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Abstract—This paper tackles the problem of multiple-
input multiple-output communication with 1-bit digital-
to-analog and analog-to-digital converters. With the
information-theoretic capacity as benchmark, the comple-
mentary strategies of beamforming and equiprobable sig-
naling are contrasted in the regimes of operational interest.
Line-of-sight settings under both spherical and planar wave-
fronts are considered, respectively representative of short
and long transmission ranges at mmWave and terahertz
frequencies. A judicious combination of beamforming and
equiprobable signaling is shown to operate within a modest
gap from capacity.

I. INTRODUCTION

The next frontier in the quest for fresh spectrum over
which to communicate wirelessly is the terahertz band,
broadly defined as 100 GHz–10 THz. Although there
are reasons why this band remains largely unexplored,
the obstacles in terms of signal generation and detection
look increasingly surmountable [1]. Because of the lack
of diffraction, multipath propagation is limited and the
communication is predominantly short-range, but that is
compatible with a host of emerging applications.

A major challenge to ultrabroadband communication at
terahertz frequencies is the power consumption associated
with high-resolution digital-to-analog (DAC) and analog-
to-digital (ADC) conversion. Precisely:
• The high-resolution DACs that go hand in hand

with rich constellations force the transmit power am-
plifiers into exceedingly linear regimes where their
efficiency is poor.

• The ADC power consumption at the receiver grows
linearly with the bandwidth and exponentially with
the resolution in bits [2]. Multiple watts might be
required for 10-12 bits of resolution over bandwidths
beyond 1 GHz.

Since both these aspects stem directly from the resolu-
tion of the converters, the natural roundabout is to lower
such resolution and resort to simpler constellations. Taken
to the limit, this leads to 1-bit DACs and ADCs, which
drastically curb the power consumption and further enable
dispensing with automatic gain control at the receiver.

The downside of 1-bit transceivers is a highly nonlinear
behavior that severely distorts the signals. There is exten-
sive literature on transmission strategies and performance
with 1-bit DACs or ADCs (see [3]–[8] and references
therein), and a smaller but growing body of work that
considers 1-bit converters at both ends [9]–[18].

Because of the extremely high omnidirectional pathloss
at terahertz frequencies, antenna arrays are instrumen-
tal, yet their usage with 1-bit converters is markedly

different than with full-resolution converters. With the
1-bit multiple-input multiple-output (MIMO) capacity as
benchmark, this paper provide characterizations of the per-
formance of beamforming and equiprobable signaling, two
transmission strategies that are information-theoretically
motivated and complementary. It is shown how a judicious
combination of these strategies suffices to operate within a
modest gap from the 1-bit capacity in two channels of high
relevance, side-stepping the need for general precoding
solutions. Additional results reinforcing this observation in
other channel types, as well as the proofs of the technical
results, can be found in [19].

II. SIGNAL AND CHANNEL MODELS

A. Signal Model
Consider a transmitter with Nt antennas and 1-bit DACs

per complex dimension. The receiver, with Nr antennas
and a 1-bit ADC per complex dimension, observes

y = sgn

(√
SNR

2Nt
Hx + z

)
(1)

where the sign function is applied separately to the real
and imaginary parts of each entry, such that yn ∈ {±1±j},
while H is the Nr×Nt channel matrix, z ∼ NC(0, I) is
the noise, and SNR is the signal-to-noise ratio per receive
antenna. Each entry of x also takes the values ±1± j.

For a certain H , (1) embodies a discrete memoryless
channel with 4Nt × 4Nr transition probabilities given by

py|x =

Nr−1∏
n=0

p<{yn}|x p={yn}|x, (2)

where the factorization follows from the noise indepen-
dence per receive antenna and complex dimension. Each
such noise component has variance 1/2, hence

p<{yn}|x(1|x) = Pr

[√
SNR

2Nt
<{hnx + zn} > 0

]
(3)

= Q

(
−
√

SNR

Nt
<{hnx}

)
(4)

where hn is the nth row of H and Q(·) is the Gaussian
Q-function. Similarly,

p<{yn}|x(−1|x) = Q

(√
SNR

Nt
<{hnx}

)
. (5)

From (4) and (5),

p<{yn}|x(<{yn}|x) = Q

(
−<{yn}

√
SNR

Nt
<{hnx}

)
(6)



and, mirroring it, finally

py|x(y|x) =

Nr−1∏
n=0

Q

(
−<{yn}

√
SNR

Nt
<{hnx}

)

·Q

(
−={yn}

√
SNR

Nt
={hnx}

)
. (7)

The transition probabilities correspond to (7) evaluated
for the 4Nr possible values of y and the 4Nt values of x.

The 4Nt transmit vectors x can be partitioned into
4Nt−1 quartets, each containing four vectors and being
invariant under a 90◦ phase rotation of all the entries: from
any vector in the quartet, the other three are obtained by
repeatedly multiplying by j. Since a 90◦ phase rotation
of x propagates as a 90◦ phase rotation of Hx, and the
added noise is circularly symmetric, the four vectors mak-
ing up each transmit quartet are statistically equivalent and
they should thus have the same transmission probability
so as to convey the maximum amount of information.

Likewise, the set of 4Nr possible vectors y can be
partitioned into 4Nr−1 quartets, and the four vectors y
within each received quartet are equiprobable.

B. Channel Model

If the channel is stable over each codeword, then every
realization of H has operational significance, and SNR is
well-defined under the normalization tr(HH∗) = NtNr.
Two such channel types are specifically considered.

a) Line-of-Sight (LOS) with Spherical Wavefronts:
LOS is the chief propagation mechanism at mmWave and
terahertz frequencies, and the spherical nature of the wave-
fronts is relevant for large arrays and short transmission
ranges. For uniform linear arrays (ULAs) [20],

H = DrxH̃Dtx (8)

where Drx and Drx are diagonal matrices with entries

[Drx]n,n = e
−jπ

[
2n
λ
dr sinθr cosφ+

n2

λD d
2
r (1−sin2θr cos

2φ)
]

[Dtx]m,m = e
−jπ

[
2m
λ
dt sinθt+

m2

λD d
2
t

]
(9)

and with D the range, λ the wavelength, dt and dr the
antenna spacings at transmitter and receiver, θt and θr the
transmitter and receiver elevations, and φ their relative
azimuth angle. In turn, H̃ is the Vandermonde matrix

H̃ =


ej2πη

0×0
Nmax · · · ej2πη

(Nt−1)×0
Nmax

...
. . .

...

ej2πη
0×(Nr−1)
Nmax · · · ej2πη

(Nt−1)×(Nr−1)
Nmax

 (10)

where Nmax = max(Nt, Nr) while

η =
(dr cos θr)(dt cos θt)Nmax

λD
(11)

concisely describes any LOS setting with ULAs.
Uniform rectangular arrays can be expressed as the

Kronecker product of ULAs, and expressions deriving
from (8) emerge [21].

b) LOS with Planar Wavefronts: The planar wave-
front counterpart to (8) is obtained by letting D → ∞,
whereby the channel becomes rank-1.

III. 1-BIT CAPACITY

Denote by p1, . . . , p4Nt−1 the activation probabilities
of the transmit quartets, such that

∑
k pk = 1 and

px(xk) = pk/4 with xk any of the vectors in the kth
quartet. Letting H(·) indicate entropy, and with all the
probabilities conditioned on H , the mutual information is

I(SNR,H) = H(y)−H(y|x) (12)

= 4

4Nr−1∑
`=1

py(y`) log2

1

py(y`)
−H(y|x) (13)

where y` is any vector in the `th receive quartet and

py(y) =

4Nt−1∑
k=1

pk
4

3∑
i=0

py|x(y|jixk) (14)

with py|x depending on SNR and H as per (7). Moreover,

py(y) =
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k=1
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and, because of the factorization of py|x in (7),

H(y|x) =

Nr−1∑
n=0

(
H(<{yn}|x) +H(={yn}|x)

)
(16)

=

4Nt−1∑
k=1
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4
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=
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whereHb(p) = −p log2 p−(1−p) log2(1−p) is the binary
entropy function. Since changing i merely flips the sign of
some of the Q-funcion arguments, and Q(−ξ) = 1−Q(ξ)
such that Hb(Q(−ξ)) = Hb(Q(ξ)), it follows that

H(y|x) =

4Nt−1∑
k=1

pk

Nr−1∑
n=0

[
Hb

(
Q

(
−
√
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<{hnxk}

))

+Hb

(
Q
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−
√
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Nt
={hnxk}

))]
. (19)

The union of (13), (15), and (19) gives I(SNR,H),
whose evaluation involves O(4Nt+Nr−2) terms; this is
prohibitive even for modest Nt and Nr, hence the interest
in analytical characterizations. The 1-bit capacity is

C(SNR,H) = max
{pk}:

∑
k pk=1

I(SNR,H) (20)

solvable with convex optimization tools or, alternatively,
with the Blahut-Arimoto algorithm [?, ch. 13].

The 1-bit capacity exhibits three distinct regimes:
• Low SNR. This is a key regime at terahertz frequen-

cies, given the difficulty in producing strong signals,
the high propagation losses, and the noise bandwidth.

• Intermediate SNR. Here, the spectral efficiency im-
proves sustainedly with the SNR.

• High SNR. This is a regime of diminishing returns,
once the capacity nears 2 min(Nt, Nr).

In the sequel we concentrate on the two leading
regimes. The high-SNR regime, in contrast, is undesirable.

A. Low SNR

The low-SNR behavior is most conveniently examined
with the mutual information expressed as function of the
normalized energy per bit at the receiver,

Eb

N0
=

SNR

I(SNR)
. (21)

The mutual information is positive beyond [22, sec. 4.2]

Eb

N0 min

= lim
SNR→0

SNR

I(SNR)
=

1

İ(0)
(22)

=
πNt

tr(HΣxH∗) log2 e
(23)

where Σx = E
[
xx∗

]
=
∑
k pk xkx

∗
k, with (23) descend-

ing from (13), (15), and (19).

IV. TRANSMIT BEAMFORMING

Transmit beamforming corresponds to Σx being rank-1,
i.e., to x being drawn from a single quartet, with such
quartet generally dependent on H .

A. Low SNR

Here, transmit beamforming is not only conceptually
appealing, but optimum. Indeed, (23) can be rewritten as

Eb

N0 min

=
πNt∑

k pk ‖Hxk‖2 log2 e
, (24)

which is maximized by assigning probability 1 to the
quartet k? = arg max ‖Hxk‖2. Therefore, it is optimum
to beamform, and the optimum beamforming quartet is
the one maximizing the received power. The task is then
to determine k? from within the 4Nt−1 possible quartets.

For Nt = 1, there is no need to optimize over k and

Eb

N0 min

=
π

2Nr log2 e
, (25)

which amounts to 0.37 dB for Nr = 1.
For Nt > 1, it is useful to recognize that the choices

for x that are bound to yield high values for ‖Hx‖2
are those that project maximally on the dimension of
H that offers the largest gain, namely the maximum-
eigenvalue eigenvector of H∗H . This, in turn, requires
that x mimics, as best as possible, the structure of that
eigenvector; since the magnitude of the entries of x is
fixed, this mimicking ought to be in terms of phases only.
Formalizing this intuition, it is possible to circumvent
the need to exhaustively search the entire field of 4Nt−1

possibilities and conveniently identify a subset of only
Nt quartet candidates that is sure to contain the one
best aligning with the maximum-eigenvalue eigenvector
of H∗H , denoted henceforth by v0. Precisely, if we let
ϕm = ∠(v0,m)+ε for m = 0, . . . , Nt−1, the Nt quartets
in the subset can be determined as [19, app. A]

xk = sgn
(
ejϕk−1v0

)
k = 1, . . . , Nt (26)

where ε is a small quantity, positive or negative. If H is
rank-1, then this subset is sure to contain the optimum
xk? [15]; if the rank is higher, then optimality is not
guaranteed, but the best value in the above subset is bound
to yield excellent performance.

As of the Eb

N0 min
achieved by xk? , its explicit evaluation

is complicated, yet it can be shown to satisfy [19, app. A]

π

2λ0 log2 e
≤ Eb

N0 min

≤ π3Nt

16λ0‖v0‖21 log2 e
(27)

where λ0 is the maximum eigenvalue of H∗H while ‖·‖1
denotes L1 norm.

B. Intermediate SNR

The low-SNR linearity of the mutual information in
the received power is the root cause of the optimality of
power-based beamforming in that regime. The orientation
on the complex plane of the received signals is immate-
rial; a rotation merely shifts power from the real to the
imaginary part, or vice versa. Likewise, the power split
among receive antennas is immaterial to the low-SNR
mutual information.

At higher SNRs, the linearity breaks down and the
mutual information becomes a more intricate function
of Hx, such that proper signal orientations and power
balances become important, to keep hnx away from the
ADC quantization boundaries for n = 0, . . . , Nr−1. This
has a dual consequence:
• Transmit beamforming ceases to be generally opti-

mum, even if the channel is rank-1.
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(b) hx`

Fig. 1: Complex plane representation of the four values of hx for a
given h and a given quartet, with the ADC quantization boundaries
indicated by dashed lines. Left-hand side, for xk , which has a larger
magnitude but worse orientation. Right-hand side, for x`, which has
a smaller magnitude but better orientation. On this channel, quartet k
yields a higher mutual at low SNR while quartet ` yields a higher mutual
information beyond the low-SNR regime.

• Even within the confines of beamforming, solutions
not based on maximizing power are more satisfying.

As exemplified in Fig. 1 for Nr = 1, a beamforming
quartet with a better complex-plane disposition at the
receiver may be preferable to one yielding a larger magni-
tude. This is because, after a 1-bit ADC, only 90◦ rotations
and no scalings are possible. The best beamforming quar-
tet must simultaneously ensure large real and imaginary
parts for hnx in a balanced fashion for n = 0, . . . , Nr−1,
and the task of identifying this quartet is a fitting one for
learning algorithms [23].

V. EQUIPROBABLE SIGNALING

The complementary strategy to beamforming is to
activate multiple quartets, increasing the rank of Σx.
Ultimately, all quartets can be activated equiprobably, such
that Σx = 2I . This renders the signals IID across the
transmit antennas, i.e., pure spatial multiplexing.

A. Low SNR
With equiprobable signaling, (23) gives

Eb

N0 min

=
π

2Nr log2 e
(28)

and, combining (27) and (28), the low-SNR advantage
of optimum beamforming over equiprobable signaling,
denoted by ∆BF, is tightly bounded as

8λ0‖v0‖21
π2NtNr

≤ ∆BF ≤
λ0
Nr
. (29)

Thus, the low-SNR advantage of beamforming is essen-
tially determined by the maximum eigenvalue of H∗H .
The advantage is largest in rank-1 channels, and minimal
if all eigenvalues are equal.

B. Intermediate SNR
Beamforming is decidedly suboptimum beyond low

SNRs, and activating multiple quartets becomes instru-
mental to surpass the 2-b/s/Hz mark. This is the case even
in rank-1 channels, where the activation of multiple quar-
tets allows producing richer signals; this can be seen as
the 1-bit counterpart to higher-order constellations. And,
given how the curse of dimensionality afflicts the compu-
tation of the optimum quartet probabilities, equiprobable
signaling is a very enticing way of going about this.

-14 -12 -10 -8 -6 -4 -2 0 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C
ap

ac
ity

 (b
/s

/H
z)

Eb

N0
(dB)

Nt = Nr = 4

Nt = Nr = 2

Nt = Nr = 1

0.37 dB

5.55 dB5.94 dB

Fig. 2: Capacity as a function of Eb/N0 for Nt = Nr = 1, Nt =
Nr = 2, and Nt = Nr = 4, in a planar-wavefront LOS channel with
half-wavelength antenna spacings, θt = 0, θr = π/6, and φ = π/4.

VI. CHANNELS OF INTEREST

A. LOS with Planar Wavefronts

This channel is rank-1, hence the optimum Eb

N0 min
can

be achieved with equality by the best beamforming quartet
in subset (26). More conveniently for our purposes here,
we can rewrite (8) as H =

√
NtNruv∗ where

un =
1√
Nr

e−jπ
2n
λ dr sinθr cosφ (30)

vm =
1√
Nt

e−jπ
2m
λ dt sinθt . (31)

Irrespective of the array orientations, λ0 = NtNr and
‖v0‖21 = Nt such that (27) reverts to

π

2NtNr log2 e
≤ Eb

N0 min

≤ π3

16NtNr log2 e
, (32)

which depends symmetrically on Nt and Nr. The sig-
nificance of Eb

N0 min
as the key measure of the low-

SNR performance can be appreciated in Fig. 2, which
depicts the low-SNR capacity as a function of Eb

N0
for

Nt = Nr = 1, 2, and 4 in an exemplary LOS setting.
Adding antennas essentially displaces the capacity by the
amount by which Eb

N0 min
changes.

Shown in Fig. 3 is how Eb

N0 min
improves with the

number of antennas (Nt = Nr) for the same setting.
Also shown are the values for equiprobable signaling,
decidedly undesirable in this case as per (29), The low-
SNR advantage of beamforming accrues steadily with
the numbers of antennas and the bounds in (27) tightly
bracket the optimum Eb

N0 min
. The gap to full-resolution

beamforming is small.
Moving up to intermediate SNRs, the beamforming and

equiprobable-signaling performance on another setting is
presented in Fig. 4. Also included is the actual capacity
with p1, . . . , p4Nt−1 optimized via Blahut-Arimoto. Up to
when the 2-b/s/Hz ceiling is approached, beamforming
performs splendidly. Past that level, and no matter the
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rank-1 nature of the channel, equiprobable signaling is
highly superior, tracking the capacity to within a roughly
constant shortfall.

B. LOS with Spherical Wavefronts

The scope of channels in this class is very large,
depending on the array topologies and orientations; for
concreteness, we focus on ULAs and draw insights whose
generalization would be welcome follow-up work. A key
property of ULA-spawned channels in this class is [20]

H∗H ≈ Nmax

η
D∗txF diag(1, . . . , 1︸ ︷︷ ︸

ηNmin

, 0, . . . , 0)F ∗Dtx

where the approximation sharpens with the numbers of
antennas while F is a unitary Fourier matrix, Dtx and η
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Fig. 5: Spectral efficiency as a function of Eb/N0 for Nt = Nr = 4 and
Nt = Nr = 6 in an LOS channel with η = 1. In solid, beamforming
performance; in dashed, capacity with equiprobable signaling.

are as introduced in Sec. II-B, and Nmin = min(Nt, Nr).
Thus, λ0 ≈ Nmax/η and ‖v0‖21 ≈ Nt. By specializing
(27), the Eb

N0 min
attained by beamforming is seen to satisfy

πη

2Nmax log2 e
.
Eb

N0 min

.
π3η

16Nmax log2 e
, (33)

which indicates that a smaller η is preferable at low SNR,
meaning antennas as tightly spaced as possible and array
orientations as endfire as possible: wavefront curvatures
trim the beamforming gains, and reducing η mitigates
the extent of such curvatures. With growing η, the low-
SNR performance degrades, but beamforming retains an
edge over equiprobable signaling for η < 1 or Nt > Nr.
Alternatively, for η = 1 and Nt = Nr, (33) is no better
than the equiprobable-signaling Eb

N0 min
in (28). In fact,

for this important configuration whose eigenvalues are
equal [24], any transmission strategy achieves this Eb

N0 min
;

indeed, using H∗H = NrI and ‖xk‖2 = 2Nt in (24),
(28) emerges irrespective of p1, . . . , p4Nt−1.

At intermediate SNRs, the full-resolution wisdom is
that the performance depends only on η and it improves
monotomically with η up to η = 1, where capacity is
achieved by IID signaling. These insights, underpinned
by the approximate equality of the ηNmin nonzero eigen-
values of H∗H , cease to hold in the 1-bit realm due
to the transmitter’s inability of accessing those singular
values via precoding. Indeed, when the only ability is to
manipulate the quartet probabilities (see Fig. 6):

• The performance does not depend only on η, but
further on θt, θr, φ, D, and dt and dr.

• The optimum configuration need not correspond to
η = 1.

The main takeaway for our purpose, though, is that
equiprobable signaling closely tracks the capacity.
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Fig. 6: Main plot: spectral efficiency as a function of SNR for Nt =
Nr = 4, both with optimized (solid lines) and uniform (dashed lines)
quartet probabilities. Inset: spectral efficiency as a function of η for
SNR = 5 dB. The channel is LOS and the arrays are broadside, dt = dr.

VII. CONCLUSION

The computation of the 1-bit capacity becomes quickly
unwieldy with the number of antennas and the derivation
of general 1-bit precoding solutions is a formidable task.
Fortunately, such general precoding can be skirted via
a judicious switching of beamforming and equiprobable
signaling, with the added benefits that these strategies
are amenable to analytical characterizations and that their
requirements in terms of channel-state information at the
transmitter are minimal: log2 4Nt−1 = 4 (Nt − 1) bits for
beamforming, none for equiprobable signaling.

Although the transition from beamforming to equiprob-
able signaling could be finessed by progressively activat-
ing quartets as the SNR grows, a direct switching at some
appropriate point suffices to operate within a few dB of
capacity at both low and intermediate SNRs.

Of much interest would be to assess the impact of
channel estimation at the receiver, by extending existing
results for full-resolution DACs and 1-bit ADCs [8], [25].
Also pertinent would be to establish the bandwidth over
which a frequency-flat representation suffices for each
channel model, and to extend the analyses to account for
the intersymbol interference caused by spatial widening,
i.e., by the distinct delays between the various transmit
and receive antennas.
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