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Abstract

The objective of this work was to benchmark differ-
ent deep learning architectures for noise detection against
cardiac arrhythmia episodes recorded by pacemakers and
implantable cardioverter-defibrillators (PM/ICDs) and
transmitted for remote monitoring. Up to now, most sig-
nal processing from ICD data has been based on classical
hand-crafted algorithms, not AI or DL-based ones.

The database consist of PM/ICD data from 805 patients
representing a total of 10471 recordings from three differ-
ent channels: the right ventricular (RV), the right atria
(RA), and the shock channel.

Four deep learning approaches were trained and opti-
mized to classify PM/ICDs’ records as actual ventricular
signal vs noise episodes. We evaluated the performance of
the different models using the F2 score.

Results show that the use of 2D representations of 1D
signals led to better performances than the direct use of
1D signals, suggesting that the detection of noise takes
advantage of a spectral decomposition of the signal, which
remains to be confirmed in other contexts.

This study proposes deep learning approaches for the
analysis of remote monitoring recordings from PM/ICDs.
The detection of noise allows efficient management of this
large daily flow of data.

1. Introduction

Remote monitoring of pacemakers and implantable car-
dioverter defibrillators (PM/ICDs) identifies early signs of
lead failure, which lowers patient morbidity and mortality.

Remote monitoring generates a large amount of data
with low yield. It is estimated that only 7 to 9% of the
transmitted data requires a medical opinion, and less than
2% motivate early patient management [1]. In case of non-

sustained ventricular arrhythmia, a major challenge is to
identify lead noise (4% of the tracings). Noise episodes
may eventually reveal electrode failure, the consequences
of which can be disastrous (syncope, inappropriate shock,
death)[2–4]. The analysis of these large datasets requires
a lot of human resources, thus the deployment of remote
monitoring surveillance in clinical practice remains diffi-
cult.

The ultimate goal of our project was to develop an assis-
tance algorithm, based on a machine learning strategy, al-
lowing an automated analysis of cardiac arrhythmia traces
transmitted by PM/ICDs upstream of human evaluation.
In this work, we compared four different deep learning ap-
proaches for noise detection against arrhythmia episodes in
order to test three key aspects of the classifier: i) the input
space for handling 1D signals; ii) the imbalanced data-set
with missing signals; and iii) the deep network architec-
ture.

2. Methods

2.1. Dataset

The database was composed of PM/ICD remote records
collected at Bordeaux University Hospital and managed by
IHU Liryc. A total of 805 patients has been followed-up,
creating 10,471 records, each composed of right ventric-
ular bipolar signals, and possibly atrial, left ventricular
and/or far field EGM signals, depending on the type of
device (single, dual, or triple-chamber pacemaker or im-
plantable cardioverter defibrillator).

The database was randomly divided into 3 subsets:
• Training set: 417 patients, 4998 recordings
• Validation set: 142 patients, 2621 recordings
• Test set: 328 patients, 2843 recordings

The records labeled by the device as non sustained ven-
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tricular tachycardia (NSVT) may actually be relevant sig-
nals or noises. The database was then manually anno-
tated, distinguishing two classes: relevant ventricular sig-
nal (CLASS n) and noise (CLASS y).

Table 1: Data profile.

Training set Validation set Test set

Patients 417 142 246

Recordings 4998 2621 2843

NSVT (CLASS n) 4681 2515 2722

Noise (CLASS y) 317 106 121

2.2. Neural Network architectures

2.2.1. 1D-AgResNet

All Recordings were unevenly sampled at the maximum
rate 200 Hz for efficient storage in the device. We applied
data interpolation so that all time-steps were 5 ms. Con-
sidering that the recordings were not of the same length,
window sliding was applied. It consisted of taking the first
W points from the recording of L points, and then moving
forward by S points and taking the following W points, at
the end getting (L-W)/S + 1 samples of each recording.

This way we achieved two things: (i) samples of equal
length; and (ii) a larger sample size. Moreover, not all
recordings have the same number of channels. As not
all recordings had the same number of channels, we ar-
tificially added signal lines at zero to have 3 channels in
all recordings. We finally obtained samples with the same
number of channels, time-step, and number of points.

The architecture of our model was based on the Resid-
ual neural network with 3 channels in the input and 2000
points per sample.

2.2.2. 2D-DenseNet

To take advantage of Deep Convolutional Neural Net-
works, we converted the time series data into images.

In this part, we only considered the recordings of the
right ventricular channel, so we obtained two-dimensional
images of the temporal traces of the ventricular signal over
2000ms. Then these images were fed to a Dense neural
Network (DenseNet) for image classification. Input image
dimension of the network was (248,372,1).

DenseNet is an improved version of convolutional neu-
ral networks that minimizes the vanishing gradient prob-
lem, and can be trained with few parameters which takes

less time and is found to achieve better results. [5]
The figure depicts the architecture of a typical DenseNet

model, we have dense blocks composed of interconnected
layers : each layer is receiving information from all pre-
ceding layers and in between there are non-linear trans-
formation (Batch Normalization, Rectified Linear Unit
(ReLU), Convolutions ). A transitional block is introduced
between two dense blocks as a way of downsampling by
applying a batch normalization, a convolution and a global
average pooling.
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Figure 1: (a) Representation of the neural network ar-
chitecture (2D-DenseNet), (b) Dense block, (c) transition
layer.

2.2.3. 2DTF-CNN

All recordings were sampled at 200Hz. In this section,
we have only considered the first 15000ms for each sample
and we carried out an interpolation in order to have a fixed
time-step equal to 5ms and a number of recordings equal
to 3000.

A spectrogram is the pointwise magnitude of the fourier
transform of a segment of an audio signal. We compute,
for each time signal, the correspending spectrogram. We
obtain two-dimensional graphs and a third dimension rep-
resented by colors, time is running along the x−axis. The
vertical axis represents frequency. The amplitude of a par-
ticular frequency at a particular time is represented by the
third dimension.

The 2D time/frequency maps of the ventricular bipolar
signal are then fed to convolutional neural for classification
purpose.

We propose here a classical CNN architecture consti-
tuted of a stacking of two convolutional layers alternat-
ing with two pooling layers and terminating with two fully
connected (FC) layers and a dropout layer (p = 0.5) in-
between. The output is a probability distribution obtained
utilizing a sigmoid function on the output of the final FC
layer. The network architecture is represented in Figure 2.
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Figure 2: Representation of the neural network architec-
ture (2DTF-CNN).

We used a stochastic gradient descent method (Adam)
for training the proposed model with 32 samples for batch
size. The hyper-parameters are set as follows: learning rate
of 10−3, and number of epochs are set to 100.

2.2.4. 2DTF-VGG

In this part, RV-time/frequency maps are also used as in-
puts of the network. Each RV recording is first divided into
regular time segments each 10 seconds wide. We compute
then for each part the spectrogram in the range [0-100Hz]
with a frequency resolution of 2Hz, and a 50% overlap-
ping sliding windows of 1s leading to one 50x20 image
for each 10-second segment. These 2D representations
feed a VGG-like neural network. Final architecture was
selected using a 5 fold cross-validation process over the
training dataset. In order to manage the unbalanced data-
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Figure 3: Representation of the neural network architec-
ture (2DTF-VGG).

set, we train a cost-sensitive classifier and penalize miss-
classifications from the minority class y more than the ma-
jority class n by introducing weights to our loss function
as follows:

Loss =
1

n

n∑
i=1

Wyilog(ŷi) + (1−W )(1− yi)log(1− ŷi)

Where yi is the probability of input i to be be a noise event;
and n the total number of example in the training database.
W was set to 0.66 using the cross validation process.

A record being composed of several parts, we classify
the recording as noise if at least one of its parts is classified
as noise.

2.3. Evaluation metric

To assess the accuracy of the classification results ob-
tained by the different deep neural networks models, we

compute the F2 score [6]:

Fβ = (1 + β2)
PPV · se

β2 · PPV + se
, with β = 2

where se is the sensitivity to detect noise, and PPV the
positive predictive value to detect noise.

se =
TP

TP + FN
, PPV =

TP

TP + FP

For instance, noise (class y) is the positive class, and
NSTV (class y) is the negative class.

3. Results

The CNN-based network (2DTF-CNN) that used 2D
time/frequency maps of the ventricular bipolar signal as
input gave the best results on the test set (F2 = 0.914), out-
performing pre-trained VGG (2DTF-VGG) (F2 = 0.863).
However, a CNN network based on a naive DenseNet ar-
chitecture trained on 2D images of the ventricular signal
time traces (2D-ResNet) also performed very well (F2 =
0.906). Both architectures surpassed networks with 1D
signals as input (1D-AgResNet: F2 = 0.791).
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Figure 4: Overall Results.

In table 2 we show confusion matrices of the four meth-
ods. In particular, the false negative metric on the test set
is coherent with the F2-scores (2DTF-CNN: FN = 9, 2D-
DenseNet: FN = 13, 2DTF-VGG: FN = 17, 1D-AgResNet:
FN=30). On the other hand, if we consider the number
of the missclassified recordings (2DTF-CNN: FN+FP =26
, 2D-DenseNet: FN+FP = 17, 2DTF-VGG: FN+FP = 31,
1D-AgResNet: FN+FP=30) the 2D-DenseNet method out-
performs the three others methods but the F2-score gives
more weight to sensitivity(se) thus we penalize our models
more for false negatives then false positives.
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Train Valid Test
TN 4677 2508 2705
FN 5 11 9
FP 4 7 17
TP 312 95 112

(a) 2DTF-CNN

Train Valid Test
TN 4680 2513 2718
FN 1 3 13
FP 1 2 4
TP 316 103 108

(b) 2D-DenseNet

Train Valid Test
TN 4679 2502 2708
FN 0 8 17
FP 2 13 14
TP 317 98 104

(c) 2DTF-VGG

Train Valid Test
TN 4681 2511 2722
FN 0 10 30
FP 0 4 0
TP 317 96 91

(d) 1D-AgResNet

Table 2: Confusion matrices

4. Discussion and conclusion

In this work, we suggest a deep learning approach to au-
tomatically identify PM/ICD episodes with lead noise, re-
sults show that the use of 2D representation and a convolu-
tional neural network (2DTF-CNN, 2D-DenseNet, 2DTF-
VGG) outperforms the use of 1D representation of the sig-
nal (1D-AgResNet).

The 2DTF-CNN has the best performance in terms of
F2-score reaching 91% on the test set. This may suggest
that noise detection can also benefit from spectral decom-
position of the signal, which remains to be confirmed in
other contexts.

Regarding the imbalanced data, we used a weighted loss
function which potentially improved the F2-score. It will
also be interesting to work on resampling the training set as
shown in [7] where the authors propose an under-sampling
approach to make a balanced dataset out of the imbal-
anced one. Adding an arrhythmia class, [8], may also
help the model distinguish noise episodes from arrhythmia
episodes, thereby minimizing the false positive rate.
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