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Abstract—Cell-free (CF) structures are expected to be a game
changer for beyond-5G wireless networks. With every user
potentially communicating with every base station, cooperation
at a central processing point is poised to provide much higher
spectral efficiencies. At the same time, the growing interest in
unmanned aerial vehicles (UAVs) makes CF-UAV networks an
appealing scenario. This paper investigates the uplink of a CF
network where UAVs serve as flying base stations. The optimiza-
tion of the UAV locations is shown to markedly increase the
minimum local-average signal-to-interference-plus-noise ratio,
which in turn increases the spectral efficiency. The improvements
are associated to pilot contamination and to geometry.

Index Terms—Cell-Free, UAV, deployment optimization

I. INTRODUCTION

The evolution towards software-defined architectures mo-

tivates the interest in centralized, possibly cloud-based, radio

access networks [1]. The corresponding base stations consist

only of antennas and RF stages, with the baseband processing

concentrated at some suitable point. This naturally invites a

cell-free (CF) structure where every user potentially connects

to every base station, and takes the principles of cell coop-

eration to the limit [2]–[8]. To render CF networks scalable

while retaining their main features, the users connecting to

each base station can be limited to appropriate subsets [7].

There is growing interest in unmanned aerial vehicles

(UAVs) serving as flying base stations (FBSs), but most of the

related work has taken place within the confines of the cellular

paradigm [9]–[16]. The challenge of deploying FBSs for an

optimal performance, in particular, has received considerable

attention [17]–[19]. However, the problem of deploying FBSs

in CF-UAV networks remains largely unexplored. For the

sake of tractability, existing works on FBS deployment and

trajectory optimization broadly assume simplified channel

models and perfect channel-state information (CSI) [11]–[13].

The present paper tackles the FBS deployment optimization

with imperfect channel estimation and MMSE combining

and serves as a starting point in the investigation of pilot

assignment techniques for CF-UAV networks. Specifically:

1) A complete and tractable framework is provided to

analyze CF-UAV networks, including imperfect CSI,
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Fig. 1: Geometry for a given transmitter-receiver pair.

MMSE combining, pilot contamination, and realistic

antenna radiation patterns at the UAVs.

2) Closed-form expressions are derived for the local-

average signal-to-interference-plus-noise ratio (SINR)

when the number of users is large, considering central-

ized MMSE combining and MMSE channel estimation.

3) Two algorithms are provided for the optimization of the

max-min local-average SINR.

II. NETWORK AND CHANNEL MODEL

The CF networks under consideration feature M FBSs with

the mth one located at qm = (xm, ym) and altitude H . There

are K cochannel single-antenna ground users (GUs) at wk =
(xk, yk) for k = 1, . . . ,K.

We denote by gk,m the channel coefficient between the

kth GU and the mth FBS, following a Rician distribution

comprised of (i) a dominant LoS component and (ii) a

Rayleigh-distributed small-scale component. Therefore:

gk,m =

√

β0gm(θk,m)

dκk,m(Kk,m + 1)

(
√

Kk,me
jψk,m + ak,m

)

, (1)

where β0 and κ are the pathloss intercept at a 1-m reference

distance and the pathloss exponent, respectively, and dk,m
denotes the distance from the kth GU to the mth FBS. The

Rician factor is Kk,m = A1e
A2 arcsin( H

dk,m
)

for environment-

dependent parameters A1 and A2 [20]. In addition, ψk,m ∼
U [0, 2π], uniform between 0 and 2π, and ak,m ∼ NC(0, 1),
zero-mean and unit-variance complex Gaussian, respectively,

for the phase rotation of the LoS component and for the small-

scale fading. Finally, gm(θk,m) models the antenna gain at the



mth FBS given the angle θk,m, as shown in Fig. 1. Based on

the analysis provided in [19], [21],

gm(θk,m) = 2 (αm + 1) cosαm(θk,m), (2)

where parameter αm controls the trade-off between gain and

beamwidth. Thus, the overall channel, gk,m is a zero-mean

r.v. with average power satisfying

rk,m = E{|gk,m|2} = 2 (αm + 1)β0
Hαm

dαm+κ
k,m

. (3)

A. Channel Estimation

Channel estimation is tackled explicitly by means of τ
orthogonal pilot sequences of length τ . Let ϕk ∈ C

τ×1 be the

pilot sequence assigned to the kth user, where ‖ϕk‖2 = τ .

Upon pilot transmissions by all GUs, the observation at the

mth FBS is

zm =
K∑

k=1

gk,mϕk

√

pt
k + nm, (4)

where pt
k is the pilot power of GU k and nm ∼ NC(0, σ

2I).
The number of orthogonal pilots is necessarily limited, i.e.

τ < K, which gives rise to pilot contamination. Let us denote

by Sk the set of GUs sharing the same pilot sequence with

GU k, including GU k. From zm, the mth FBS produces the

MMSE channel estimate [22]

ĝk,m =

√
pt
kτ · rk,m

∑

i∈Sk

pt
iτ · ri,m + σ2

· 1√
τ
ϕ∗
kzm. (5)

Therefore, the average channel estimate power is

γk,m = E{|ĝk,m|2} =
pt
kτr

2
k,m

∑

i∈Sk

pt
iτ · ri,m + σ2

. (6)

The channel estimation error, g̃k,m = gk,m − ĝk,m, is

uncorrelated with ĝk,m and satisfies ck,m = E{|g̃k,m|2} =
rk,m − γk,m.

B. Uplink Data Transmission

In a given uplink time-frequency resource, the channel

matrix is

G =
(
g1, . . . , gK

)
, (7)

where gk ∈ C
M×1 is the channel vector from GU k to all

FBSs. Considering (5), the channel matrix can be decomposed

as G = Ĝ+G̃, where Ĝ is the channel estimate matrix and G̃

is the channel error matrix. To take into account that not every

FBS participates in the reception of every GU, we introduce

a binary matrix M s = (ms
1, . . . ,m

s
K) ∈ Z

M×K
2 defined as

[M s]m,k =

{

1 if FBS m regards GU k as signal

0 otherwise
. (8)

We also define the complementary matrix M i = 1 −M s,

whose nonzero entries indicate the GUs that each FBS

disregards and that therefore constitute interference. In a fully

cooperative network, all entries of M s are equal to one.

At the centralized processing point, the observations from

the M APs can be pooled into the vector

y = M s ◦Gx+M i ◦Gx+ n (9)

= M s ◦ Ĝx
︸ ︷︷ ︸

signal

+(M s ◦ G̃+M i ◦G)x+ n
︸ ︷︷ ︸

noise + interference: v

, (10)

where x = (
√
p1s1, . . . ,

√
p
K
sK)T, with symbols sk having

unit power, while pk is the transmit power of GU k, ◦ denotes

Hadamard product, and n ∼ NC(0, σ
2
I). The noise-plus-

interference term satisfies Σ = E{vv∗} = D1 +D2 + σ2I ,

where

D1 = E

{(
M s ◦ G̃x

)(
M s ◦ G̃x

)∗
}

= diag

{
∑

k∈U1

ck,1pk, . . . ,
∑

k∈U1

ck,Mpk

}

, (11)

and

D2 = E

{(
M i ◦Gx

)(
M i ◦Gx

)∗
}

= diag







∑

k/∈U1

rk,1pk, . . . ,
∑

k/∈UM

rk,Mpk






, (12)

with Um = {k : [M s]m,k = 1 , k = 1, . . . ,K} the set of

GUs regarded as signal by the mth FBS.

III. CENTRALIZED CF NETWORK WITH

MMSE SUBSET RECEPTION

Let Fk = {m : [M s]m,k = 1 , m = 1, . . . ,M} be the

subset of FBSs involved in the reception of GU k. From the

rows of y whose indices are in Fk, we obtain the |Fk| × 1
vector

yk = M s
k ◦ Ĝkx+ vk, (13)

where

M s
k = (ms

k,1, . . . ,m
s
k,K) ∈ Z

|Fk|×K
2 , (14)

while Ĝk ∈ C
|Fk|×K and vk ∈ C

|Fk|×1. The MMSE

combiner associated with GU k, wk ∈ C
|Fk|×1, is [7]

wk =
((

M s
k ◦ Ĝk

)
P
(
M s

k ◦ Ĝk

)∗
+Σk

)−1

ĝkpk, (15)

where P = diag(p1, . . . , pK). In turn, ĝk contains the Fk
rows of the M -dimensional channel estimate of GU k, and

Σk is defined similarly. The SINR achieved by GU k is

SINRk = ĝ∗
k




∑

i6=k

(ms
k,i ◦ ĝi)(ms

k,i ◦ ĝi)∗pi +Σk





−1

ĝkpk,

(16)

with an ergodic spectral efficiency of
(

1− τ

τc

)

E{log2(1 + SINRk)}, (17)

where τc represents the coherence of the channel in symbols

and τ
τc

is hence the pilot overhead.



Proposition 1. For the MMSE subset combiner,

lim
K→∞

SINRk =
∑

m∈Fk

|ĝk,m|2
∑∞
i=1 ri,m pi − γk,m pk + σ2

pk.

Proof. The proof, omitted for the sake of brevity, hinges on

applying Tchebyshev’s theorem to (16).

The expectation of the SINR over the small-scale fading

yields the local-average SINR

lim
K→∞

E{SINRk} =
∑

m∈Fk

γk,m
∑∞
i=1 ri,m pi − γk,m pk + σ2

pk.

(18)

Proposition 2. For MMSE subset combining with K →∞,

E{SINRk} is a decreasing function of |Sk|.
Proof. Straightforward calculations show that E{SINRk} is

an increasing function of γk,m and, from (6), γk,m is a

decreasing function of |Sk|.
IV. PROBLEM FORMULATION

The main motivation of this work is to study the FBS

deployment in CF-UAV networks with E{SINRk} as the

metric to optimize. Defining the set of FBS locations by

Q = {qm form = 1, . . . ,M}, we can formulate the

maximization of the minimum local-average SINR as

max
Q

min
k

E{SINRk}, (19)

which is nonconvex. Capitalizing on Prop. 1, we study this

problem in the regime of large but finite K. To deal with

(19), different methods can be utilized to obtain solutions.

First, given (18), the gradient can be obtained. By virtue of

that, a gradient based (GB) algorithm can be implemented to

iteratively update the FBS locations. However, the noncon-

vexity of the problem may cause the GB method to meet the

convergence criteria at early stages, resulting in low quality

solutions. To circumvent this challenge, we combine it with

the simulated annealing (SA) technique [23], as discussed

next.

Given (18) and a large K, then, the optimization problem

boils down to

max
Q

min
k

∑

m∈Fk

γk,m
∑K
i=1 ri,m pi − γk,m pk + σ2

pk, (20)

where the optimization variables are subsumed within γk,m
and ri,m, with γk,m dependant on how pilot sequences are

assigned. Hence, the deployment is influenced by: geometric

parameters, pilot sequence assignment, and power allocation

(on both pilots and data).

From (20), the gradient w.r.t the FBS locations can be

derived. For ease of exposition, we proceed with the com-

putation of the derivative w.r.t the horizontal coordinate of

the mth FBS,

∂ E{SINRk}

∂xm

=

γ′

k,m

(

K
∑

i=1

ri,m pi + σ2

)

− γk,m

(

K
∑

i=1

r′i,m pi

)

(

K
∑

i=1

ri,m pi − γk,m pk + σ2

)2
pk,

(21)

where

γ′k,m =
∂γk,m
∂xm

(22)

=
∂γk,m
∂rk,m

∂rk,m
∂dk,m

∂dk,m
∂xm

+
∑

i∈Sk

i6=k

∂γk,m
∂ri,m

∂ri,m
∂di,m

∂di,m
∂xm

,

with

∂γk,m
∂rk,m

=
pt
kτrk,m

(
2
∑

i∈Sk
pt
iτri,m + 2σ2 − pt

kτrk,m
)

(∑

i∈Sk
pt
iτri,m + σ2

)2 ,

(23)

∂γk,m
∂ri,m

= −
pt
ip

t
kτ

2r2k,m
(∑

i∈Sk
ptiτri,m + σ2

)2 i 6= k, (24)

and

r′k,m =
∂rk,m
∂dk,m

∂dk,m
∂xm

(25)

= −2 (αm + 1)β0H
αm

dαm+κ+1
k,m

· ∂dk,m
∂xm

,

where
∂dk,m
xm

=
xm − xk
dk,m

. (26)

Plugging (23), (24), and (25) into (22), we obtain γ′k,m,

which, in conjunction with (25), yields the derivative w.r.t.

xm. Similarly, formulating the derivative w.r.t. ym, the overall

gradient is obtained with complexity O(K + |Sk|). Finally,

the GB updates for the max-min E{SINRk} problem are

q(j)
m ←− q(j)

m + ρ(j)∇E{SINR(j)
k }|qm=q

(j)
m
, (27)

where j is the GB iteration number and ρ(j) is a decreasing

function of j. Due to the nonconvexity of the problem, the

updates provided by (27) may quickly converge to local

solutions. Therefore, we combine it with the SA, which aims

to relocate the FBSs with the objective of further improving

min E{SINRk}. The core of the SA stage relies on low-SINR
users being given a higher weight and the FBS locations

being updated accordingly. We use a logarithmic scale, i.e.,

Lk = log2(C + E{SINRk}), where C is a positive constant

(C = 1 in our simulations). The main steps are

1) Create the weight vector a ∈ R
K×1 in which, with the

aim of increasing fairness, users with smaller SINRs

are given a higher weight. A possible formulation for

a is

ak =

∑K
i=1 Li
Lk

[

max
p

(∑K
s=1 Ls
Lp

)]−1

k = 1, . . . ,K.

2) Displace the FBSs in the direction of the GUs with

lower SINRs.

q(j)
m,new = q(j)

m +
∑

k∈Um

ak Ψ
(j)(wk − qm), (28)

where Ψ(j), defined in the next section, is a decreasing

function of j for convergence reasons. Note that FBSs



TABLE I: Simulation Parameters

Description Parameter Value

GU data power pk 100 mW

GU pilot power pt
k

100 mW

Path loss reference β0 -30 dB
Path loss exponent κ 2

Dense urban parameters A1, A2 0 , 6.4 dB
FBS altitude H 20 m

Noise power σ2 -120 dBm
Antenna beamwidth αm 4

Channel coherence (symbols) τc 1000

only move towards users they are providing service to,

i.e., users within Um.

3) If the update in (27) improves the cost function, the

solution is accepted. Else, we compute (28) and accept

it if the cost function increases. Otherwise, (28) is

accepted with probability exp
(
µnew−µold

T (j)

)
, where µold

and µnew are the minimum GU Lk before and after ap-

plying (28), respectively. Otherwise, a new neighboring

solution is generated from q
(j)
m,new ∼ N (q

(j)
m ,Ψ(j)I).

Additionally, we define T (j) as the temperature at

Iteration j as indicated in the SA literature [23].

Remark. For small K, the gradient becomes analytically

intractable. However, one can still apply the GB updates and

the SA, with E{SINRk} replaced by its sample mean.

V. NUMERICAL RESULTS

For the purpose of performance evaluation, we consider a

300m × 300m wrapped-around universe to avoid boundary

effects. Table I lists the parameters used in the simulations,

which are based on the CF and UAV literature [5], [14], [15].

Pilot sequences are randomly assigned, with an average reuse

factor of K/τ [24]. Unless otherwise specified, τ = 70, with a

7% pilot overhead. As far as M s is concerned, the [m, k] en-

try is 1 if dk,m ≤ Rmax for Rmax = 50m. The learning rate

of the GB algorithm is ρ(j) = 200 ·1.005−j while, for the SA

algorithm, T (j+1) = 100 ·0.7j and Ψ(j+1) = 0.0015 log(4+j)
log(2+j) .

(Changes in the learning rate or in the SA parameters would

only affect the speed of convergence.) Finally, the maximum

number of iterations for the algorithm is set to 1000.

Simulations are conducted for two different user position

distributions, namely square regular grid and Gaussian mix-

ture, denoted by RG and GM in our simulations, respectively.

In the latter, user positions are sampled from the mixture

f(x, y) =
1

4
N (m1, 35

2
I) +

3

4
N (m2, 50

2
I),

with m1 = [55 45] and m2 = [150 200]. Taking as bench-

mark a square regular grid FBS deployment, we define

Gain =

(

1− τ

τc

)

· mink SE
opt
k

mink SE
grid
k

, (29)

where SE
opt
k and SE

grid
k are the kth user spectral efficien-

cies after deployment optimization and when the FBSs are

arranged in a square regular grid, respectively. Although

the optimization is SINR-based, the benefits are quantified

Fig. 2: Local-average SINR using (16) and (18).

in terms of spectral efficiency. We measure the gain over

100 realizations and the results are presented using boxes

containing the median, 25th and 75th percentiles, and the

most extreme points.

We first measure the accuracy of (18) compared to the

sample mean (SM) of (16) with the aim of setting a proper

value for our large-K simulations. Fig. 2 compares the

aforementioned expressions for M = 49 under both user

distributions for K = 49 and K = 81. This observation

verifies that K = 81 makes (18) sufficiently accurate when

M = 49. Therefore, unless specified, we set M = 49 and

K = 81 in our large-K results.

As mentioned, the performance is influenced by geometry-

based parameters, pilot sequence assignment, and power

allocation. As the latter is kept homogeneous for all GUs,

we focus on the other two. Especially, to understand the

impact of pilot contamination and the importance of the FBS

optimization even if users conform a square regular grid,

we include Figs. 3a and 3b. To create meaningful surface

representations, and only for this case, we use M = 400 and

K = 625, which gives a similar M/K per time-frequency re-

source as the one used throughout this work. Fig. 3a presents

E{SINR} for each GU when there is no pilot contamination,

i.e., for τ ≥ K. Given the symmetry of the problem, such a

deployment is optimal. However, the case of practical interest

includes pilot contamination, i.e., τ = 300 < K, whose

E{SINR} is presented in Fig. 3b. The values are lower

compared to Fig. 3a and the symmetry is broken, such that a

reallocation of the UAVs is able to increase min E{SINR}.
Hence, even for homogeneous user distributions, there is a

deployment gain because of pilot contamination. There is a

further gain associated with geometry-based parameters, such

as the GU-FBS distances or how M s is generated. To quantify

these gains, we subsequently provide extensive results.

Figs. 4a and 4b depict the gain for different values of

τ for RG and GM user distributions, respectively. We also



(a) (b)

Fig. 3: E{SINR} when the user distribution is RG (a) without

pilot contamination and (b) with pilot contamination.

include the evolution of the minimum local-average spectral

efficiency before and after optimization, denoted by SEgrid

and SEopt, respectively. Finally, to focus on the gain induced

by pilot contamination, we measure it over the same GU

locations only varying the pilot assignment between realiza-

tions. Clearly, the gain decreases as more pilots are available,

i.e., larger τ . This is mainly a consequence of Prop. 2:

while having more pilots results in better local-average SINR,

and thus higher spectral efficiency, it is more challenging to

improve them via optimization. In fact, for the limiting case,

i.e., τ = K, the gains in Figs. 4a and 4b originate only

from the geometry of the scenario. While for RG there is an

average gain at 35% associated to the geometry, for the GM

case it increases by a factor of 2.5 given the irregular user

distribution, and with the additional pilot gain it achieves a

maximum of 710%.

In Figs. 5a and 5b, we include the variation of the gain

over M , for a fixed τ = 70 and K = 81. For both user

distributions, the following conclusion can be extracted: while

increasing M results in higher spectral efficiency, the gain

tends to decrease, as it is more challenging to improve the

FBS deployment. In the limiting case, M = K, the gain in the

RG case would be one given the symmetry of the problem.

However, as depicted in Fig. 5b, for a non-uniform user

distribution, the gain remains around 200% as more UAVs

can adapt their deployment to the irregularities in the user

distribution.

Finally, in Fig. 6, we include the average gain of our

method when applied to smaller networks with M = 25,

τ = 70 and considering Rmax = 50m and Rmax = 200m.

As K < τ , there is no pilot contamination and therefore

the gains originate from the geometric setup of the problem.

It is shown that, the more users, the higher the gains. The

gains are more pronounced for the GM case, in line with the

large-K figures. Finally, considering a smaller Rmax results

in higher gains as the spectral efficiency is lower, hence easier

to improve upon.

VI. SUMMARY

This paper has investigated the FBS deployment problem in

CF networks with a realistic system model. We have formu-

lated a max-min E{SINRk} optimization problem, which is

(a)

(b)

Fig. 4: Gain vs τ for K = 81 : (a) RG, (b) GM.

nonconvex and tackled it by means of various algorithms that

markedly improve the min-SINR, and therefore the minimum

individual spectral efficiency.
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