chronic intestinal inflammation, beyond that of questionnaires or 

registry data with variable accuracy. sARTP allowed us to discover disease group-PDAC 

associations that would not be detected by studies using traditional single-marker 

approaches. One limitation of the study is that although we highlighted individual PDAC-

associated SNPs that contributed to the overall associations of inflammatory intestinal 

diseases with PDAC, none of them alone was statistically significant after correction for 

multiple comparisons. We observed more significant associations in the case-control studies 

compared with cohort studies. This is most likely due to the larger number of cases in the 

case-control compared to the cohort studies (n = 6,064 versus n = 2,320), and thus increased 

power to detect associations. Alternatively, the differences might be related to selection bias 

of either the cases (e.g., referral bias, IBD-related, survival bias) or controls (e.g., 

participation bias) from the case-control studies particularly as many of the studies were 

clinic or hospital based. Lastly, our study lacks clinical diagnosis of inflammatory intestinal 

diseases and information on important environmental factors (e.g., gluten exposure for celiac 

disease) that play a role in the etiology of these diseases.

In conclusion, our results support the hypothesis that variants within genomic regions 

surrounding susceptibility variants for ulcerative colitis, Crohn’s disease, inflammatory 

bowel disease, and chronic pancreatitis are associated with PDAC. Further investigations are 

warranted to replicate our findings and examine these associations in populations of non-

European ancestry.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance:

The joint effects of common variants in genomic regions containing susceptibility loci for 

inflammatory bowel disease and chronic pancreatitis are associated with PDAC and may 

provide insights to understanding pancreatic cancer etiology.
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Figure 1. 
Index-SNP defined regions contributing to the associations of Crohn’s disease and ulcerative 

colitis with PDAC. Index-SNP defined regions associated with PDAC in ulcerative colitis 

(small circle) and Crohn’s disease (large circle). Circles highlighted in red are regions 

contributing to each disease group-PDAC association. Circles labeled with SNP IDs and 

locations represent index-SNP defined regions that are in common between Crohn’s disease 

and ulcerative colitis. The analysis (N=8,384 cases and 11,955 controls) is adjusted for age, 

sex, study, geographic region, and the top eigenvectors for the PanScan studies and age, sex, 

and the top eigenvectors for the PanC4 studies. All statistical tests are two-sided. PDAC = 

pancreatic ductal adenocarcinoma; sARTP = summary data-based adaptive rank truncated 

product.
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