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Simple Summary: Biological age (B-age), or the degree of aging of an individual, can differ from
chronological age. B-age is affected by epigenetics, and we calculate it based on the degree of
methylation of multiple specific regions of human DNA. For previous research, we know that
patients with ischemic stroke are biologically older than healthy individuals without stroke. On the
other hand, white matter hyperintensities (WMH) observed in brain magnetic resonance images are
an unspecific sign that has been associated with brain aging and also with the increased risk of stroke
or dementia. It is unknown whether epigenetic biological age is associated with this sign of brain
aging. In this manuscript, we interrogated the association between B-age and WMH volume and
found that patients with high WMH burden are biologically older. Moreover, we found that 42.7% of
the effects of chronological age on WMH can be explained by B-age, suggesting a role of epigenetics
in WMH pathophysiology. Our study also generates a potential number of questions that might be
addressed in further articles, such as whether this relationship depends on WMH location.

Abstract: In this manuscript we studied the relationship between WMH and biological age (B-age)
in patients with acute stroke. We included in this study 247 patients with acute stroke recruited
at Hospital del Mar having both epigenetic (DNA methylation) and magnetic resonance imaging
data. WMH were measured using a semi-automated method. B-age was calculated using two widely
used methods: the Hannum and Horvath formulas. We used multiple linear regression models to
interrogate the role of B-age on WMH volume after adjusting for chronological age (C-age) and other
covariables. Average C-age of the sample was 68.4 (±11.8) and we observed a relatively high median
WMH volume (median = 8.8 cm3, Q1–Q3 = 4.05–18.8). After adjusting for potential confounders,
we observed a significant effect of B-ageHannum on WMH volume (βHannum = 0.023, p-value = 0.029)
independently of C-age, which remained significant (βC-age = 0.021, p-value = 0.036). Finally, we
performed a mediation analysis, which allowed us to discover that 42.7% of the effect of C-age
on WMH is mediated by B-ageHannum. On the other hand, B-ageHoarvath showed no significant
associations with WMH after being adjusted for C-age. In conclusion, we show for the first time
that biological age, measured through DNA methylation, contributes substantially to explain WMH
volumetric burden irrespective of chronological age.

Keywords: white matter hyperintensities; cerebral small vessel disease; epigenetics; DNA methyla-
tion; biological age; epigenetic clock

Biology 2023, 12, 33. https://doi.org/10.3390/biology12010033 https://www.mdpi.com/journal/biology

https://doi.org/10.3390/biology12010033
https://doi.org/10.3390/biology12010033
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0002-9949-1393
https://orcid.org/0000-0002-9147-875X
https://orcid.org/0000-0002-1375-5950
https://orcid.org/0000-0001-8621-1420
https://orcid.org/0000-0002-5635-273X
https://orcid.org/0000-0003-3948-3372
https://orcid.org/0000-0003-0926-681X
https://orcid.org/0000-0001-5992-2606
https://orcid.org/0000-0002-2623-6199
https://doi.org/10.3390/biology12010033
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology12010033?type=check_update&version=1


Biology 2023, 12, 33 2 of 11

1. Introduction

White matter hyperintensities (WMH) are considered the main hallmark of cerebral
small vessel disease (cSVD), which encompasses all those vascular risk factors that affect
the small vessels of the brain [1]. WMH are a common radiological marker observed
in older individuals, having an estimated prevalence at any degree ranging from 39 to
96% [2]. Exposition to risk factors, especially hypertension, conditions the progression of
WMH, which are estimated to increase in a rate between 0.2 and 1.2 cm3/year and are
even higher in patients with ischemic stroke or with vascular risk factors [3]. Even being
subclinical, this progression is associated with incident stroke, cognitive impairment and
gait disturbances [4].

Although we know the consequences of WMH, their pathophysiology is not fully
understood. Clinical studies have shed light on which clinical variables relate to increased
WMH burden, being age and high blood pressure; factors that have been consistently
associated with WMH [5]. Furthermore, several studies have explored whether blood
biomarkers that were altered in stroke patients also correlated with the WMH burden [6,7].
However, most groups have focused on proteomic studies [7], while epigenetics of WMH
have received less attention. Epigenetics (the regulation of gene expression without altering
the DNA sequence) might provide insight on which pathological mechanisms trigger WMH
accumulation.

DNA methylation (DNAm) is an epigenetic mechanism regulating high-order DNA
structure and gene expression by the addition of a methyl group to the five-carbon position
of cytosine in a cytosine–phosphate–guanine (CpG) context [8]. It has been widely studied
in aging research, given that DNAm varies across the lifespan. This variation has been
used to create estimators of chronological age (C-age) through multiple CpGs across
the genome [9,10]. We usually refer to this calculation as biological age (B-age), and
the mismatch between C-age and B-age can be considered as a surrogate marker of age
acceleration. We previously reported that patients with stroke are biologically older than
patients without [11]. Moreover, we also proved that B-age is a better predictor than C-age
of stroke outcome, mortality or recurrence [12–14]. However, less is known on the role of
B-age in subclinical cerebrovascular disease and WMH burden.

In this study we aimed to interrogate the association between WMH and B-age in
patients with acute stroke admitted at the Hospital del Mar. Additionally, we tested whether
B-age is a better predictor of WMH burden than C-age.

2. Methods
2.1. Participants and Setting

This study is nested in the BasicMar cohort, which is an ongoing observational
and prospective register of patients diagnosed with acute stroke at the Hospital del Mar
(Barcelona) that includes genetic and neuroimaging databanks [15].

For this study we used cross-sectional data of patients recruited from 2009 to 2013
having the following inclusion criteria: (1) diagnosis of ischemic stroke (not infrequent
causes), (2) availability of genetic and DNAm data [15,16], (3) MRI examination including at
least fluid attenuated inversion recovery (FLAIR) and diffusion-weighted images (DWI) and
(4) not having other neurological or genetic diseases or toxic habits that could confound the
evaluation of WMH (e.g., multiple sclerosis). A total of 247 individuals met these criteria.

This study was approved by the institutional review board at the Hospital del Mar
and all patients, or legal representatives, provided a written informed consent prior to the
study enrollment. This study was in agreement with the Helsinki Declaration.

2.2. DNA Methylation Array

DNA was isolated from whole peripheral blood collected in 10 mL EDTA tubes using
the Chemagic Magnetic Separation Module I system (Chemagen). DNA extractions were
obtained at the same time after the acute event and stored at minus 20 ◦C. DNA concentra-
tions and quality were checked with PicoGreen assay and agarose gels, respectively.
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Genome-wide DNA methylation data were obtained in three technical runs corre-
sponding to three independent studies. The first two batches (N = 428 and N = 232) were
analyzed using the Human Methylation 450 K Beadchip with 485,577 CpG sites (CpGs)
and the third (N = 379) with the Infinium Methylation EPIC Beadchip consisting of 865,918
probes (Illumina Netherlands, Eindhoven, The Nethterlands). We followed the manu-
facturer’s protocol in both cases. The arrays corresponding to these three batches were
scanned with the Illumina HiScan SQ scanner at Progenika Biopharma in Bizkaia, Spain.

Data were then processed using standard pipelines [17]. Briefly, intensity data files
were loaded using the R-library Minfi. Then, we calculated β values, which range from 0
(completely unmethylated) to 1 (completely methylated) [18]. Regarding sample QC, we
removed those samples showing detection rates < 98% or those presenting a sex mismatch.
For CpGs, we excluded those probes having detection p-values > 0.05 in at least 1% of
samples. Additionally, those CpGs having a count lower than 3 in at least 5% of samples
were filtered as well. We subsequently normalized the filtered β values using the beta-
mixture quantile normalization method [19] and corrected the batch effect with the sva
library [20]. Finally, we calculated the white blood cell counts from DNAm data using the
Houseman algorithm [21].

2.3. Biological Age Estimation

B-age was calculated using two different well-described methods: the Hannum and
Horvath formulas [9,10]. Hannum’s method uses the methylation of 71 CpGs to predict,
while Horvath’s method uses 353. We lacked some of these probes either due to failed
quality controls or due to CpGs that were not included in the EPIC array (we had available
58/71 and 326/353 for Hannum and Horvath’s formulas, respectively). However, this
had a minimum effect in the B-age estimation, as shown in Figure 1, where we observe a
correlation between B-age estimations and C-age close to 0.8. Estimations of B-age using
only those CpGs included in the EPIC array have demonstrated to be equivalent and
accurate for the Hannum and Horvath estimators [22].
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Figure 1. Correlation between biological age estimations and chronological age. Lower and upper
panels represent the correlation between biological age estimations (Hannum and Horvath formulas)
and chronological age.The red-dashed lines in the lower panels represent the “perfect” concordance
between variables, while the blue straight lines correspond to the true association obtained from a
linear fit. Diagonal panels show the histograms from each variable. *** p-value < 0.001.
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2.4. Neuroimaging
2.4.1. Acquisition

MRI scans were acquired on 1.5-T or 3-T scanners (GE medical systems and Philips
Achieva 3.0T X-Series MRI System, respectively) as part of routine clinical practice. For this
study, we used clinical axial 2-D FLAIR-weighted images (fluid-attenuated inversion recov-
ery). In most cases, images were acquired on the 3-T scanner with TE/TR of 125/11,000 ms,
flip angle of 90 degrees, in-plane matrix size of 512 × 512 and consisted of 25 slices with a
slice thickness of 5 mm and 0.4 mm gap. Those images obtained on the 1.5-T had a TE/TR
of 156/10,000, flip angle of 90 degrees, in-plane matrix size of 512 × 512 and consisted of
20 slices with a slice thickness of 5 mm and 1.5 mm gap.

2.4.2. WMH Volume Quantification

WMH volume (WMHv) analysis was performed on axial FLAIR sequences using a
MRIcro software, according to previously validated methods [23]. FLAIR and the DWI
sequences were aligned to exclude acute and chronic infarcts. Using operator-mediated
quality assurances, overlapping regions of interest (ROIs) corresponding to WMH produced
the final maps for WMH volume calculation. To correct WMH volume for head size, we
used the sagittal midline cross-sectional intracranial area (ICA) as a surrogate measure of
the intracranial volume. WMH was normalized multiplying the measured WMH by the
ratio of the individual ICA to mean ICA of the whole cohort. Supratentorial WMH volume
was given as log-transformed. All supratentorial white matter and deep grey matter lesions
were included, with the exception of WMH corresponding to infarcts. To further avoid
confusion, we measured only WMH from the hemisphere unaffected by stroke and doubled
this value to calculate total WMHv. All readers have previously shown a high interrater
agreement for the determination of WMHv (free marginal k > 0.90). All MRI measurements
were performed by readers blinded to clinical data.

2.5. Clinical Variables

Trained neurologists collected the demographic information, as well as vascular risk
factors and clinical data, using standardized forms during the hospitalization. For this
study we used: age, sex, hypertension, diabetes mellitus, hyperlipidemia, body mass
index, current smoking habit, alcohol consumption, coronary disease, atrial fibrillation and
stroke etiology. Stroke subtypes were categorized according to the TOAST system into
large-artery atherosclerosis, cardioembolism, small-vessel occlusion (lacunar), stroke of
other determined etiology and stroke of undetermined etiology. However, no patient with
the subtype “other etiologies” was included in this study, as described in Section 2.1. The
complete protocol has been published elsewhere [24].

2.6. Statistics

Descriptive data were reported as means (±SD), medians (Q1–Q3) or frequencies (%),
according to the type and distribution of each variable. As WMHv presented a skewed
distribution, we used the loge transformation (log-WMHv).

First, we conducted a set of bivariate analyses aimed to find which variables were
statistically associated with log-WMHv. Pearson’s and Spearman correlation coefficients, t-
or anova tests were used appropriately to this aim, according to each case.

We then constructed general linear models aimed to test the relationship between log-
WMHv and B-age, calculated both with Hannum’s and Horvath’s formulas, independently
of C-age and other covariables. To that aim, we constructed three separate models for
B-ageHannum and B-ageHorvath. Model 1 was adjusted for C-age and hypertension. Model
2 was additionally adjusted for those variables significantly associated with WMH in the
bivariate analyses or which have been described to have an effect on WMH in the previous
literature [25]. Thus, we adjusted for sex, diabetes, hypercholesterolemia, smoking habit,
alcohol consumption, stroke etiology and body mass index. Model 3 was Model 2 plus
adjustment for principal components summarizing white cell count estimates, which might
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influence the methylation signal [21]. We used principal components, because white cell
counts are highly correlated and might be a source of concerning multicollinearity and
bias. Principal component analysis was conducted using the correlation matrix of CD8T-,
CD4T-, NK-, monocyte- and granulocyte-cell estimates (we excluded the estimate showing
the lower cell proportion in the sample: B-cell estimates). To extract the best number of
variables we used the parallel analysis algorithm, which compares the scree plots from
actual and simulated data (95% percentile of simulated eigen values) [26]. Finally, variables
from Model 3 were selected using a forward stepwise algorithm based on the Aikake
index criterion (AIC). In this last model, B-ageHannum and B-ageHorvath were introduced
together in the scope model in order to find which of these variables had a stronger effect on
WMH. All statistical assumptions were checked and met. Concerning multicollinearity was
checked by calculating variance inflation factors (VIF) and tolerance (1/VIF) measurements.
Presence of influential cases was checked by calculating Cook’s distance.

Finally, we conducted a mediation analysis to understand the inter-relationships
between C-age, B-age and WMH. Briefly, a mediation analysis tested the hypothesis of
whether the effect of an independent variable (C-age) on the dependent variable (WMHv)
is partially or totally explained by a third variable (B-age, DNAm). Here, we used the
causal steps approach, where there must be a direct effect between the independent variable
(C-age) and the outcome (WMHv), an effect between the independent variable and the me-
diator (B-age) as well as an adjusted effect between the mediator and the outcome [27]. The
confidence interval of the mediated effect was obtained after 1000 bootstrapped simulations
and it corresponded to the 2.5 and 97.5 percentiles of this bootstrapped distribution.

3. Results
3.1. Principal Characteristics of the Cohort

Summary statistics from our sample are presented in Table 1. As expected, we observed
a relatively high average WMHv in the sample (median = 8.8 cm3, Q1–Q3 = 4.05–18.8).

Table 1. Data are presented as frequencies and percentages or mean and standard deviations.

Principal Characteristics of the Sample (N = 247)

Variable Mean (SD)/N(%)

Age, years 68.4 (11.8)
Sex, male 155 (62.8%)
Smoking habit, yes 85 (34.4%)
Alcohol consumption 67 (27.1%)
Hypertension 192 (77.7%)
Diabetes 103 (41.7%)
Dyslipidemia 149 (60.3%)
Body mass index

Normal, <25 79 (34.1%)
Overweight, 25 to 30 98 (42.2%)
Obesity, ≥30 55 (23.7%)

Atrial fibrillation 65 (26.3%)
Previous myocardial infarction 22 (8.94%)
TOAST, stroke subtype

Atherothrombotic 62 (25.1%)
Lacunar 83 (33.6%)
Cardioembolic 59 (23.9%)
Undetermined 43 (17.4%)

In the bivariate analyses, we found a significant effect of age, hypertension, diabetes,
smoking habit and alcohol consumption on WMHv, such that older patients with hyperten-
sion and diabetes showed increased WMHv (Supplementary Table S1).

In Figure 1, we show the correlation between C-age and B-age estimations (both
Hannum and Horvath methods). Both B-ageHannum and B-ageHorvath showed strong corre-
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lations with C-age (r = 0.790 and r = 0.761, respectively), suggesting that both formulas had
a good fit in the sample regarding the prediction of C-age. As shown in Figure 2, C-age
and both B-age calculations showed significant correlations with WMHv (r = 0.36–0.38,
p-value < 0.0001 in all cases).
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3.2. Effect of B-Age on WMH

In Table 2, we show the results obtained from multivariate analyses interrogating the
association between B-age and log-WMHv. Regarding the Hannum method, in Model 1
(only adjusted by hypertension and C-age), we observed that B-age showed a borderline
effect (p-value = 0.058), while C-age was significantly associated with log-WMHv (β = 0.020,
95% CI = 0.003 to 0.038, p-value = 0.021). However, when we further adjusted for other
potential confounders that are known to affect WMH, we observed that B-ageHannum had a
significant effect on log-WMHv (β = 0.022, 95% CI = 0.002 to 0.043, p-value = 0.031) and
C-age remained significant as well (β = 0.021, 95% CI = 0.002 to 0.040, p-value = 0.033).
The addition of principal components representing the white cellular count estimates did
not change these results (Model 3, Table 2). On the other hand, B-ageHorvath presented
no significant associations (p-values > 0.05 in all models). We observed no concerning
multicollinearity in any model (VIF < 4 and 1/VIF < 0.2 in all cases).

Table 2. All models have been constructed entering log-WMHv as the dependent variable and
biological age estimations and chronological age as independent variables. Model 1: adjusted for
C-age and hypertension. Model 2: Model 1 + sex, diabetes, hypercholesterolemia, smoking habit,
alcohol consumption, stroke etiology (TOAST) and body mass index. Model 3: Model 2 + white cell
count estimates (principal components). Values represent β coefficients, 95% confidence intervals
(CI), p-values and valid observations in each model.

Effect of Biological Age in WMH

Hannum Models Horvath Models

Biological Age Chronological Age Biological Age Chronological Age

β (95% CI) p-Value β (95% CI) p-Value β (95% CI) p-Value β (95% CI) p-Value

Model 1 0.019 (−0.001; 0.038) 0.058 0.020 (0.003; 0.038) 0.021 0.014 (−0.002; 0.030) 0.078 0.023 (0.006; 0.039) 0.007
Model 2 0.022 (0.002; 0.043) 0.031 0.021 (0.002; 0.040) 0.033 0.018 (0,000; 0.035) 0.054 0.024 (0.005; 0.042) 0.012
Model 3 0.022 (0.001; 0.042) 0.039 0.021 (0.002; 0.040) 0.033 0.017 (−0.001; 0.035) 0.060 0.023 (0.005; 0.042) 0.013

We continued simplifying Model 3 using a forward stepwise method (Table 3). This
algorithm selected the following variables: B-ageHannum, C-age, sex at birth, TOAST (stroke
etiology), hypertension, diabetes, smoking habit, alcohol consumption and body mass
index. It excluded: B-ageHorvath, dyslipidemia and white cellular count estimates. In this
model, B-ageHannum showed an independent association with log-WMHv (β = 0.023, 95%
CI = 0.002 to 0.043, p-value = 0.029), such that, for each year increase in B-ageHannum, we
observed a 2.3% increase in WMHv. Again, we observed no concerning collinearity.



Biology 2023, 12, 33 7 of 11

Table 3. This model was achieved after applying a forward stepwise variable selection on Model 3
from Table 2. Of note, B-ageHannum rather than B-ageHorvath was included in the final model. Values
represent β coefficients, 95% confidence intervals (CI) and p-values.

Effect of B-Age and Other Risk Factors on WMH

β (95% CI) p-Value

B-age (Hannum), year 0.023 (0.002; 0.043) 0.029
C-age, year 0.021 (0.001; 0.040) 0.036
Sex, male 0.286 (−0.003; 0.575) 0.053
TOAST, stroke subtype

Atherothrombotic Ref. Ref.
Cardioembolic −0.135 (−0.513; 0.243) 0.481
Lacunar 0.339 (0.001; 0.677) 0.050
Undetermined 0.118 (−0.270; 0.506) 0.550

Hypertension 0.375 (0.059; 0.692) 0.020
Diabetes 0.295 (0.034; 0.557) 0.027
Smoking Habit 0.341 (−0.026; 0.709) 0.069
Alcohol Consumption −0.444 (−0.799; −0.089) 0.014
Body Mass Index −0.026 (−0.057; 0.004) 0.095

As both B-age and C-age remained in the final model, we explored the amount of the
effect of C-age on WMH that can be explained by DNAm. We used a mediation analysis to
explore this hypothesis and we observed a significant indirect effect of B-age on WMHv
via B-ageHannum. Specifically, we observed that a 42.7% of the C-age effect on WMH can be
explained by B-ageHannum (partial mediation), suggesting an important role of DNAm on
WMH burden (Figure 3).
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Figure 3. Causal mediation analysis. After bootstrap resampling, C-age showed a significant effect
on B-age (β = 0.7), which was subsequently related to WMH-volume (β = 0.016). Mediation analysis
revealed a significant partial mediation on the effect of C-age on WMH via B-age (β-coefficient
reduction from 0.036 to 0.021). These effects are adjusted for those variables that entered in the
forward stepwise regression model (see Table 3). * p-value < 0.05; ** p-value < 0.01.

4. Discussion

In this manuscript we explored the association between B-age and WMH, finding a
significant effect of B-age on WMH, which is independent of C-age. When we explored
which variables entered in a forward stepwise regression model to predict WMH, we
observed that both B-ageHannum and C-age entered the final model, being independent
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explanatory factors. Finally, as both variables contributed to the prediction of WMH,
we hypothesized that a part of the effect of C-age on WMHv would be explained by B-
ageHannum. Hence, we conducted a mediation analysis and found that a 42.7% of the effect
of C-age can be explained by DNAm.

The main contribution of our study is to show a relationship between WMHv and
epigenetic aging independently of C-age. To our better knowledge, only one group has
previously explored the role of biological aging on WMH burden, but they studied a cohort
of African-American individuals at high cardiovascular risk, evaluating WMH by means
of a qualitative assessment [28]. Our study aligns with the results obtained by Raina and
collaborators (2017) and extends their associations to our cohort of Caucasian patients with
acute ischemic stroke, in which we evaluated WMH as a volume using a semi-automated
method. On the other hand, while B-ageHannum was independently associated with WMHv,
B-ageHorvath was not. This might be explained by that fact that B-ageHannum is calculated
using whole blood—as we do in our study—as opposed to the B-ageHorvath formula, which
was constructed on a range of different tissues and cell types [10].

B-age explains 42.7% of the contribution of C-age to WMH burden but, at the same
time, contributes to WMH prediction independently of C-age. This means that B-age might
be capturing the effect of other factors that lead to an epigenetic signature similar to that
observed in the elderly, as we proposed in a previous article reporting that ischemic stroke
individuals are biologically older than healthy controls [11]. Supporting this hypothesis,
B-age has been previously associated with systolic blood pressure and arterial stiffness [29],
as measured by pulse pressure, which are considered to be the main blood pressure
components involved in sporadic cSVD [5,30]. Similarly, several consequences of WMH
have been consistently associated with B-age. For instance, a study conducted in a sample of
healthy adults found that B-ageHannum was associated with decline in attention in men [31],
which is one of the cognitive domains affected in patients having an extensive WMH
burden [32]. Likewise, patients with incidental cardiovascular disease showed an increased
age acceleration compared with patients without [33].

These studies, along with the results provided in our manuscript, suggest the idea that
several exposures —vascular risk factors, lifestyle, comorbid conditions—might influence
the epigenome of individuals having an increased burden of WMH. Hence, it would be
potentially interesting to conduct large epigenome-wide association studies (EWAS) aimed
to find hypo/hypermethylated regions of the human genome that could shed light on
new mechanisms involved in the pathophysiology of WMH and eventually represent new
therapeutic targets. To date, only one study has conducted an EWAS using the WMHv as
dependent variable, although it found no significant results, likely due to a reduced sample
size [34]. Similarly, other groups measuring WMH using qualitative approaches also failed
in reporting significant CpGs [28]. Future studies should try to increase the sample size and
consider other factors that might confound the relationship between DNAm and WMH
burden. For instance, the location of WMH within the brain might correspond to different
pathophysiological mechanisms, as reported recently [4,35,36], and thus present different
risk factors and epigenetic signatures. To this aim, we may need to combine EWAS with
new neuroimaging analytical approaches that improve the ability to capture the true nature
of WMH [37,38].

A major strength of this study is that it evaluates the volumetric WMH burden through
a semiautomated method that captures this phenomenon in a more accurate way than
qualitative discrete scales. In addition, the independent analyses of B-age and C-age, to-
gether with the mediation analysis, can help in understanding their different contributions.
Some limitations of the study should be considered. We measured methylation levels in
peripheral blood-cell DNA and, for some CpGs, the methylation is tissue-specific [39].
Therefore, we could have lost signals by not choosing distinct tissues where epigenetic
age may have a higher repercussion on WMH. However, methylation patterning of whole
blood has been described as a good approach for the methylation of a specific location [40].



Biology 2023, 12, 33 9 of 11

We also make clear that in this cross-sectional study we cannot establish causality in its
associations.

5. Conclusions

In conclusion, we show for the first time that B-age, measured through DNAm, con-
tributes substantially to explain WMH volumetric burden irrespective of C-age. In a
mediation analysis, we observed that B-age explains 42.7% of the effect of C-age on WMH
volume. Our study provides further insight into the pathophysiology of WMH, but it also
generates a potential number of hypotheses and questions that might be approached in
future studies. For instance, whether the relationship between B-age and WMH is depen-
dent on brain location or radial distribution, especially considering that this distribution is
related to specific consequences [38]. Furthermore, these neuroimaging techniques might
be combined with the full genome-wide study of DNAm. Moreover, disentangling how
biological age captures other vascular and external factors’ contribution to WMH also
merits further research on this matter, as it might provide orientation in which factors could
be modified to halt the progression of WMH.
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