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SUMMARY
The contribution of cross-presentingXCR1+dendritic cells (DCs) andSIRPa+DCs inmaintainingT cell function
during exhaustion and immunotherapeutic interventions of chronic infections remains poorly characterized.
Using the mouse model of chronic LCMV infection, we found that XCR1+ DCs are more resistant to infection
and highly activated compared with SIRPa+ DCs. Exploiting XCR1+ DCs via Flt3L-mediated expansion or
XCR1-targeted vaccination notably reinvigorates CD8+ T cells and improves virus control. Upon PD-L1
blockade, XCR1+ DCs are not required for the proliferative burst of progenitor exhausted CD8+ T (TPEX) cells
but are indispensable to sustain the functionality of exhausted CD8+ T (TEX) cells. Combining anti-PD-L1 ther-
apy with increased frequency of XCR1+ DCs improves functionality of TPEX and TEX subsets, while increase of
SIRPa+DCs dampened their proliferation. Together, this demonstrates that XCR1+DCs are crucial for the suc-
cess of checkpoint inhibitor-based therapies through differential activation of exhausted CD8+ T cell subsets.
INTRODUCTION

A hallmark of chronic virus infections is the appearance of

exhausted CD8+ T cells to prevent immunopathology.1 These

exhausted cells represent a distinct lineage within the CD8+

T cell population and are triggered by high antigen levels through

several transcription factors including TOX.2–5 TOX induces

epigenetic modifications that result in a dysfunctional cell

phenotype with impaired cytokine secretion and up-regulation

of inhibitory receptors like PD-1, TIM-3, and others.6,7 Exhausted

CD8+ T cells are a heterogeneous population covering diverse

differentiation states. Progenitor exhausted (TPEX) cells are

characterized by the expression of TCF1 and CXCR5 and give

rise to a more effector-like yet terminally exhausted (TEX) popu-

lation displaying higher levels of inhibitory receptors including

TIM-3.8 More recently, TPEX and TEX have been further subdi-

vided according to their accessibility to the blood circulation

defined by CD69 expression. These subsets were named T pro-

genitor exhausted 1 (CXCR5+ CD69+; TPEX1) and 2 (CXCR5+

CD69-; TPEX2), and T exhausted intermediate (CXCR5- CD69-;

TEXINT) and terminal (CXCR5- CD69+; TEXTER).
9 Exhausted
This is an open access article und
CD8+ T cells including TPEX have been detected in chronic

virus infections, i.e., with lymphocytic choriomeningitis virus

(LCMV)8,10 and simian immunodeficiency virus (SIV) in animal

models,11 as well as in human infections with HIV,12–14 HBV,15

HCV,16 and human cancers.17–19

Checkpoint inhibitors like anti-PD-1 or anti-PD-L1 antibodies

that block inhibitory receptor functioning can partly reinvigorate

exhausted CD8+ T cells.20,21 They have evolved as a highly

promising immunotherapeutic approach in the treatment of can-

cers22,23 and are potentially advantageous against chronic infec-

tions.24–28 Their clinical benefit is mainly mediated by TPEX that

can massively proliferate and replenish the pool of effector-like

TEX, which restrict tumor growth and virus expansion.8,12,29

However, to avoid therapeutic failure due to resistance to anti-

PD-1/PD-L1 treatment, CD8+ T cells need to be optimally

primed.30 Mounting evidence points to cross-presenting

XCR1+ dendritic cells (XCR1+ DCs) as the preferred antigen-

presenting cells to choreograph and successfully prime CD8+

T cells.31–33 These DCs are the only cell type expressing the

XCR1 receptor34 through which they sense gradients of the

chemokine XCL1 produced by natural killer (NK) cells and
Cell Reports 42, 112123, February 28, 2023 ª 2023 The Authors. 1
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:jordi.argilaguet@irta.cat
mailto:andreas.meyerhans@upf.edu
https://doi.org/10.1016/j.celrep.2023.112123
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2023.112123&domain=pdf
http://creativecommons.org/licenses/by/4.0/


C

A

B

E

D

F

G H

(legend on next page)

2 Cell Reports 42, 112123, February 28, 2023

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
activated CD8+ T cells.35–37 Homologous DC populations

exist in humans38 and rhesus macaques.39 Cross-presenting

CD103+ DCs that also express XCR1 have been identified as

key elements in the control of mouse and human tumors40,41

and they are critical for enhancing anti-tumor T cell responses

upon PD-1/PD-L1 blockade.42,43 Besides cross-presenting

DCs, also SIRPa+DCs participate in the control of tumor growth.

This conventional DC population is part of the regulatory system

maintaining homeostasis of the fibroblast reticular network of the

spleen44 and CD4+ T cell responses.45 Inhibition of SIRPa+ by

blocking antibodies stimulated tumor T cell recruitment and

increased anti-tumor T cell responses, thus suggesting a can-

cer-promoting role of SIRPa+ DCs by restricting T cell access

to the tumor site.46,47 The contribution of both DC subsets in

chronic virus infections has not been fully investigated.

The XCL1-XCR1 communication axis between virus-specific

CD8+ TPEX and XCR1+DCs is amajor component in virus control

during the initial phase of a chronic infection.37 So far, it remains

unclear to what extent it contributes to virus control during the

established chronic infection steady-state and how it can be

manipulated for host benefit. Using the mouse model of chronic

LCMV infection, we show here that (1) XCR1+ DCs but not

SIRPa+ DCs maintain an activation phenotype, (2) XCR1-target-

ing of viral antigens or expansion of XCR1+ DCs via hydrody-

namic gene transfer of FMS-like tyrosine kinase 3 ligand (Flt3L)

substantially improves virus control, (3) XCR1+ DCs are indis-

pensable to promote the functionality of TPEX2, TEXINT and

TEXTER during anti-PD-L1 treatment but not their proliferation,

and (4) increasing XCR1+ DC numbers during anti-PD-L1 treat-

ment leads to an additional gain in the functionality of exhausted

CD8+ T cells, whereas increase of PD-L1-expressing SIRPa+

DCs dampens the proliferation burst of TPEX2 and TEXINT.

Altogether, our results revealed that XCR1+ DCs and SIRPa+

DCs affect exhausted CD8+ T cell subsets during PD-L1 immu-

notherapy differently and that XCR1+ DCs are a promising

therapeutic target to improve virus control during a chronic viral

infection.

RESULTS

XCR1+ DCs, but not SIRPa+ DCs, maintain an activation
phenotype during chronic LCMV infection
We have previously demonstrated the importance of XCR1+

DCs in virus control during the initial phase of chronic LCMV

infection.37 Here we aimed to further investigate the role of
Figure 1. Phenotypic characterization of CD8+ T cells, XCR1+ DCs, an
Mice were chronically infected with a high dose (2 3 106 pfu) of LCMV strain Do

uninfected. Splenic CD8+ T cells and DC populations were analyzed by flow cyt

(A) Representative gating strategy and quantification of CXCR5+ TIM-3� CD8+

(B) Representative plots and quantification of XCL1-producing CXCR5+ TIM-3�
(C) Representative gating strategy of splenic DCs from an LCMV-infected C57BL

(D and E) Quantification of XCR1+ (D) and SIRPa+ (E) DCs at day 30 p.i.

(F) Representative plots for intracellular LCMV-NP staining and percentages of L

(G) Percentages of CD40, CD80, CD86, and PD-L1 proteins expressed by XCR1

(H) Representative histograms andMFI quantification for the expression of CD40, C

DCs at day 30 p.i.

Data shown are the mean ± SEM from 5–10 mice per group. Statistical analysis w

***p < 0.001; ****p < 0.001).
XCR1+ DCs in the established chronic infection phase. C57BL/

6J mice were chronically infected with a high dose (2 3 106 pla-

que-forming units; pfu) of LCMV strain Docile (LCMVDoc), and

CD8+ T cell and DC populations were analyzed 30 days post-

infection (p.i.) (Figures 1 and S1). Percentage and number of total

and gp33-specific CXCR5+ TIM-3� CD8+ T cells in the spleen

as well as their production of XCL1 were elevated in chronically

infected mice compared with uninfected mice or mice that had

recovered from an acute LCMV infection (Figures 1A–1C, S1A,

and S1B). Concomitantly, chronically infected mice had a higher

percentage of splenic cross-presenting DCs expressing the

XCL1 receptor (XCR1+ DCs) (Figures 1D and 1E). This was the

result of a marked loss of SIRPa+ DCs. Together this demon-

strates the maintenance of the XCL1-XCR1 axis during the

course of a chronic virus infection.

Several viruses, including LCMV, can directly infect DCs and

interfere with their maturation and functioning.48–52 However, it

was recently reported that human cross-presenting DCs have

an innate resistance to infections by enveloped viruses, including

HIV and influenza virus, and thus preserve the host capacity to

elicit an antiviral response.53 To determine whether the marked

loss of SIRPa+ DCs was linked to their increased susceptibility

to LCMV infection, and whether XCR1+ DCs remain functional

during chronic infection, we analyzed the percentage of intracel-

lular LCMV nucleoprotein (LCMV-NP+) in both DC subsets and

measured the expression of activation (CD40, CD80, CD86)

and inhibitory (PD-L1) markers at different time points p.i.

and within LCMV-NP+ and LCMV-NP� DCs (Figures 1F–1H).

Throughout the different stages of infection, the percentage of

SIRPa+ DCs containing LCMV-NP+ was higher than that of

XCR1+ DCs (Figure 1F). XCR1+ DCs exhibited an activation

phenotype with a major increase of CD40+ cells already at day

15 p.i., a steady high level of CD80 and a slight reduction of

CD86 while maintaining low PD-L1 expression at all time points

p.i. Conversely, SIRPɑ+ DCs showed an inhibitory phenotype

with up to 90% positive staining for PD-L1 at day 30 p.i., dis-

played a low level of CD40 and CD86, and a decreasing CD80

expression as the infection progressed (Figure 1G). The expres-

sion levels of these markers at day 30 p.i. were higher in both

LCMV-NP+ DC subsets (Figure 1H). Thus, the characteristics

of XCR1+ and SIRPa+ DCs during LCMV infection resemble

those described for other infections. The relative resistance of

XCR1+ DCs to infection while maintaining their functionality

makes them preferential candidates for immunotherapeutic

strategies during chronic virus infection states.
d SIRPa+ DCs in chronic LCMV infection
cile (LCMVDoc), acutely infected with a low dose (2 3 102 pfu) of LCMV or left

ometry.

T cells isolated from LCMV-infected C57BL6/J mice at day 30 p.i.

CD8+ T cells compared with CXCR5� TIM-3+ CD8+ T cells at day 30 p.i.

6/J mouse.

CMV-NP+ XCR1+ and SIRPa+ DCs at the indicated time points.

+ and SIRPa+ DCs at the indicated time points.

D80, CD86, and PD-L1 on LCMV-NP+ versus LCMV-NP�XCR1+ and SIRPa+

as performed using unpaired t test (ns = not significant; *p < 0.05; **p < 0.01;
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XCR1+DCsare critical for the therapeutic enhancement
of antiviral CD8+ T cell responses
In order to assess whether XCR1+ DCs can be exploited thera-

peutically to improve CD8+ T cell function and restrain LCMV

replication during a chronic infection, we first evaluated the ef-

fects of augmenting XCR1+ DC numbers by systemic Flt3L

administration. Chronically infected and uninfected control

mice were transfected in vivo with the pEF-BOS-Flt3L-bsr

plasmid encoding the human Flt3L gene (Figure 2).54 This pro-

cedure dramatically expanded the numbers of XCR1+ DCs and

SIRPa+ DCs in uninfected (44-fold and 7-fold, respectively)

and chronically infected mice (18-fold and 5-fold, respectively).

The lesser increase in the latter is likely due to the previously

described type-I interferon-mediated inhibition of DC matura-

tion.50 Considering absolute cell numbers per spleen, we

observed a transient shift in the ratio of XCR1+ to SIRPa+ DCs

from about 1:7 to 1:1.5, thus resulting in roughly equal absolute

numbers of both cell subsets 7 days after in vivo transfection

(Figures 2B, S2A, and S2B). DC expansion led to a functionality

increase of virus-specific CD8+ T cells, pronounced in both,

progenitor exhausted (CXCR5+, TIM-3�; TPEX) and effector

exhausted (CXCR5� TIM-3+; TEX) CD8+ T cells (Figures 2C–

2E, S2F, and S2G), without increasing their absolute numbers

(Figures S2C–S2E). This increase in CD8+ T cell effector function

resulted in virus titer reductions in spleen, liver, and lung but

not in kidney (Figure 2G), an organ with limited immune cell

surveillance and known to be a life-long reservoir of LCMV

even after systemic clearance.55 Further analysis at day 41 p.i.

indicated that the Flt3L-mediated improvements in CD8+ T cell

functionality and virus control were not sustained over time

(Figures S3A–S3C). To then validate that the observed antiviral

effects were mediated by XCR1+ DCs, Flt3L was administered

to chronic LCMV-infected XCR1-DTRvenus mice that allow spe-

cific depletion of XCR1+ DCs by diphtheria toxin (DT) treatment

(Figure 2A).56 DT injections markedly reduced the number of

XCR1+ DCs in XCR1-DTRvenus mice (Figure S2A), but not in

wild-type littermates and did not affect CD8+ T cell functionality

per se (Figures S3D–S3F).When XCR1+DCswere depleted after

Flt3L administration, CD8+ T cell activity remained low and virus

titers remained high (Figures 2C–2G). Together, these results

highlight the substantial ability of XCR1+ DCs to invigorate

virus-specific exhausted CD8+ T cells and indicate their thera-

peutic potential during chronic virus infections.

LCMV glycoprotein (GP)-based immunogens have been

shown to enhance antiviral immunity in chronic LCMV infection.57

However, GP-specific CD8+ T cells are less exhausted andmore
Figure 2. XCR1+ DCs are critical for enhancing antiviral CD8+ T cell im
(A) Schematic representation of Flt3L and DT treatment regimens in chronic LCM

(B) Representative plots and quantification of XCR1+ (gray) and SIRPa+ (black

transfection with empty vector pEF-BOS-bsr plasmid (-Flt3L) or pEF-BOS-Flt3L-b

empty vector pEF-BOS-bsr plasmid transfection (n = 2–6 mice).

(C–G) Representative plots and frequency of GP33-41-specific IFNg-producing, IF

(C and D), TPEX (E), and TEX (F) cells, and viral loads in spleens, livers, lungs, and k

(H) Schematic representation of fusion vaccine and DT treatment regimens in ch

(I–K) Representative plots and quantification of NP396-404-specific IFNg-producing

vaccinated mice at day 35 p.i.

Data shown are themean ± SEM from 4–6mice per group. Statistical analysis was

significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
abundant than nucleoprotein (NP)-specific CD8+ T cells.55 To

test whether XCR1+ DCs can be used as therapeutic targets

even under conditions of pronounced exhaustion, fusion vaccine

constructs encoding XCL1 and the LCMV nucleoprotein (XCL1-

NP)were generated. These vaccines consist of dimeric XCL1-an-

tigen fusion constructs that specifically target XCR1+ DCs and

can generate protective immunity in vivo.58 Chronically infected

XCR1-DTRvenus mice were vaccinated with XCL1-NP. Non-tar-

geting fusion vaccines containing a single chain variable frag-

ment specific to the hapten NIP (aNIP-NP) and fusion vaccines

encoding influenza virus hemagglutinin (XCL1-HA) were used

as controls (Figure 2H). XCL1-NP induced a higher frequency of

functional virus-specific CD8+ T cells than aNIP-NP with corre-

sponding reductions in viral loads (Figures 2H–2K). This induction

of functional T cells and their antiviral effect were dependent on

thepresenceofXCR1+DCs (Figures 2H–2K) that remainedhighly

activated after XCL1-NP vaccination (Figure S4). Thus, XCR1+

DCsare critical for an efficient vaccine response in anestablished

chronic infection and provide a benefit even when CD8+ T cell

exhaustion is very pronounced.

XCR1+ DCs are indispensable for increasing
functionality of TPEX2, TEXINT, and TEXTER during anti-
PD-L1 treatment but not for their proliferation
Checkpoint inhibitors like anti-PD-L1 antibodies have been suc-

cessfully used to reinvigorate exhausted CD8+ T cells.20 To

determine whether the beneficial effects derived from anti-PD-

L1 immunotherapy are orchestrated by the XCL1-XCR1 commu-

nication axis, we first analyzed functional changes in TPEX and

XCR1+ DCs in chronically infected C57BL/6J mice treated with

anti-PD-L1. After treatment, more TPEX produced XCL1, and

XCR1+ DCs were present in higher frequencies and absolute

numbers in the spleen (Figures 3A and 3B). Moreover, anti-PD-

L1 treatment led to a functional activation of XCR1+ DCs

measured by interleukin (IL)-12(p40) and CXCL-9 cytokine pro-

duction, effector cytokines known to promote T cell activation

and recruitment (Figures 3C and 3D).59–61 It also significantly

increased the frequency of interferon gamma (IFNg)+, IFNg+

tumor necrosis factor alpha (TNFa)+, and CD107a/b + virus-spe-

cific CD8+ T cells (Figures 3E and 3F). To then test whether

CXCL-9 or IL-12 signaling influenced exhausted CD8+ T cells,

we neutralized these cytokines in anti-PD-L1-treated mice (Fig-

ure 3E). Neutralization of CXCL-9 did not interfere with the anti-

PD-L1-mediated effects, but neutralization of IL-12 significantly

reduced the functionality of PD-1+ CD44+ CD8+ T cells (Fig-

ure 3F). Of note, the functionality of TPEX cells remained unaltered
munity in chronic infections
V-infected XCR1-DTRvenus mice.

) DCs in the spleen from uninfected or chronically infected mice 7 days after

sr plasmid (+Flt3L). Data shown are the mean ± SEM, and the fold change over

Ng- and TNFɑ-producing, and CD107a/b+ splenic PD-1+ CD44+ CD8+ T cells

idneys (G) from Flt3L-treated (+Flt3L) or untreated (�Flt3L) mice at 33 days p.i.

ronically infected XCR1-DTRvenus mice.

CD8+ T cells (I and J) and viral loads (K) in spleen fromDT-treated or untreated

performed using one-way ANOVAwith Tukey’smultiple comparisons (ns = not
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among conditions, and changes were mainly observed for TEX
cells (Figures 3G and 3H).

To further investigate to which degree XCR1+ DCs participate

in the immunotherapeutic effect elicited by anti-PD-L1 blockade,

we compared the anti-PD-L1-induced CD8+ T cell responses

and viral titers in the presence or absence of XCR1+ DCs in

chronically infected XCR1-DTRvenus mice (Figure 4A). The in-

crease in the frequency of IFNg+ and IFNg+ TNFa+ virus-spe-

cific CD8+ T cells and reduction in virus loads (Figures 4B and

4C) were both dependent on the presence of XCR1+ DCs, thus

demonstrating the crucial contribution of XCR1+ DCs in anti-

PD-L1 immunotherapy.

To analyze the dependence of progenitor exhausted TPEX and

terminally exhausted TEX populations on XCR1+ DCs during

anti-PD-L1 blockade in chronic infection, we quantified their

proliferation by Ki67 expression and functionality by IFNg and

TNFa production. Anti-PD-L1 treatment induced proliferation of

gp33-specific TPEX leading to an increase in absolute numbers.

This increase was not altered by XCR1+ DC depletion

(Figures 4D and 4E). We then performed the same analysis using

the newly established classification of exhausted CD8+ T cell

subsets: T progenitor exhausted 1 (CXCR5+ CD69+; TPEX1)

and 2 (CXCR5+ CD69-; TPEX2), and T exhausted intermediate

(CXCR5� CD69�; TEXINT) and terminal (CXCR5� CD69+;

TEXTER).
9 Anti-PD-L1 induced the proliferation of TPEX2 and

TEXINT independently from XCR1+ DC (Figures 4F and S5A),

and changed the frequencies of the four subsets among gp33-

specific exhausted CD8+ T cells, favoring TPEX2 and TEXINT sub-

sets over TEXTER (Figures 4G and S5B). Interestingly, these

anti-PD-L1-mediated changes in relative frequencies were not

observed when XCR1+ DCs were depleted. Without XCR1+

DCs, the subset distribution resembled that of untreated controls

with TEXTER being a predominant population (Figure 4G).

Regarding functionality, anti-PD-L1 treatment increased the fre-

quencies of IFNg+and IFNg+TNFa+TEX cell subsets (TEXINTand

TEXTER) and TPEX2. This functionality increase was strictly

dependent on XCR1+ DCs (Figures 4H–4K, S5C, and S5D).

Taken together, these results demonstrate that XCR1+ DCs are

indispensable to promote TEX antiviral activity during anti-PD-

L1 immunotherapy but are not important for the proliferation

burst of TPEX stem-like progenitors.

XCR1+ DCs reduce terminal differentiation of
exhausted CD8+ T cells during combination therapy
To first examine whether anti-PD-L1 immunotherapy could be

further improved by targeting viral antigens to XCR1+ DCs, we

treated chronic LCMV-infected C57BL/6J mice with anti-PD-

L1, and simultaneously vaccinated them with XCL1-NP or the
Figure 3. Anti-PD-L1 treatment enforces the XCL1-XCR1 communicat

(A–D) Chronically LCMV-infectedmicewere treated with anti-PD-L1 antibody (+ɑP
p.i. Representative plots and quantification of XCL1-producing TPEX (A), XCR1

SIRPa+ DCs.

(E) Schematic representation of anti-PD-L1, anti-CXCL-9, and anti-IL-12 treatme

(F) Spleens were harvested to quantify the percentage of GP33-41-specific IFNg-

(G–I) Representative plots and of GP33-41-specific IFNg- and TNFɑ-producing an

Data shown are the mean ± SEM from 4–6 mice per group. Statistical analysis w

comparisons (ns = not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.00
negative control XCL1-HA (Figure 5A). The massive increase of

virus-specific IFNg-producing CD8+ T cells and subsequent

virus reduction upon anti-PD-L1 treatment could not be further

enhanced by XCL1-NP (Figure 5B). In all cases, virus load reduc-

tions corresponded inversely to the CD8+ T cell responses (Fig-

ure 5C). Heightened CD8+ T cell function was observed in TEX
cells, but not in TPEX cells (Figures 5Dand5E). Similarly, increased

T cell functionality was observed in the TEXINT, TEXTERandTPEX2

populations, but not the TPEX1 population (Figure 5F). Together

this demonstrated that anti-PD-L1 treatment alone or single

XCL1-NP vaccination led to similar immunotherapeutic effects

in chronic virus infection.

We next tested whether the lack of immune enhancement by

the combination of anti-PD-L1 and XCL1-NP vaccines could

be explained by insufficient numbers of XCR1+ DCs. For this

we combined anti-PD-L1 and Flt3L treatments in chronic

LCMV-infected XCR1-DTRvenus mice and evaluated the contri-

bution of XCR1+ DCs by DT-mediated depletion (Figure 6A).

Coupling anti-PD-L1 therapy with XCR1+ DC expansion led to

a significant increase in the frequency of IFNg-producing CD8+

T cells compared with anti-PD-L1 treatment alone (Figure 6B).

However, there was no reduction in virus loads (Figure 6C).

Depletion of XCR1+DCs byDT abolished the frequency increase

of IFNg+ CD8+ T cells and resulted in increased viral loads that

were highest in Flt3L-transfected mice (Figure 6C). To under-

stand the discrepancy between the increased frequency of

effector CD8+ T cells and lack of improved virus control, we

analyzed the different exhausted CD8+ T cell subsets individu-

ally. Combination treatment of anti-PD-L1 and Flt3L resulted in

higher frequencies of IFNg-producing TPEX and TEX cells

(Figures 6D and 6E), particularly in the TPEX1 and TEXTER sub-

populations that almost doubled relative to anti-PD-L1 treatment

alone (Figures 6F and S6A). However, this frequency increase

was not a consequence of increased proliferation. Rather,

Flt3L partially abrogated anti-PD-L1-induced TPEX proliferation

and resulted in reduced absolute numbers of both TPEX and

TEX without altering the relative frequency of the exhausted

CD8+ T cell subsets (Figures 6H–6J, S6B, and S6C). Upon

XCR1+ DC depletion, Flt3L treatment led to accumulation of

the TEXTER subset over TEXINT. Thus, XCR1+ DCs are not only

critical for the functional enhancement of exhausted CD8+

T cell subsets (see Figure 4) but also reduce their terminal differ-

entiation. In contrast, SIRPa+ DC expansion upon Flt3L admin-

istration in the absence of XCR1+ DCs contributed to terminal

differentiation (Figure 6J). These two features of the DC subsets,

namely to promote or prevent accelerated terminal exhaustion,

have been very recently demonstrated and are consistent with

our observations.62,63
ion axis

D-L1) at days 22, 25, and 28 p.i. or left untreated (�ɑPD-L1) and killed at day 30

+ DCs (B), IL-12(p40)-producing (C), and CXCL-9-producing (D) XCR1+ and

nt regimens in chronic LCMV-infected C57BL6/J mice.

producing and CD107a/b+ PD-1+ CD44+ CD8+ T cells.

d CD107a/b + TPEX (H) and TEX (I) cells are shown.

as performed using unpaired t test or one-way ANOVA with Tukey’s multiple

01).
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Figure 4. XCR1+ DCs are essential to maintain functionality of effector TEX subsets during anti-PD-L1 treatment

(A) Schematic representation of anti-PD-L1 and DT treatment regimens in chronic LCMV-infected XCR1-DTRvenus mice. Chronic infected anti-PD-L1 treated

(+ɑPD-L1) or untreated (�ɑPD-L1) mice were killed at day 30 p.i. and spleens were harvested for analysis.

(B and C) Percentage of GP33-41-specific IFNg-producing and IFNg- and TNFɑ-producing PD-1+ CD44+ CD8+ T cells (B) and viral loads (C).

(D and E) Representative plots and quantification of Ki-67+ proliferating gp33-tet+ TPEX and TEX (D) and their absolute numbers in spleen (E).

(legend continued on next page)
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DISCUSSION

In the present study we demonstrate the role of XCR1+ DCs in

maintaining the chronic state of a virus infection. Chronic infec-

tions are characterized by a dynamic equilibrium of virus expan-

sion and CD8+ T cell-mediated control. Perturbing this equilib-

rium by (1) targeting viral antigens to XCR1+ DCs, (2) blocking

inhibitory checkpoints by anti-PD-L1 antibodies. and/or (3)

increasing XCR1+ DC to SIRPa+ DC ratios by Flt3L administra-

tion all led to an increase of functional virus-specific CD8+ T cells

with enhanced virus control. Importantly, the functional gain of

CD8+ T cells, mainly TPEX2, TEXINT, and TEXTER, was dependent

on XCR1+DCs in all cases. These data not only propose different

immunotherapy options to treat chronic virus infections but also

highlight the key role of XCR1+ DCs and their differential effects

on exhausted CD8+ T cell subsets for therapy success.

XCR1+ and SIRPa+ DCs behave differently with respect to vi-

rus susceptibility and immune regulatory functionality during

chronic LCMV infection. In the chronic infection phase, XCR1+

DCs expressed the ligands CD40, CD80, and CD86 necessary

for regulating exhausted CD8+ T cell functioning through costi-

mulatory pathways64–66 as well as the cytokines CXCL-9 and

IL-12(p40) demonstrating that they are capable to attract T cells

and promote their differentiation toward an effector pheno-

type.59,67,68 In particular, IL-12 signaling was required for suc-

cessful anti-PD-L1 treatment in chronic infection (Figures 3E–

3I), which is well in line with previous observations in cancer

therapy.60 In contrast, SIRPa+ DCs had lower levels of activation

markers but higher levels of PD-L1 and weremore susceptible to

infection. When being expanded by Flt3L in the absence of

XCR1+ DCs, we observed a reduction of TPEX expansion trig-

gered by anti-PD-L1 and an increase in terminal differentiation.

Together this suggests that both DC subtypes are part of the

homeostatic control mechanism within lymphatic tissue that

balances effector function and differentiation of the exhausted

CD8+ T cell subsets. It implies that either expansion of XCR1+

DCs or inhibition of SIRPa+ DCs could be of therapeutic use.

Evidence for both strategies have been suggested in the context

of cancer immunotherapy69–72 and they seem toapply for chronic

infection control as well.

The observation that proliferation and effector function of ex-

hausted antigen-specific CD8+ T cells in chronic LCMV infection

are regulated in a segregated manner is consistent with the

concept of ‘‘feedback-regulated balance of growth and differenti-

ation’’ by Grossman and Paul.73 This concept describes the feed-

backs that regulate the intensity of proliferation, differentiation and

deathofantigen-specificTcells andexplains thekineticsofexpan-

sion upon immunization.74,75 It was hypothesized that these T cell

responses might be driven as well as limited by competition for

cytokines or by the action of specialized regulatory elements

while clustered around antigen-presenting DCs. Importantly, the

specific characterization of the hypothetical cells and molecules

involved in the regulation was awaiting definite experimental
(F and G) Percentage of Ki-67+ TPEX1, TPEX2, TEXINT, and TEX TER (F) and subse

(H–K) Representative plots and frequency of IFNg-producing and TNFɑ-produci
Data shown are themean ± SEM from 4–6mice per group. Statistical analysis was

significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
clarification. Our study heremay suggest DC subsets to represent

part of those biological control elements that implement the intra-

cluster feedback regulation. Further studies along this concept

deserve systematic analyses.

Our findings that XCR1+ DCs are indispensable for anti-PD-L1

immunotherapy during a chronic viral infection are in line with

prior studies in the context of cancer therapies.41,42 Importantly,

this requirement for XCR1+ DCswas linked to the functional gain

of exhausted CD8+ T cell subpopulations but not their prolifera-

tion. This could be explained by the ability of TPEX cells to main-

tain their proliferative capacities intrinsically through B cell- and

monocyte-derived IL-2776,77 and independent from DC and

CD4+ T cell help.78 In addition, XCR1+ DCs reduced differentia-

tion of the CD8+ T cell subsets toward terminal exhaustion, an

observation that was also very recently reported by Dähling

and colleagues.63 Anti-PD-L1 therapy in the absence of XCR1+

DCs only induced CD8+ T cell proliferation without a gain in

functionality and without better virus control. This indicated

that XCR1+ DC numbers may limit treatment success in certain

conditions and that an increase in that DC subset would be

beneficial. Indeed, this was observed in cancer treatment

when combining Flt3L, radiotherapy, and a TLR3/CD40 agonist

by in situ administration.43,79 However, in our experiments with

chronic LCMV infection and systemic Flt3L delivery, the func-

tional gain of CD8+ T cells was counterbalanced by a reduction

in their absolute numbers and the expansion of SIRPa+ DCs that

are a preferred virus infection target.

The differential dependence of the exhausted CD8+ T cell

subsets on XCR1+ DCs for their functional activation is not yet

completely understood. Activation requires direct contact of

T cell receptors with epitope-loaded MHC molecules on anti-

gen-presenting cells. During chronic LCMV infection, XCR1+

DCs are present both in the T cell zone and in the red pulp of

the spleen where they can contact both TPEX and TEX, respec-

tively.9,63 Upon anti-PD-L1 treatment, both XCR1+ DCs and vi-

rus-specific T cells reorganize around the marginal zone.63

Therefore, the fact that TPEX1 are not activated by XCR1+ DCs

during anti-PD-L1 treatment cannot be explained by location

alone but may be due to their presence in specialized niches

that help maintain their quiescent and stem-like properties, for

example within the T cell zone in chronic infection,13,80 or in

dense antigen-presenting cell niches within tumors.81 Direct ev-

idence for a differential dynamic and localized interplay between

XCR1+ DCs and exhausted CD8+ T cell subsets is still lacking

and deserves further investigation.

The critical importance of XCR1+DCs for the functional gain of

exhausted CD8+ T cell subsets may direct options for immuno-

therapeutic intervention strategies against chronic virus infec-

tions. Targeting virus antigen to XCR1+DCs, i.e., by linking a viral

protein to the DC-attracting chemokine XCL1, or expanding

XCR1+DC numbers by Flt3L, augmented exhausted CD8+

T cell functions and led to better virus control. The same was

achieved when blocking PD-L1-mediated signaling. Combining
t frequency within gp33-tet+ exhausted CD8+ T cells (G).

ng exhausted CD8+ T cell subsets.

performed using one-way ANOVAwith Tukey’smultiple comparisons (ns = not
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Figure 5. Combination of XCR1+ DC antigen targeting and anti-PD-L1 treatment in chronic LCMV infection

(A) Schematic representation of fusion vaccine and DT treatment regimens in C57BL/6J mice. Chronic infected and anti-PD-L1 treated (+ɑPD-L1) or untreated
(�ɑPD-L1) mice were vaccinated with the corresponding fusion vaccines and killed at day 35 p.i.

(B–F) Spleens were harvested to quantify the percentage of NP396-404-specific IFNg-producing CD8+ T cells (B), viral loads (C), and frequencies of IFNg-pro-

ducing exhausted T cell subsets (D–F).

Data shown are the mean ± SEM from six mice per group. Statistical analysis was performed using one-way ANOVA with Tukey’s multiple comparisons (ns = not

significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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treatments, for example, administration of anti-PD-L1 together

with antigen targeting to XCR1+ DCs or with Flt3L injection

may further increase T cell functionality. However, the extent of

this and its benefit for virus control may depend on the properties

of the infecting virus. In the experimental infection system used

here, in which LCMV infects lymphatic tissue and uses anti-

gen-presenting cells including SIRPa+ DCs as target cells, the
10 Cell Reports 42, 112123, February 28, 2023
chronic infection state may have sufficient antigen levels in the

spleen so that additional targeting to XCR1+ DCs only had a mi-

nor effect. Likewise, the T cell functionality improvement by

increasing the number of XCR1+ DCs by Flt3L may be compen-

sated by the increase of SIRPa+ DCs that represent new virus

target cells and help virus expansion. The respective implica-

tions for the immunotherapy of chronic virus infections like those
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with HIV or hepatitis B virus (HBV) in humans are unclear but

should clearly be addressed.

While the immunotherapy of virus infections is an old concept,

it gained a lot of attention in recent years due to the success of

checkpoint inhibitors in cancer treatment.23 However, in most

of these trials, HIV or chronic HBV or HCV infections were exclu-

sion criteria due to concerns regarding safety, efficacy, and

tolerance of checkpoint inhibitors when combined with antiviral

therapy.82 Nonetheless, trial results with few chronic virus-in-

fected patients did not support such concerns and suggest a

benefit at least for some of the patients.28,83,84 With the data pro-

vided here in the chronic LCMV infection model in mice, espe-

cially the combination of anti-PD-L1 with virus antigen targeting

to cross-presenting DC would be an interesting therapy option

for HIV-infected individuals. With the virus load controlled by an-

tiretroviral therapy, the likelihood of exhausted regulatory T cell

expansion would be reduced85 and cross-presenting DC-target-

ing vaccines might then redirect HIV-specific cytotoxic CD8+

T cell (CTL) responses to conserved epitopes within the pa-

tient.86 Given that all the elements of such a therapy strategy

are in place, including human cross-presenting DC-targeting

constructs,87 conserved HIV CTL epitope immunogens86 and a

variety of available checkpoint inhibitors, it seems a feasible

and well supported immunotherapy approach.

Limitations of the study
The dynamic interplay between the DC populations and the ex-

hausted CD8+ T cell subsets that finally determine differential

T cell activation is not resolved. Tools are still lacking that allow

capturing and/or blocking exhausted T cell differentiation in vivo.

Furthermore, specific depletion of SIRPa+ DCs is not yet

possible. Our attempts to co-localize the DC subsets with TPEX
cells after adoptive transfer of TPEX into chronic LCMV-infected

mice resulted in too low cell numbers to reach a conclusion.
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GP33 Biotinylated Monomer - H-2 Db
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DNase I recombinant, RNase-free Roche Cat#4716728001

LiberaseTM DL Research Grade Roche Cat#5401160001
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Critical commercial assays

DAB Substrate Kit, Peroxidase (HRP), with Nickel Vector Laboratories Cat#SK-4100
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QIAGEN EndoFree MegaPrep Kit QIAGEN Cat#12381

Pan Dendritic Cell Isolation Kit (mouse) Miltenyi Biotec Cat#130-100-875

Experimental models: Cell lines

MC57 cell line Grown in house N/A

L929 cell line Grown in house N/A

VL-4 hybridoma Grown in house N/A

Experimental models: Organisms/strains

C57BL/6J mice NCI/Charles River Cat#027; RRID:IMSR_JAX:000664

XCR1DTRVenus mice Yamazaki et al.56 Bred in house

Recombinant DNA

pEF-BOS-bsr vector Iwabuchi et al.54 N/A

pEF-BOS-humanFlt3L-bsr vector Iwabuchi et al.54 N/A

XCL1-HA fusion vaccine Fossum et al.58 N/A

XCL1-LCMV-NP fusion vaccine Even Fossum N/A

aNIP-LCMV-NP fusion vaccine Even Fossum N/A

Software and algorithms

FlowJo v10.7.1 TreeStar https://www.flowjo.com/

solutions/flowjo/downloads
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GraphPad Prism v9 GraphPad Software https://www.graphpad.com/

scientificsoftware/prism/

Other

RPMI-1640 medium ThermoFisher Cat#21875-034

DMEM, high glucose, pyruvate ThermoFisher Cat#41966-052

IMDM, Hepes medium ThermoFisher Cat#21980-032

Fetal Bovine Serum Sigma Cat#F7524

Penicillin-Streptomycin ThermoFisher Cat#15140122

b-mercaptoethanol Sigma Cat#M3148

Sodium pyruvate Sigma Cat#S8636

Trypsin-EDTA 0.25% ThermoFisher Cat#25200

DMSO Sigma Cat#D4540
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Lead contact
Further information and requests for resources and reagents should be directed to the lead contact, Andreas Meyerhans (andreas.

meyerhans@upf.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d All data reported in this paper will be shared by the lead contact upon request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
Male C57BL/6J mice (RRID:IMSR_JAX:000664) aged 6 weeks were purchased from Charles River Laboratories and XCR1-

DTRvenus mice were obtained from Dr. Tsuneyasu Kaisho,56 bred and maintained under specific pathogen-free conditions at in-

house facilities. Male and female XCR1-DTRvenus mice aged 6–12 weeks were used for experimentation. The number of animals

for each experiment was determined based on previous experience with the model system. All animal work was conducted accord-

ing to the guidelines from Generalitat de Catalunya approved by the ethical committees for animal experimentation at Parc de Re-

cerca Biomèdica de Barcelona (CEEA-PRBB, Spain).

Viruses and infections
LCMV Docile (LCMVDoc) was grown in L929 cells and titrated using focus forming assay on MC57 cells.88 Mice were infected intra-

peritoneally with either a low-dose (23 102 plaque-forming units) or a high dose (23 106 plaque-forming units) of LCMVDoc to induce

an acute or chronic infection, respectively.

METHOD DETAILS

Cell preparation, flow cytometry and cell sorting
Spleens were mechanically disrupted onto a 40mM cell strainer using the plunger of a 1mL syringe and incubated in 5mL of 0.15M

Ammonium chloride buffer for 5min at room temperature (RT) for red blood cell lysis. Cell suspensions werewashed in RPMI (GIBCO)

supplemented with 10% FBS, 1% penn/strep, 0.05mM b-Mercaptoethanol and 1mMSodium Pyruvate (cRPMI). For LCMV-NP + DC

marker analysis, spleenswere enzymatically digested at 37�C for 30min with amix of 0.2mg/ml DNAse and 0.16mg/ml Liberase and

DC were enriched using the Pan-Dendritic Cell Isolation kit (Miltenyi).
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For flow cytometric analysis, equal number of cells were stained with Live/Dead Fixable Violet Cell Stain (ThermoFisher Scientific)

or Fixable Viability Stain 780 (BD Biosciences) in PBS for 15 min at RT followed by staining with extracellular antibodies for 20 min on

ice in FACS buffer (PBS 5% FCS, 0.5% BSA, 0.07%NaN3). Biotinylated MHC class I monomer (MBL International) was tetramerized

by addition of PE-conjugated Streptavidin over 10-time intervals and added together with extracellular antibodies. Cells were

then fixed for 20 min on ice with 2% Formaldehyde and stained with antibodies for intracellular proteins (XCL1, LCMV-NP, IFNg,

IL-12(p40), CXCL-9, Ki67) for 20 min on ice in Perm/Wash buffer (PBS 1% FCS, NaN3 0.1%, Saponin 0.1%). All antibodies were

purchased from either BD Biosciences, eBioscience, BioLegend, Miltenyi or R&D Systems. Samples were acquired on an LSR

Fortessa (BD Biosciences), a SP6800 Spectral (Sony) or an Aurora (Cytek) analyzer. FACS data was analyzed using FlowJo 10

software (Tree Star Inc).

Intracellular cytokine staining
For determination of cytokine-producing T cells, splenocytes (1–2x106) were stimulated with GP33-41(1 mg/mL) or NP396-404 (1 mg/mL)

peptides for 5h at 37C 5%CO2 in cRPMI in the presence of Brefeldin A (BFA, Sigma) before antibody staining. Conjugated antibodies

to the granular membrane proteins CD107a and CD107b were added to the cells prior to stimulation. For determination of XCL1-pro-

ducing T cells, Ki67 + T cells and IL-12(p40) and CXCL-9-producing dendritic cells, spleens were harvested in media containing BFA

and antibody staining was performed without additional stimulation.

Virus load quantification
Viral titers from spleens of infected mice were quantified by focus forming assay on MC57 cells as described previously.88 Briefly,

spleens were frozen at �80�C right after collection. Tissue was mechanically disrupted and 500mL of RPMI 2% FBS were added

to the homogenization. One in ten-fold dilutions were prepared and overlaid onto MC57 cell monolayers in 24-well plates. After

48h of incubation at 37C 5% CO2, staining was performed using monoclonal rat anti-LCMV antibody (VL-4) for 1h, Peroxidase

Anti-Rat IgG Polyclonal Ab (Jackson ImmunoResearch) and DAB Peroxidase substrate kit (Vector Laboratories).

In vivo anti-PD-L1 antibody treatment
Where indicated, groups of mice were injected with 200mg of anti-PD-L1-specific mAb (10F.9G2, BioXCell) intraperitoneally three

times, every third day starting at the indicated time points. As a control, physiological serum was administered.

In vivo cell depletion
For depletion of XCR1+ dendritic cells, groups of heterozygote XCR1-DTRvenus mice were injected with 25 ng/g body weight of

Diphtheria Toxin (DT) intraperitoneally three times, every third day starting at the indicated time points. As control, physiological

serum was administered.

In vivo transfection of human Flt3L
Human Flt3L (GenBank: NM_001459.3) gene was previously subcloned into the pEF-BOS-bsr plasmid.54 Plasmid DNA was trans-

formed into E. coli DH5ɑ (New England Biolabs) and purified using the NucleoBond Xtra Maxi EF Kit (Macherey-Nagel GmbH & Co).

For hydrodynamic gene delivery, 50mg plasmid DNAwas diluted in 2mL TransIT-QR Hydrodynamic Delivery Solution (Mirus Bio LLC)

and rapidly injected intravenously (tail vein) in 3-5s using a 27-gauge needle. As control, 50mg of the empty vector pEF-BOS-bsr

plasmid was administered.

In vivo neutralization of CXCL-9 and IL-12
Where indicated, groups of mice were injected intraperitoneally with 300mg of anti-CXCL-9-specific mAb (MIG-2F5.5, BioXCell) four

times, every other day or with 500mg anti-IL-12-specificmAb (C17.8, BioXCell) daily, starting at the indicated time points. As a control,

physiological serum was administered.

Electroporation of Xcl1-targeted fusion vaccines
The fusion vaccines are dimeric molecules where each monomer consists of a targeting unit, an antigenic unit, and a dimerization

unit.89 Construction of the XCL1-targeted fusion vaccines has been described previously.58,90 Nucleotide sequences encoding

the LCMV nucleoprotein were obtained fromGenScript, with added 50 BsmI and 30 BsiWI sites and cloned into the vaccine construct.

Fusion vaccines containing a single chain variable fragment specific to the hapten (5-iodo-4-hydroxy-3- nitrophenylacetyl) NIP were

used as non-targeted controls and vaccines expressing the Influenza virus hemagglutinin as negative controls. All plasmids were

transformed into E. coli DH5ɑ (New England Biolabs) and purified using the QIAGEN Endofree MegaPrep Kit according to the man-

ufacturer’s instructions. The indicated groups of mice were anesthetized with isoflurane and after shaving the lower back, 25mL of

DNA vaccine (0.5 mg/mL in physiological serum) was injected intradermally on the left flank followed by electroporation using the

ECM 830 Electroporation System (BTX Molecular Delivery Systems) with 2 pulses of 450 V/cm 3 2.5ms and 8 pulses of 110

V/cm 3 10ms. The procedure was repeated on the right flank.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Graphs were compiled and statistical analyses were performed with Prism software (GraphPad). Statistical significance was evalu-

ated with the unpaired t test when comparing two groups and one-way ANOVA when comparing more than two groups. Non-signif-

icant differences were indicated as ‘‘ns’’. p-values below 0.05 were considered significant and were indicated by asterisks: *p < 0.05;

**p < 0.01; ***p < 0.001; ****p < 0.0001.
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