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Portugal; eISGlobal, Institute for Global Health, Barcelona, Spain; fUniversitat Pompeu Fabra (UPF), Barcelona, Spain; gSpanish Consortium for 
Research on Epidemiology and Public Health (CIBER), Madrid, Spain

ABSTRACT
Early life is seen as a particularly sensitive period for environmental exposures. Natural space 
exposure during pregnancy has been associated with offspring health. Epigenetic gestational age 
acceleration, a discrepancy between clinical and DNA methylation-based gestational age, may 
underlie these associations. In 1359 mother-newborn pairs from the population-based Generation 
R Study, we examined the associations of natural space exposure, defined as surrounding green-
ness, distance to major green and blue (water) space, and size of the blue space during pregnancy 
with offspring epigenetic gestational age acceleration. Natural space exposure was based on 
participants’ geocoded addresses, and epigenetic gestational age acceleration was calculated 
from cord blood DNA methylation using Bohlin’s and Knight’s epigenetic clocks. Sensitivity 
analyses were conducted in a subgroup of newborns with optimal pregnancy dating, based on 
last menstrual period. Surrounding greenness, measured in normalized difference vegetation 
index values, was intermediate (median 0.4, IQR 0.2), and 84% and 56% of the participants had 
a major green or blue space near their home address, respectively. We did not observe associa-
tions of natural space availability during pregnancy with offspring epigenetic gestational age 
acceleration. This could imply that epigenetic gestational age acceleration in cord blood does not 
underlie the effects of residential natural space availability in pregnancy on offspring health. 
Future studies could investigate whether residential natural space availability during pregnancy is 
associated with offspring differential DNA methylation at other CpGs than those included in the 
epigenetic gestational clocks.
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Introduction

The urban environment has been associated with car-
diometabolic health outcomes and mortality in adults, 
with air pollution being the most frequently studied 
exposure to date [1,2]. Interest in other measures of 
the urban environment, such as the availability and 
proximity of natural spaces, mostly vegetation and 
water bodies, referred to as green and blue spaces, 
respectively, has increased in recent years. Green 
space exposure has been inversely associated with the 
risk of cardiovascular disease in adults [3,4]. Evidence 
for associations of blue space with health outcomes is 
still sparse [5,6]. Early life is a particularly sensitive 
period for the effects of environmental exposures 
[7,8], and the exposure to natural space during 

pregnancy has been associated with beneficial birth 
outcomes [9–12]. The underlying mechanism for 
these associations is unclear, but differential DNA 
methylation might be involved.

DNA methylation has been associated with biolo-
gical ageing [13,14]. In recent years, multiple epige-
netic clocks have been developed, which estimate 
biological or ‘epigenetic’ age based on DNA methyla-
tion levels at a limited number of CpGs [15]. 
Differences between chronological age and DNA 
methylation-based age estimates represent epigenetic 
age acceleration. Positive age acceleration refers to 
older DNA methylation-based age than chronological 
age and negative age acceleration refers to younger 
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DNA methylation-based age than chronological age. 
The first epigenetic clocks were developed for adult 
age estimation and were based on peripheral blood 
DNA methylation [13,14]. In adults, positive age 
acceleration is associated with cardiovascular, cancer, 
and all-cause mortality [16]. More recently, epigenetic 
clocks for gestational age at birth have been developed 
based on cord blood DNA methylation, with those 
based on the methods by Bohlin and Knight being the 
most frequently used [17,18]. Several maternal and 
offspring characteristics have been associated with 
epigenetic gestational age acceleration, but the direc-
tions of effect are inconsistent. For instance, maternal 
mental diseases and offspring sex have been associated 
with both positive and negative age acceleration [19– 
22]; maternal age and maternal BMI where associated 
with positive gestational age acceleration only in some 
studies [20–22]; and maternal dietary factors, such as 
vitamin D3 supplementation or circulating vitamin 
B12, folate, homocysteine, and fatty acids, show incon-
sistent associations [23–25]. Thus, a better under-
standing of how specific exposures are associated 
with epigenetic gestational age acceleration is needed. 
In children, a recent study on more than 100 early-life 
urban environmental exposures did not find associa-
tions of green and blue spaces with epigenetic age 
acceleration at the age of 8 years [26]. However, it is 
unknown if exposure to natural spaces during preg-
nancy is associated with epigenetic age acceleration at 
birth, when there is a shorter period between the 
exposure and the outcome. We hypothesized that 
exposure to green or blue space during pregnancy 
would be associated with epigenetic gestation age 
acceleration. We did not have a specific hypothesis 
on the direction of these associations, given the incon-
sistencies in the previous literature. Therefore, in this 
study, we aimed to study associations of green and 
blue space exposure during pregnancy with epigenetic 
gestational age acceleration based on cord blood DNA 
methylation.

Materials and Methods

Participants

This study was embedded in the Generation 
R Study, a population-based prospective cohort 
study from foetal life onwards in Rotterdam, the 
Netherlands [27]. The Medical Ethical Committee 

of Erasmus MC, University Medical Center 
Rotterdam, approved the study (MEC 198.782/ 
2001/31). Pregnant women with an expected deliv-
ery date between April 2002 and January 2006 
living in Rotterdam were eligible to participate 
and written informed consent was obtained for 
all participants. In 1396 of the 9901 live-born new-
borns participating in the Generation R Study, we 
measured genome-wide DNA methylation in cord 
blood. This subgroup was selected from the total 
study population as a relatively homogeneous, 
Dutch-ancestry subgroup. Per mother we included 
only one child, based on completeness of covari-
ates and, if equal, randomly (15 children were 
excluded based on these criteria). In the current 
study, we included 1359 mother-child pairs who 
had information available on cord blood DNA 
methylation, clinical gestational age at birth, and 
pregnancy exposure to green and blue spaces.

Maternal green and blue space exposure during 
pregnancy

Green and blue space data were generated within 
the LifeCycle Project framework [28]. A total of 
eight indicators of natural space were studied in 
this project. Vegetation index at three distance 
buffers (100 m, 300 m, and 500 m), distance to 
major (larger than 5000 m2) green space and pre-
sence of major green space at less than 300 metres 
from the home address were used indicators of 
green space exposure. Distance to major blue 
space (larger than 5000 m2), presence of a major 
blue space at less than 300 metres from the home 
address and size of the major blue space were used 
as indicators of exposure to blue space. Estimated 
trimester-specific exposures were assigned to each 
study participant separately for their geocoded 
addresses through geographic information system 
platforms.

Normalized Difference Vegetation Index 
(NDVI) quantifies vegetation by measuring the 
difference between near-infrared (which vegeta-
tion strongly reflects) and red light (which vegeta-
tion absorbs). NDVI values range from −1.0 to 
+1.0. Areas of snow or sand usually show very 
low NDVI values (for example, 0.1 or less). 
Sparse vegetation such as grasslands or senescing 
crops may result in moderate NDVI values 
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(approximately 0.2 to 0.5). High NDVI values 
(approximately 0.6 to 0.9) correspond to dense 
vegetation such as that found in temperate and 
tropical forests or crops at their peak growth 
stage. Negative values of NDVI (values between 
−1 and 0) correspond to water and were classified 
as null. NDVI was derived from the Landsat 4–5 
Thematic Mapper (TM), Landsat 7 Enhanced 
Thematic Mapper Plus (ETM+), and Landsat 8 
Operational Land Imager (OLI)/Thermal Infrared 
Sensor (TIRS). The imagery was selected according 
to the following criteria: i) cloud cover less than 
10%, ii) Standard Terrain Correction (Level 1 T), 
and iii) greenest period of the year, for best image 
contrast. In Generation R, NDVI values for preg-
nancy correspond to Landsat images from 2005, as 
a reference for the birth years of our population, 
i.e., 2002–2006, since it was the year with the low-
est cloud cover during the recruitment period. 
Distance, in metres, to the nearest green or blue 
major space, larger than 5000 m2, and size of the 
respective natural spaces were extracted from the 
Europe-wide ‘Urban Atlas’ [29].

Pregnancy values were created for all the expo-
sures by calculating an average across the three 
trimesters. If one trimester value was missing, we 
used the two known values to calculate the aver-
age. If only one trimester value was available, we 
used that as a proxy of total pregnancy exposure, 
as the percentage of women moving during preg-
nancy was relatively low, 7.3%. The variable ‘resi-
dential proximity to major green space’ (defined 
for green spaces in the EU as living within 300 
metres of a public open area of more than 5000 m2 

[30]) was created based on the pregnancy average 
distance values. Based on previous studies, the 
same 300 metres cut-off was used to create the 
variable ‘residential proximity to major blue 
space’ [26].

DNA methylation data

DNA samples were extracted from newborn cord 
blood by the salting-out method. Five hundred 
nanograms of DNA were bisulphite converted 
using the EZ-96 DNA Methylation kit (Shallow) 
(Zymo Research Corporation, Irvine, USA). 
Samples were processed with the Illumina 
Infinium HumanMethylation450 BeadChip 

(Illumina Inc., San Diego, USA). Quality control 
and normalization were performed using the 
CPACOR workflow [31]. Probes with a detection 
p ≥ 1E-16 were set to missing. Intensity values 
were quantile normalized. We removed arrays 
with technical problems, a call rate ≤95%, or 
a mismatch between the expected sex of partici-
pant and sex determined by chromosome X and 
Y probe intensities. Probes on the sex chromo-
somes were removed before the analyses. We 
used untransformed beta-values as measures of 
DNA methylation. The final dataset contained 
information on 458,563 CpGs.

Epigenetic gestational age

For the primary analyses we used epigenetic 
gestational age based on Bohlin’s epigenetic 
clock, calculated with the GAprediction package 
version 1.16.6 in R. This epigenetic clock predicts 
epigenetic gestational age based on DNA methy-
lation values of 96 CpGs selected via Lasso 
regression [17]. In secondary analyses, we used 
Knight’s epigenetic clock, which estimates epige-
netic gestational age based on DNA methylation 
values of 148 CpGs selected via elastic net regres-
sion [18]. The methylclock package 0.5.0 in R was 
used to calculate raw and residual gestational age 
acceleration based on Knight’s epigenetic clock. 
Raw gestational age acceleration (in weeks) is 
calculated by subtracting clinically estimated 
gestational age from epigenetic gestational age. 
Residual gestational age acceleration (in weeks) 
is calculated as the residuals from the regression 
of epigenetic gestational age on clinical gesta-
tional age. Both raw and residual age accelera-
tions have been previously used in the literature. 
Raw age acceleration offers a more intuitive 
representation of the difference between biologi-
cal and chronological age, whereas residual age 
acceleration, due to its statistical qualities, corre-
sponds to the component of biological age that is 
independent of chronological age. Positive gesta-
tional age acceleration is defined as older epige-
netic gestational age than clinical gestational age, 
and negative gestational age acceleration is 
defined as younger epigenetic gestational age 
than clinical gestational age.
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Clinical gestational age

Pregnant women were seen for foetal ultrasound 
at a dedicated research centre at the first study 
visit. During this visit, we established a clinical 
gestational age. If mothers had a known and 
reliable first day of the last menstrual period, 
and a regular menstrual cycle of 28 ± 4 days, 
this estimate was based on their last menstrual 
period, what we consider optimal pregnancy dat-
ing. If mothers did not know the exact date of 
their last menstrual period, or had an irregular 
menstrual cycle, we established the gestational 
age by ultrasound [32]. Clinical gestational age 
at birth was retrieved from midwife or obstetric 
records.

Covariates

Potential covariates were selected based on pre-
vious literature. Maternal covariates included age 
at intake, education level, categorized into low and 
medium education versus higher education, parity, 
as nulliparous versus multiparous, smoking during 
pregnancy, divided into no smoking and quitting 
when pregnancy was known versus sustained 
smoking, and neighbourhood deprivation index, 
based on the Dutch deprivation index and cate-
gorized in tertiles [33]. This index is calculated 
based on residents’ characteristics, such as educa-
tion, income, and job market position. Child sex 
was also included as a covariate. Maternal infor-
mation was obtained via questionnaires sent out in 
each pregnancy trimester. Information on child 
sex and birth weight was obtained from midwife 
and hospital records. Cord blood cell-type propor-
tions were obtained from the ‘Salas’ reference 
panel for the estimation of cell-type proportion 
in the ‘FlowSorted.CordBlood.Combined.450 K’ 
Bioconductor package [34]. This reference set 
includes the following cell types: CD8+ T cells, 
CD4+ T cells, natural killer cells, B cells, mono-
cytes, granulocytes, nucleated red blood cells. 
Covariate missing values (up to a maximum of 
8% for maternal smoking) were imputed using 
the Markov chain Monte Carlo method, and 
pooled analysis was conducted from five imputed 
datasets [35].

Statistical analysis

We determined correlations between clinical and 
epigenetic gestational age based on the Bohlin and 
Knight methods using Spearman’s correlation 
coefficients. Correlation between exposures was 
tested with pairwise Spearman correlation tests. 
A non-response analysis compared the newborns 
included in the analyses to those who participated 
in Generation R but who did not have DNA 
methylation measured through chi-square tests, 
Student’s t-tests, and Mann–Whitney tests. 
Outcome distributions were inspected using histo-
grams (Supplemental Figure 1). Non-linear asso-
ciations of natural spaces with age acceleration 
were ruled out by visual inspection of scatterplots 
and, when in doubt, with generalized additive 
models. We used linear regression models to 
examine associations of green and blue space 
availability during pregnancy with raw and resi-
dual gestational age acceleration. Standardized 
NDVI was assessed per IQR change, distance to 
major green and blue space in 1-kilometre incre-
ments, and blue space size in 1 square kilometre 
increments. Gestational age acceleration calculated 
based on Bohlin’s epigenetic clock was used in 
primary analysis due to its higher correlation 
with clinical gestational age. Knight’s clock was 
used in secondary analyses. The crude model was 
adjusted for child sex and batch effects, by includ-
ing plate number. The main model was addition-
ally adjusted for maternal age, education, parity 
and smoking, neighbourhood deprivation index, 
and estimated cell type proportions. To examine 
the impact of variation in cell-type proportions, 
the main model was also analysed without cell- 
type adjustment (reduced main model) [22]. We 
also planned models with additional adjustment 
for birth weight and air pollution, based on atmo-
spheric particulate matter of less than 2.5 micro-
metres, to explore the roles of these factors in any 
significant associations from the primary models. 
In an additional analysis, we excluded preterm 
births (clinical gestational age <37 weeks) and 
repeated the primary and secondary analyses in 
the main group. Sensitivity analyses were per-
formed in the subset of mothers with optimal 
pregnancy dating based on last menstrual period 
(total N = 376). We accounted for multiple testing 
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by dividing the nominal p values by two, to con-
sider the two categories of exposure being tested, 
i.e., green and blue spaces, as the specific expo-
sures within those categories are correlated. 
Therefore, p values ≤0.025 were considered signif-
icant. All analyses were performed in Statistical 
Package for the Social Sciences version 25.0 
(SPSS IBM, Chicago, Illinois, United States).

Results

Participant characteristics

We included 1359 mother-newborn pairs from the 
Generation R Study with information on natural 
space exposure during pregnancy and cord blood 
DNA methylation. Table 1 shows the participant 
characteristics before imputation of covariates 
(Supplemental Table 1 shows participant 

characteristics after imputation). NDVI values 
were intermediate (median 0.4, IQR 0.2) across 
all the buffer distances, which corresponds to 
sparse vegetation or grass landscapes. 
Supplemental Table 2 shows correlation matrix 
between exposures. Overall, NDVI showed 
a weak positive correlation with distance to blue 
space and weak inverse correlations with having 
a blue space at 300 metres from the address and 
with the size of the blue space. Clinical gestational 
age (mean 40.2 weeks, SD 1.5) was on average 
older than epigenetic gestational age based on 
Bohlin’s epigenetic clock (39.3 weeks, SD 1.0). 
This was reflected in both raw and residual gesta-
tional age acceleration, which had negative mean 
values. In the full study group, Spearman’s corre-
lation between clinical and epigenetic gestational 
age was r = 0.70, very similar to the correlation in 

Table 1. Maternal and newborn characteristics based on non-imputed data 
(n = 1359).

Maternal Characteristics

Age at intake (years) 31.7 (4.2)
Pre-pregnancy body mass index (kg/m2) 24.2 (4.0)
Education

No or primary 25 (1.8%)
Secondary 442 (32.5%)
Higher 872 (64.2%)

Parity
Nulliparous 824 (60.6%)
Multiparous 533 (39.2%)

Smoking
Non-smoker or smoked until pregnancy was known 1069 (78.7%)
Smoked throughout pregnancy 179 (13.2%)

Neighbourhood deprivation index in tertiles
[1] low deprived 351 (25.8%)
[2] medium deprived 371 (27.3%)
[3] high deprived 633 (46.6%)

NDVI 100 m buffer 0.4 (0.3–0.5)
NDVI 300 m buffer 0.4 (0.3–0.5)
NDVI 500 m buffer 0.4 (0.4–0.5)
Major green space at 300 m (yes) 1137 (83.7%)
Distance to major green space (m) 146.5 (72.3, 248.5)
Major blue space at 300 m (yes) 762 (56.1%)
Distance to major blue space (m) 268.6 (127.1, 429.6)
Size of major blue space with (m2) 23,918.9 (13,403.0, 64,974.4)
PM2.5 20.4 (18.1, 22.6)

Newborn Characteristics

Sex (girl) 668 (49.2%)
Birth weight (grams) 3548 (511)
Gestational age at birth (weeks) 40.2 (1.5)
Epigenetic gestational age (Bohlin, weeks) 39.3 (1.0)
Raw gestational age acceleration (Bohlin, weeks) −0.9 (0.9)
Epigenetic gestational age (Knight, weeks) 36.3 (1.7)
Raw gestational age acceleration (Knight, weeks) −3.8 (1.6)

Values are mean (SD) or median (1st quartile, 3rd quartile) for continuous variables and counts 
(%) for categorical variables. NDVI, normalized difference vegetation index. Missing values: 
maternal smoking, 111; maternal education, 20; maternal BMI, 8; neighbourhood deprivation 
index, 4; parity,2 
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the subgroup of mothers with optimal clinical 
pregnancy dating (r = 0.73) (Figure 1). Epigenetic 
gestational age based on Knight’s epigenetic clock 
was younger (36.3, SD 1.7) and Spearman’s corre-
lation with clinical gestational age was lower than 
that obtained for Bohlin’s method, r = 0.46 in the 
full study group and r = 0.48 in the optimal clin-
ical pregnancy dating subgroup (Figure 1).

Non-response analysis showed that included 
participants had older mothers, who had lower 
body mass indexes and were more highly edu-
cated. Participants lived in less deprived neigh-
bourhoods and were closer to both green and 
blue spaces than non-participants (Supplemental 
Table 3).

Associations of green and blue spaces with 
epigenetic gestational age acceleration

We did not observe associations of any of the eight 
indicators of green and blue space availability dur-
ing pregnancy with offspring epigenetic gestational 
age acceleration based on either Bohlin’s or 
Knight’s epigenetic clocks. Sensitivity analyses 
conducted on newborns with optimal pregnancy 
dating followed the same patterns as the main 
analyses (Table 2). Further models planned with 
additional adjustment for birth weight and air 
pollution were not conducted, due to lack of asso-
ciations in the main model. Exclusion of preterm 
births (gestational age <37 weeks) did not materi-
ally change the results (data not shown).

Figure 1. Spearman pairwise correlation between clinical and epigenetic gestational age. a) and b) estimated by Bohlin’s epigenetic 
clock in full group newborns (N = 1359) and in subgroup newborns with optimal pregnancy dating (N = 376), respectively. c) and d) 
estimated by Knight’s epigenetic clock in full group newborns and in subgroup newborns with optimal pregnancy dating, 
respectively.
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Discussion

In this study, we examined the associations 
between residential green and blue space expo-
sure during pregnancy and epigenetic gestational 
age acceleration at birth. We did not find evi-
dence of associations between the indicators of 
natural space availability during pregnancy with 
epigenetic gestational age acceleration at birth 
measured in cord blood in 1359 participants in 
the Generation R. This was the case for both 
clocks used to estimate epigenetic gestational 
age acceleration, as well as when restricting the 
sample to offspring of women who had optimal 
pregnancy dating based on a regular and known 
date of last menstrual period.

Previous studies showed associations between 
natural space exposure during pregnancy and 
birth outcomes [9–12], but the underlying 
mechanism is still not known. DNA methylation 

was found to be associated with residential green-
ness in adults [36,37]. Epigenetic gestational age 
acceleration may underlie the associations for 
birth outcomes in children, and we hypothesized 
that residential exposure to natural space during 
pregnancy would be associated with cord blood 
epigenetic gestational age acceleration at birth. 
We did not find evidence of associations between 
green and blue space availability during pregnancy 
with epigenetic gestational age acceleration based 
on cord blood DNA methylation.

Studies assessing associations between natural 
space exposure in early life and markers of biological 
ageing are scarce. A previous study that looked into 
several urban exposures and epigenetic age accelera-
tion in childhood also did not find any associations 
with either green or blue space exposure [26]. 
Although we hypothesized that a shorter period 
between the exposure and the assessment of age 
acceleration could reveal an association, our findings 
are in line with this previous study. A study in 

Table 2. Associations of residential green and blue space in pregnancy and epigenetic gestational age acceleration based on Bohlin 
and Knight’s epigenetic clock in the full population (N = 1359) and sensitivity group (N = 376).

Full population (N = 1359) Subgroup with optimal pregnancy dating (N = 376)

Raw Age Acceleration a Residual Age Acceleration b Raw Age Acceleration a Residual Age Acceleration b

Bohlin’s Epigenetic 
Clock

Difference (95% CI) p Difference (95% CI) p Difference (95% CI) p Difference (95% CI) p

NDVI 100 m 0.04 (−0.04, 0.11) 0.31 −0.02 (−0.06, 0.03) 0.42 −0.11 (−0.24, 0.03) 0.13 −0.03 (−0.12, 0.05) 0.42
NDVI 300 m 0.03 (−0.17, 0.05) 0.45 −0.03 (−0.08, 0.02) 0.24 −0.09 (−0.24, 0.06) 0.24 −0.04 (−0.13, 0.05) 0.42
NDVI 500 m 0.05 (−0.03, 0.13) 0.25 −0.03 (−0.08, 0.02) 0.31 −0.06 (−0.22, 0.09) 0.43 −0.04 (−0.13, 0.05) 0.37
Green space at 300 m −0.11 (−0.03, 0.24) 0.11 0.05 (−0.03, 0.13) 0.25 0.13 (−0.12, 0.38) 0.31 0.04 (−0.11, 0.19) 0.61
Distance to green space −0.17 (−0.54, 0.21) 0.38 −0.05 (−0. 27, 0.18) 0.68 −0.09 (−0.76, 0.57) 0.78 −0.13 (−0.53, 0.26) 0.51
Blue space at 300 m −0.01 (−0.11, 0.09) 0.89 0.02 (−0.04, 0.08) 0.49 0.18 (−0.02, 0.37) 0.08 0.05 (−0.07, 0.17) 0.40
Distance to blue space 0.12 (−0.01, 0.34) 0.20 0.01 (−0.11, 0.14) 0.86 −0.19 (−0.60, 0.23) 0.37 −0.09 (−0.34, 0.16) 0.58
Blue space size < −0.01 (< −0.01, 

<0.01)
0.86 < −0.01 (< −0.01, 

<0.01)
0.13 < −0.01 (−0.10, 

<0.01)
0.80 < 0.01 (−0.10, <0.01) 0.90

Knight’s Epigenetic 
Clock

NDVI 100 m 0.02 (−0.09, 0.13) 0.67 −0.02 (−0.12, 0.08) 0.70 −0.12 (−0.31, 0.06) 0.20 −0.07 (−0.23, 0.10) 0.41
NDVI 300 m 0.04 (−0.08, 0.16) 0.54 −0.01 (−0.22, 0.51) 0.90 −0.02 (−0.23, 0.19) 0.85 0.02 (−0.16, 0.20) 0.79
NDVI 500 m 0.04 (−0.09, 0.17) 0.56 −0.02 (−0.13, 0.09) 0.73 0.01 (−0.21, 0.22) 0.96 0.03 (−0.16, 0.21) 0.79
Green space at 300 m 0.04 (−0.16, 0.25) 0.69 −0.01 (−0.19, 0.17) 0.95 −0.04 (−0.38, 0.30) 0.83 −0.12 (−0.42, 0.18) 0.43
Distance to green space −0.06 (−0.63, 0.51) 0.84 −0.02 (−0.48, 0.52) 0.93 0.21 (−0.70, 1.12) 0.64 0.12 (−0.60, 0.99) 0.63
Blue space at 300 m −0.01 (−0.16, 0.14) 0.91 0.01 (−0.12, 0.15) 0.83 0.21 (−0.05, 0.48) 0.12 0.12 (−0.12, 0.35) 0.34
Distance to blue space 0.09 (−0.25, 0.42) 0.61 −0.01 (−0.31, 0.28) 0.94 −0.22 (−0.79, 0.35) 0.44 −0.16 (−0.65, 0.34) 0.54
Blue space size < −0.01 (< −0.01, 

<0.01)
0.43 < −0.01 (< −0.01, 

<0.01)
0.81 < −0.01 (−0.10, 

<0.01)
0.55 < −0.01 (−0.10, 

<0.01)
0.37

Values represent regression coefficients (95% confidence interval) and reflect the difference in raw and residual gestational age acceleration at birth 
per increase of 1 interquartile range for NDVI, 1 kilometre for green and blue space distances, and 1 square kilometre for blue space size. Results 
are based on the main models, which were adjusted for maternal age, education, parity and smoking, child sex, batch effects (by including plate 
number), and estimated cell proportions. 

NDVI, normalized difference vegetation index; CI, confidence interval 
aRaw gestational age acceleration (in weeks) was obtained by subtracting the clinical estimate of gestational age from DNA methylation gestational 

age 
bResidual gestational age acceleration (in weeks) was calculated from the residuals from a regression model of DNA methylation gestational age on 

clinical gestational age 
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Iranian children, where average NDVI values were 
much lower than in our population, identified posi-
tive associations of green space exposure in pre-
school children and telomere length, which is used 
as an ageing marker [38]. Jointly, these studies sug-
gest that natural space exposure in early life might be 
associated with biological ageing, but they do not 
provide evidence to support that this is reflected in 
epigenetic (gestational) age acceleration.

The epigenetic clocks used in this analysis may 
capture aspects of biological ageing that do not 
reflect in-utero adaptation to environmental expo-
sures, but this does not exclude an association of 
residential natural space with differential DNA 
methylation at other CpGs or in other tissues. 
Bohlin’s epigenetic clock performed better in our 
population than Knight’s clock, based on the cor-
relation between estimated and clinical gestational 
ages (Spearman correlations in the full group were 
0.70 and 0.46, respectively). This was expected due 
to the similarities in terms of European ancestry 
and clinical gestational age ranges between our 
cohort and that used by Bohlin in the epigenetic 
clock development. Still, the consistent findings 
obtained using different epigenetic clock meth-
odologies suggest that the null findings are not 
dependent on the selected methodology. We 
found similar effect sizes and directions of effect 
using two different epigenetic gestational age cal-
culation methods. The majority of exposures show 
consistent direction of effects between the clocks, 
especially in the full population. This indicates that 
both clocks may be capturing similar biological 
ageing processes. Similar results in the full study 
group and subgroup of mothers with pregnancy 
dating based on a regular menstrual cycle indicate 
that the null findings are likely not explained by 
inaccurate pregnancy dating in the full group. 
However, the increased precision of pregnancy 
dating in this group may have been outweighed 
by the fact that the sample size was much smaller, 
thus decreasing power. We expected relatively 
small effect sizes for natural space exposure. 
Maternal smoking is one of the strongest expo-
sures in relation to differential DNA methylation 
at birth [39]. In the current literature, only one 
study found an association of maternal smoking 
with residual epigenetic age acceleration, with an 
effect size of 0.09 weeks for smoking versus non- 

smoking [20]. We expected the effect sizes in this 
study to be smaller than that. Prado et al. [26] 
found a non-significant association of NDVI at 
100 m with child epigenetic age of −0.02 weeks 
(CI −4.87,5.3), in line with our findings. Miri et al. 
[38] examined the associations of natural space 
exposure with telomere length and showed effect 
sizes ranging from −21.8% to 8.3% for distance to 
major green space and home address NDVI at 
300 m, respectively. As the telomere length is 
a related, but different outcome, a direct compar-
ison of effect sizes with the latter study is not 
possible. However, both shorter distances to 
major green spaces and higher NDVI at 300 m 
were associated with greater telomere length (i.e., 
younger biological age). In contrast, in our ana-
lyses of residual age acceleration estimated by 
Bohlin’s clock, a shorter distance to major green 
space was associated with older biological age. 
However, the results for NDVI at 300 m being 
associated with younger biological age were in 
line with the paper by Miri et al. However, our 
results were non-significant and should be care-
fully interpreted.

Strengths of the present study include data col-
lected from a large and well-established prospective 
birth cohort, detailed and precise information on 
residential green and blue space exposure and 
DNA methylation, and the possibility to conduct 
sensitivity analyses in a subgroup with optimal preg-
nancy dating. NDVI is the most common method to 
access surrounding greenness and this allows direct 
comparison to other relevant studies. The inclusion 
of additional indicators of natural spaces, such as 
distance and accessibility to major green and blue 
space are also strengths of this study.

However, our study also has limitations. First, 
NDVI does not reflect all the relevant aspects and 
types of green areas, for example, if it is an attractive 
and accessible area [40]. Second, in the urban setting 
of the Generation R Study, we might have limited 
variation in the exposure to green and blue spaces, 
which is reflected in the intermediate NDVI values 
at different distances and also in the proximity to 
major green and blue spaces characterizing our 
population. Despite the relatively large sample size, 
this might limit the detection of associations with 
small effect sizes. Third, the exposure assessment is 
limited to the geocoded residential address and may 
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not represent true exposure or time spent in or near 
the natural space area. However, a recent study 
compared different methodologies of urban expo-
sure assessment and concluded that methods based 
only on residential address obtained very similar 
results to those accounting for time spent outside 
of residential location [41]. Fourth, environmental 
exposures might have trimester-specific effects. 
However, the method used in these analyses calcu-
lates one value per address per year. Therefore, we 
could in theory only examine trimester-specific 
results in women who changed address during preg-
nancy, which was 7.3% of our population, leaving 
a sample size too low for meaningful analyses. Fifth, 
this study was conducted in a European ancestry 
and highly educated subgroup of the Generation 
R Study, which may limit the generalizability of 
the findings to other ethnicities and socioeconomic 
groups. Fifth, we adjusted our association models 
for several measured confounders. As in any obser-
vational study, residual confounding may play 
a role. However, as our findings were null, we do 
not consider it likely that this would have had 
a major impact on our study. Future studies are 
needed to confirm our findings and to look at the 
relation between green and blue space exposure in 
early life, epigenetic ageing, and child health 
outcomes.

Conclusion

This study found no evidence to support associa-
tions of residential green and blue space availabil-
ity during pregnancy with epigenetic gestational 
age acceleration at birth. This might imply that 
epigenetic gestational age acceleration in cord 
blood estimated by Bohlin or Knight’s epigenetic 
clocks does not underlie effects of residential nat-
ural space in pregnancy on offspring health, but 
our findings need further confirmation. Future 
studies could focus on larger populations with 
optimal pregnancy dating or investigate if residen-
tial natural spaces during pregnancy are asso-
ciated with differential DNA methylation at 
other CpGs.

Abbreviations:

CpGs cytosine-guanine dinucleotide sites

IQR interquartile range
NDVI normalized difference vegetation index
SD standard deviation
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