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ABSTRACT

Real-world sound scenes consist of time-varying collections of sound
sources, each generating characteristic sound events that are mixed
together in audio recordings. The association of these constituent
sound events with their mixture and each other is semantically con-
strained: the sound scene contains the union of source classes and
not all classes naturally co-occur. With this motivation, this paper
explores the use of unsupervised automatic sound separation to de-
compose unlabeled sound scenes into multiple semantically-linked
views for use in self-supervised contrastive learning. We find that
learning to associate input mixtures with their automatically sepa-
rated outputs yields stronger representations than past approaches
that use the mixtures alone. Further, we discover that optimal source
separation is not required for successful contrastive learning by
demonstrating that a range of separation system convergence states
all lead to useful and often complementary example transformations.
Our best system incorporates these unsupervised separation models
into a single augmentation front-end and jointly optimizes similar-
ity maximization and coincidence prediction objectives across the
views. The result is an unsupervised audio representation that ri-
vals state-of-the-art alternatives on the established shallow AudioSet
classification benchmark.

Index Terms— Contrastive learning, audio representation learn-
ing, self-supervision, source separation

1. INTRODUCTION

The construction of human-labeled audio datasets for sound event
recognition is notoriously time-consuming and subjective, imposing
practical limitations on dataset size and quality. For example, label
noise issues such as missing, incorrect or inconsistent labels are
inherent to this process [1, 2, 3, 4]. In contrast, unsupervised repre-
sentation learning can exploit much larger amounts of data without
the need for additional labeling. One of the advantages of these
representations is they are less specialized towards the often-biased
human labels and thus may be better suited for generalization to
other tasks [5, 6, 7, 8].

Self-supervised methods aim at learning representations without
the need for external supervision. Absent explicit labels generated by
humans, the success of these methods relies on the design of proxy
learning tasks in which pseudo-labels are generated from patterns in
the data. These methods solve proxy tasks on unlabeled data to learn
mappings from inputs to low-dimensional representations, which
can then be used for downstream tasks such as classification. This

∗Work done during an internship at Google Research.
This extended version of a WASPAA 2021 submission under same title has
additional discussion for easier consumption.

paradigm has seen major progress in computer vision [9, 10, 11]
and in speech recognition [12, 13, 7]. For general-purpose audio,
including a variety of environmental sounds beyond speech, the
majority of works are based on contrastive learning [14, 15, 16,
17, 18, 19], where a representation is learned by comparing pairs
of examples selected by some semantically-correlated notion of
similarity [20]. Specifically, comparisons are made between positive
pairs of “similar” and negative pairs of “dissimilar” examples, with
the goal of learning a representation that pulls together positive
pairs and thus reflects semantic structure. One of the first works in
contrastive audio representation learning uses triplet loss [14], in
which anchor-positive pairs are created by sampling neighboring
audio frames as well as applying other audio transformations (e.g.,
adding noise). The proxy task of coincidence prediction learns
a representation to support predicting whether a pair of examples
occurs within a certain temporal proximity [15].

Recently, promising results have been attained by contrastive
learning approaches that solve the proxy task of similarity maxi-
mization [17, 18, 19], following the seminal SimCLR work in visual
representation learning [9]. This method consists of maximizing the
similarity between differently-augmented views of the same input
audio example. Critical to its success is the simultaneous use of
a diversity of semantics-preserving, domain-specific augmentation
methods [9, 18]. For audio modeling, proven augmentation strategies
include sampling nearby audio frames [14, 15, 17, 18, 19], artificial
example mixing [18, 19, 14], time/frequency masking [18, 19], ran-
dom resized cropping [18] and time/frequency shifts [14, 18, 19].
In most cases, these augmentations introduce artificial, handcrafted
transformations with hyperparameters that must be tuned to lie within
a semantics-preserving range. However, typical real-world sound
scene recordings already tend to be quite complex, involving mix-
tures of several sound sources at varying levels and unexpected chan-
nel distortions. Therefore, these artificial augmentation techniques
risk introducing an unrealistic domain shift that hinders generaliza-
tion to real-world applications.

In this work, we explore using unsupervised sound separation as
an alternative path to generate views for contrastive learning. This
provides a sort of inverse to traditional example mixing augmenta-
tion: instead of constructing artificial mixtures, we decompose a nat-
uralistic sound scene into a collection of simpler channels that share
semantic commonalities with the original recording and each other.
In contrast to the previous approaches, this automatic separation
approach is data-driven and input-dependent, producing ecologically
valid views that eliminate the need for parameter tuning for the given
dataset. We demonstrate that learning to associate sound mixtures
with their constituent separated channels elicits semantic structure in
the learned representation and is complementary to other commonly-
used data augmentations when composed. Furthermore, we pair this



augmentation procedure with a multitask objective that includes both
similarity maximization and coincidence prediction, which exhibit
complementary behavior for different downstream representation
use cases. Finally, we discover that a wide range of separation model
competencies enable useful (and complementary) augmentations,
demonstrating that optimal sound separation performance is not es-
sential for representation learning. The best representation learned
with our sound-separation informed framework achieves an mAP
of 0.326 on the downstream shallow-model AudioSet classification
task. This exceeds previous results on this benchmark under the same
evaluation protocol [14, 15], and is on par with the state-of-the-art
under comparable evaluation settings [19].

2. SOUND SEPARATION AS DATA AUGMENTATION

Sound separation has been studied as preprocessing to improve su-
pervised sound event detection [21, 22]. Here, we propose sound
separation as an augmentation to generate pairs of positive examples
for contrastive learning. In order to come up with good views for
contrastive learning, previous work argues that their mutual informa-
tion must be reduced while the downstream semantically-relevant
information between the views is retained [23]. Another important
observation is that, since contrastive learning pulls together repre-
sentations of positive views, the proxy task attempts to ignore the
transformations applied to create them. Consequently, how the pairs
of views are generated determines the invariant properties promoted
in the learned representation.

We propose to decompose an incoming audio clip, which in gen-
eral is a mixture of multiple sound events, into its constituent sources.
We then use the mixture and these separated channels to form posi-
tive pairs for contrastive learning. In particular, the comparison of
the input mixture and one of the separated channels should meet
the requirements established above: (i) the mutual information is
reduced as, in principle, there is at least one input sound source that
is no longer in the separated channel; (ii) some relevant semantics
are preserved as the sound source(s) present in the separated channel
is also present in the input mixture. Therefore, in theory, this compar-
ison would be well suited for contrastive learning. Further, with this
comparison we are promoting the learning of representations that are
invariant to combinations of naturally co-occurring or overlapping
sources—a valuable property for general-purpose audio recognition
applications. We use this mixture vs channel comparison as the
default contrastive setup for the majority of our experiments, as il-
lustrated in the proposed learning framework depicted in Fig. 1. By
contrast, the comparison between two separated channels would not
be appropriate for the similarity maximization task as, in principle,
each channel would contain different sources, thereby violating the
semantic preservation requirement. However, this channel vs chan-
nel comparison could still be useful for the coincidence prediction
task, where the semantic equality demand is relaxed to require only
some consistency between the examples in order to support their co-
incidence prediction. We evaluate experimentally these hypotheses
in Sec. 5, uncovering several nuances.

2.1. MixIT for Unsupervised Sound Separation

For a sound separation system we use a model trained with mixture
invariant training (MixIT) [24]. MixIT is an unsupervised method
in which training examples are constructed by mixing existing audio
clips, and the model is tasked to separate the resulting mixtures
into a number of latent sources, such that an optimal remix of the

separated sources best approximates the original mixtures. The main
advantage of MixIT compared to previous methods is that it does
not require knowledge of ground truth source signals, which allows
leveraging large amounts of unlabeled data. In addition, MixIT has
shown great promise in the task of universal sound separation, that is,
separating arbitrary sounds instead of specializing to (e.g.) speech
[25, 26].

Our separation model was trained on AudioSet [27] while ig-
noring all available labels and using previously proposed training
settings [24]. The separation model used is based on an improved
time-domain convolutional network (TDCN++) [25], which is simi-
lar to a Conv-TasNet [28]. This model consists first of an encoder
that maps short frames of the input waveform to a latent space. Then,
separation is done in the latent space where M masks are predicted
for the target sources. Finally, M separated waveforms are recon-
structed through a decoder from the masked features. Separated
sources are constrained to add up to the input mixture via a consis-
tency projection layer [29]. Our main goal is to assess the benefits of
MixIT separation pre-processing coupled with a contrastive learning
back-end.

2.2. Composition of Augmentations

Using a single transformation to generate data views has been shown
as inferior to the composition of several augmentations, which is
essential to obtain effective representations for vision [9] and audio
[18]. By composing multiple augmentations, the goal is to define a
more challenging learning task so that higher-quality representations
can emerge. However, not all compositions are necessarily valid;
rather, the elements in the composition must adequately complement
each other [9, 18].

Here, in order to construct a more challenging proxy task, we
combine sound separation with temporal proximity sampling (TP)
[14] and SpecAugment [30] (in this order). Temporal proximity
sampling consists of randomly selecting two audio snippets (of 0.96s
in our case) as basic units to construct pairs of examples, instead of
leveraging entire AudioSet clips (of typically 10s). When randomly
sampling audio snippets within a prescribed temporal proximity, we
are likely to sample (i) the same sound sources emitting somewhat
different acoustic patterns as they evolve over time; or (ii) different
sources that are related semantically or casually with the initial ones.
Thus the temporal coherence among neighboring audio snippets im-
plies a natural form of data augmentation. This simple method has
been proven effective in many contrastive audio representation learn-
ing works [14, 15, 18, 17, 19], analogous to the common practice of
random cropping with images [9].

Then, we apply SpecAugment on the log-mel spectrograms of
the selected audio snippets, with time warping and time/frequency
masking [30]. SpecAugment has gained popularity as data augmen-
tation in supervised classification, and has also been used to generate
views for contrastive learning of speech [31] and audio [18]. The
combination of TP and SpecAugment is represented by the data
augmentation (DA) blocks in Fig. 1. Together with the preceding
unsupervised sound separation stage, they form the front-end for the
two proxy tasks. In Sec. 5.3 we further extend these compositions
including different convergence states of the separation model which
provide distinct transformations to the incoming audio.



DA′

DA Encoder

Encoder

Sim. Head

MixIT

DA′′′ Encoder

DA′′ Encoder

Coin. Headconcat

random
channel 
selection

Sim. Head

Figure 1: Proposed contrastive learning framework. It is composed of an unsupervised sound separation and augmentation front-end, a
common encoder fθ , and two task-specific heads, gϕ and gγ , for the similarity maximization and coincidence prediction tasks respectively.
Dashed lines between networks denote shared weights. Each separated channel feeding each proxy task (xsimc for similarity maximization or
xcoinc for coincidence prediction) is selected randomly between the two output channels from the MixIT separation model. The concat block
stacks the latent representations for each view to define the input to the coincidence prediction head. Primes in the data augmentation (DA)
blocks illustrate that each block is a different instance of the same augmentation policy, combining Temporal Proximity and SpecAugment.
Note that the front-end illustrates the creation of pairs of positive examples—the pairs of negatives are constructed from different clips.

3. PROXY LEARNING TASKS

This section describes the two proxy tasks used in our framework:
a similarity maximization task, and a coincidence prediction task.
For both, a pair of positive examples is constructed by selecting two
audio snippets within the same 10 s AudioSet clip, either from the
input mixture or from the resulting separated channels. Analogously,
a pair of negative examples is constructed by selecting two snippets
from different clips (mixtures or separated channels). This is based
on the assumption that two snippets within a given temporal proxim-
ity are much more likely to be semantically related than two snippets
from independent recordings.

3.1. Similarity Maximization

The similarity maximization task consists of maximizing the agree-
ment between differently-augmented views of the same audio exam-
ple. After deriving the different views as above, their corresponding
embedding representations are compared using a contrastive loss.
This loss attempts to co-locate the two representations in the same
spot of the embedding space, thus promoting invariance to the trans-
formations applied to generate the views. This task is based on recent
work on visual representation learning, SimCLR [9], and its block
diagram is depicted in the top half of Fig. 1.

Front-end. The pipeline starts with one input mixture xm (i.e.,
one AudioSet clip). Using the separation model, every incoming
mixture xm is separated into two output channels, from which one
is randomly selected for this proxy task, xsimc . Next, xm and xsimc
undergo TP and SpecAugment transformations (see Sec. 2.2). Note
that each example xm or xsimc undergoes a different instance of the
same transformation policy (indicated by DA and DA′ in Fig. 1).

Encoder Network. The outputs from the DA blocks, x̃simm and
x̃simc , feed a convolutional encoder fθ in order to extract low-
dimensional embeddings h. Specifically, for the top branch we
obtain hsimm = fθ

(
x̃simm

)
, where hsimm is the representation after

a d-dimensional embedding layer and θ are the encoder’s parame-
ters. Once the training is over and the encoder has converged, the
representation h is evaluated on downstream tasks.

Similarity Head. We use a simple MLP, gϕ with parameters ϕ,
to map the representation h to the final metric embedding z, the
domain in which the contrastive loss is applied [9]. This head is used
to allow the representation h to back away from the representation
at the training objective. Previous work reports better downstream
performance using h instead of z [9], something we also observed
in preliminary experiments.
Contrastive Loss. To compare a positive pair of examples, xm and
xsimc , we adopt the normalized temperature-scaled cross-entropy
(NT-Xent) loss [9, 20] given by

Lsimi,j = − log
exp (sim(zi, zj)/τ)∑2N

v=1 1v 6=i exp (sim(zi, zv)/τ)
(1)

where zi and zj are the metric embeddings corresponding to xm
and xsimc , sim(u,v) = u>v/‖u‖‖v‖ represents cosine similarity
whose sensitivity is adjusted by a temperature value τ ∈ (0, 1],
1v 6=i ∈ {0, 1} is a function that returns 1 when v 6= i, and N is the
batch size. Since two views are generated from each incoming audio
clip, the batch size is extended from N to 2N elements, allowing
for one pair of positive examples and 2(2N − 2) pairs of negative
examples for every input mixture—the overall loss includes both
Lsimi,j and Lsimj,i . By minimizing the objective in (1), parameters
θ and ϕ are adjusted to maximize the numerator (i.e., the agreement
between embeddings of positives, assigning them to neighboring
representations) while simultaneously minimizing the denominator
(i.e., the similarity between embeddings of negatives, forcing them
to distant spots in the embedding space).

3.2. Coincidence Prediction

The coincidence prediction task relies on the slowness prior in repre-
sentation learning [32]. Audio waveforms of sound sources can vary
quickly, whereas the corresponding perceived semantics change at a
much slower rate. Consequently, there should be a relatively stable
latent representation in order to explain the semantic perception.
This representation would support the prediction of whether a pair
of examples are coinciding within a given temporal proximity. Note
this task is a generalization of the correspondence prediction task



proposed for audio-visual multimodal learning [33], where the task
is to predict time correspondence between audio and video frames.
Here, we relax the time scale requirement to predict coincidence
within a prescribed temporal proximity, specifically within the (max-
imum) 10 s of AudioSet clips. The task diagram is depicted in the
bottom half of Fig. 1.

Front-end and Encoder network. In previous work, this proxy
task has been applied directly to audio snippets drawn from the
same/different temporal proximity [15]. Here, we adopt the augmen-
tation front-end described in Sec. 2, which is the same as for the
similarity maximization task, leading to the augmented examples
x̃coinm and x̃coinc from xm and xcoinc . Then, we use a convolutional
encoder to extract d-dimensional embedding representations h—the
same encoder network is shared across both proxy tasks, fθ .

Coincidence Head. Once the embedding representations for a pair
of examples are obtained, we use a coincidence network, gγ with
parameters γ, tasked to predict the (non)-coincidence between the
pair. More specifically, we feed gγ with the concatenation of the two
embeddings [hcoinm , hcoinc ] ∈ R2d. The coincidence head consists of
an MLP with one output unit, mapping the concatenated embedding
representation to the probability that the input pair is coinciding—a
binary classification task.

Loss. In a generic batch of N pairs of within-clip coinciding ex-
amples (i.e., positive pairs), X =

{
(xi1, x

i
2)
}N
i=1

, we define N − 1
pairs of negative examples per each pair of positives. This is done
by pairing the non-coinciding examples (xi1, x

j
2) for i 6= j. In this

setting, for a given batch X and focusing on our goal of optimiz-
ing the representation h, the coincidence loss function follows the
class-balanced binary cross entropy expression [15]:

Lcoin(X) = − 1

N

N∑
i=1

log gγ([h
coin,i
m , hcoin,ic ])

− 1

N(N−1)
∑

1≤i,j≤N
j 6=i

log
[
1− gγ([hcoin,im , hcoin,jc ])

]
.

(2)

3.3. Joint Optimization

We conjecture that jointly optimizing the two objectives above in a
multi-task setting can favor learning complementary information for
semantic representation learning. Both proxy tasks share the ultimate
goal of contrastive learning, that is, supporting relationships between
pairs of positives and pairs of negatives so as to force a semantically
structured embedding space. However, each task pursues this goal
in a slightly different way, in terms of underlying principle and
implementation.

Underlying principle. The similarity maximization task essentially
aims to co-locate the representations of both examples in a posi-
tive pair at the same point in the embedding space. Therefore, for
successful representation learning, it is usually required that some
semantic relationship is preserved between the two examples, e.g.,
the two examples share some class label(s). By contrast, the coin-
cidence prediction task is based on a weaker condition. Instead of
co-locating representations, the goal is to assign a representation that
supports coincidence prediction, establishing a clear relationship
between the representations for both examples, but not necessarily
requiring their collocation.

Implementation. The NT-Xent loss of (1) follows a canonical ver-
sion of contrastive loss, explicitly measuring similarity of embed-
dings as the scoring function [20]. By contrast, the binary cross
entropy loss of (2) is not a contrastive loss per se, but rather a
loss typically used for classification, fed with probabilities. In this
case, one could argue that the coincidence head serves as a learned
similarity measure between two points in the embedding space, con-
ceptually analogous to the handcrafted scoring functions typically
present in the canonical contrastive losses (e.g., cosine similarity in
the NT-Xent loss).

4. EXPERIMENTAL SETUP

4.1. Evaluation Methodology

By optimizing the training objectives of (1) and (2), the goal is to
learn semantically discriminative audio representations. We train our
framework using a superset of the AudioSet training set consisting
of around 3M audio clips, while ignoring all available labels. To
evaluate the learned representation hwe use the trained encoder fθ as
a feature extractor for the two evaluation methodologies considered
in past work [14, 15]:

Query by Example Retrieval (QbE). Given a small subset of Au-
dioSet with around 100 examples per class, cosine distance is com-
puted between all the within-class target pairs, and all (present,
not-present) pairs as non-target trials. Then, we sort the resulting
distances in ascending order and compute per-class average precision
(AP) of ranking target over non-target trials. Averaging per-class
AP leads to the reported QbE mAP. This is a direct measurement
of the representation semantic consistency without requiring further
training.

Downstream Classification with Shallow Model. This is a su-
pervised classification task carried out by training and evaluating
a shallow architecture on top of the fixed embeddings previously
learned. In particular, we use an MLP with one 512-unit hidden layer
and ReLU activation, followed by a 527-way classification layer with
sigmoid activation. For this purpose, we use the entire AudioSet
training set version and report classification mAP. This measures
the usefulness of the learned representation for a large-vocabulary
downstream supervised classification task.

For every experiment, we train our framework until QbE conver-
gence, which typically occurs between 400k and 600k steps, after
which QbE mAP plateaus. We select an encoder checkpoint from
this plateau and report the QbE mAP. Then, we use this checkpoint
to extract features for the entire AudioSet and conduct the shallow
classifier evaluation. After L2-normalizing the embeddings, we train
on the AudioSet training set, allowing 5% for validation where we
optimize mAP, then report classification mAP on the evaluation set.

4.2. Implementation and Training Details

A critical parameter in the proposed framework is the number of
output waveforms in the separation modelM , which must be defined
in advance. After experimenting with M = {2, 4}, we decided to
use M = 2, as results with M = 4 were slightly worse for both
proxy tasks. We attribute this to the fact that when M = 4 it is
common to produce near-empty output channels, which is prob-
lematic for the creation of positive pairs. (This issue is further
explained in Appendix A.) Note that sound separation is only used
during the learning of the representation—in our downstream tasks
no separation is applied. The DA blocks in Fig. 1 consist first of



Temporal Proximity sampling, i.e., random selection of 0.96 s wave-
form snippets within the (maximum) 10 s AudioSet clips. Snippets
are transformed to log-mel spectrogram patches using a 25 ms Hann
window with 10 ms hop, and 64 mel log-energy bands, leading to
time-frequency patches of T × F = 96× 64. SpecAugment is then
applied using (i) two frequency masks and two time masks, with a
max width of 10 bands or frames, respectively; and (ii) time warping
with 8 frames as maximum warp [30].

For the encoder we use a convolutional network based on
CNN14 from previous work [34]. Our modifications from the origi-
nal CNN14 include removing Batch Normalization [35] and Dropout
[36], which was not found to be beneficial in our experiments. In
addition, we substitute the classifier layer and the preceding fully-
connected layer by an embedding convolutional layer with d fil-
ters, followed by a global max pooling operation to produce the
d-dimensional representation h, which is used for downstream tasks.
We use d = 128 unless stated otherwise. The resulting encoder
network has 76M weights. The similarity head consists of an MLP
with one hidden layer of 256 units and ReLU non-linearity, followed
by an output layer with 128 units, which is the dimension for the
metric embeddings z feeding the NT-Xent loss. The coincidence
head consists of an MLP with two hidden layers of 512 units and
ReLU nonlinearities, followed by an output layer with one single
unit to produce coincidence predictions feeding the class-balanced
binary cross entropy loss.

Experiments are carried out considering each proxy task individ-
ually as well as the full framework trained jointly. When both tasks
are trained jointly, the two objectives are optimized from scratch
and equally weighted obtaining a joint loss Ljoint = Lsim+Lcoin,
using one optimizer to update all the networks. We use the Adam
optimizer [37] with a learning rate of 1e-4 whenever the coincidence
prediction task is involved, or 3e-4 when only the similarity maxi-
mization task is considered. The temperature parameter in (1) is set
to τ = 0.3. Learning rates and τ are tuned by optimizing QbE mAP
on a validation set different from that used to report results.

The framework is trained on Google Cloud TPUs of 32 cores
with a global batch size of 2048, which means local batches of 64
examples per core. Loss contributions and gradients are computed
locally in each replica, then aggregated across replicas before apply-
ing the gradient update. Contrastive learning approaches typically
benefit from comparison with multiple negative examples. In our
framework, negative examples are drawn from clips within the cur-
rent batch at every iteration, as done in previous works [9, 18, 15, 19].
This approach is more practical than relying on a memory bank [38],
a memory queue [39], or negative mining techniques to find suitable
negatives [14]. However, with this simple approach the quality and
diversity of negatives are limited by the batch size (in our case, the
local batch size). Recent works show how increasing batch sizes
provide solid improvements in visual [9] and audio [19] contrastive
representation learning, the latter work utilizing batch sizes of up
to 32k examples. Here, we do not explore this avenue and evaluate
our proposed approach using a more usual batch size. Based on
previous literature [9, 19, 20], if our approach shows promise using
the batch size selected for our experiments, it is expected to provide
better performance under more favorable conditions given by larger
batches.

5. EXPERIMENTS

This Section describes the experiments run using the framework of
Fig. 1, or portions of it. For simplicity, in the following Tables the

Table 1: mAP without sound separation in the front-end (i.e., us-
ing only the input mixture). SA = SpecAugment, TP = Temporal
Proximity, CP = Coincidence Prediction.

Representation QbE mAP Classif. mAP

Log-Mel Spectrogram (baseline) 0.423 0.065

simCLR & SA 0.551 0.196
simCLR & TP 0.591 0.248
simCLR & TP & SA 0.613 0.265

CP & TP & SA 0.599 0.286

Table 2: mAP using sound separation (SSep) in the front-end and
the SimCLR back-end. TP is always applied; SpecAugment (SA) is
applied as specified.

Comparison SSep SA QbE mAP Classif. mAP

Mix vs mix (baseline) - - 0.591 0.248
Mix vs mix (baseline) - X 0.613 0.265

Mix vs chan X - 0.631 0.272
Mix vs chan X X 0.640 0.282
Mix vs any X X 0.638 0.279
Chan vs chan X X 0.611 0.254

similarity maximization task and the coincidence prediction task are
sometimes referred to as SimCLR and CP, respectively.

5.1. Baseline Experiments

Table 1 lists the performance when sound separation is ablated from
the front-end in Fig. 1, which is equivalent to all DA blocks being fed
by the input mixture xm. We use log mel spectrogram as a baseline
handcrafted representation. As expected, both SpecAugment and
TP with the similarity maximization task as back-end substantially
outperform the naive mel spectrogram. The effectiveness of TP is
noteworthy considering its simplicity; Initially proposed in previ-
ous work [14], it has been widely adopted in contrastive learning
works [15, 17, 18, 19], some of which use it as the sole augmentation
[15, 17]. Note that the approach simCLR & TP is conceptually com-
parable to the recent COLA [17]. Combining TP and SpecAugment
outperforms either one alone, thus validating the composition in
the DA blocks of the front-end. Finally, results indicate different
tendencies for the two proxy tasks, with the similarity maximization
providing better QbE mAP, and the coincidence prediction attaining
better classification mAP.

5.2. Sound Separation for Contrastive Representation Learn-
ing

We now report the experiments including the unsupervised sound
separation block in the front-end, as depicted in Fig. 1. We assess
various comparisons enabled by sound separation preprocessing,
namely: (i) comparing the input mixture with one of the separated
channels (mix vs chan); (ii) comparing the two separated channels
(chan vs chan); or (iii) comparing the input mixture with anything
else, i.e., either with the input mixture or with one of the separated
channels (mix vs any). Table 2 shows the performance with the simi-
larity maximization (SimCLR) task as back-end. By looking at the
first rows of Table 2, we can benchmark SpecAugment and sound



Table 3: mAP using sound separation in the front-end and the CP
back-end. TP and SpecAugment are applied.

Comparison QbE mAP Classif. mAP

Mix vs mix (baseline) 0.599 0.286

Mix vs chan 0.619 0.293
Chan vs chan 0.590 0.283

separation. We see that sound separation preprocessing (third row)
provides a bigger boost in both metrics compared with SpecAug-
ment (second row), yet the best performance is obtained from their
composition (fourth row). This trend for the mix vs chan comparison
also holds for the other contrastive setups.

Results indicate that comparing the input mixture with the sep-
arated channels provides substantially better representations than
the baseline approach of leveraging only the input mixture. This
confirms the usefulness of sound separation preprocessing for con-
trastive learning of audio representations. Allowing the input mixture
to be compared with itself in addition to the separated channels (mix
vs any) does not lead to performance boosts. Generally, the perfor-
mance of mix vs any and mix vs chan were very similar across the
experiments we ran. Hence, we adopt mix vs chan as best setup in
order to focus on the effect of sound separation. Finally, compar-
ing both separated channels (chan vs chan) performs significantly
worse, on par with the non-separated baseline (for QbE mAP) or
even worse (for classification mAP). If we assume the separation
has successfully isolated independent sources in each output, this
comparison violates the semantic preservation principle (thus hin-
dering the learning of semantic representations), so we might have
expected decrements even larger than the ≈0.03 mAP with respect
to mix vs chan for both metrics. After inspection of a few dozen
separation examples, we identify two potential explanations for this
observation: First, the result of the separation algorithm is not always
perfect. This depends on the complexity of the input mixture—this
is to be expected considering the great diversity of AudioSet clips.
When this happens, the same source can be present in both separated
channels. Second, even when the separation is satisfactory, there are
some classes that retain a semantic relationship, e.g., two different
instruments from the same family, or two different vocalizations
from the same or similar animals. When used as a pair of positives,
their relationship may still provide a useful learning signal compared
to pairs of unrelated negative examples.

Table 3 shows the performance with the coincidence prediction
(CP) task as back-end. Similar to the SimCLR back-end (Table 2),
we again observe that the mix vs chan comparison yields top perfor-
mance, outperforming the no-separation baseline. Comparing both
separated channels (chan vs chan) again leads to the worst results, in
this case underperforming the baseline for QbE mAP, while being
on par in terms of classification mAP. In addition to corroborating
the utility of sound separation in the front-end, these results also
demonstrate that CP benefits from composing augmentations, which
was not explored in previous work [15], where only TP is used.

Comparing performance across both proxy tasks, we notice that
SimCLR always yields the best QbE mAP while CP produces top
classification mAP. This could be due to a better alignment between
SimCLR’s underlying principle (maximizing/minimizing the cosine
similarity between positives/negatives) and the QbE retrieval mAP
(computed by ranking pairwise cosine distances). Finally, regarding
the performance using the chan vs chan comparison, CP shows
significantly better classification mAP than similarity maximization

(specifically, a mAP on par with the latter’s best case). This accords
with our intuition that CP is tolerant of semantic differences between
positives due to its weaker assumptions. However, for QbE mAP, the
opposite behaviour is observed, presumably because this tolerance
does not help the QbE objective.

5.3. Separation Processing at Different Convergence States

In the previous Section we show that sound separation is benefi-
cial for our tasks, even when the separation is less than perfect as
can occur when input mixtures are difficult to separate. This leads
us to ask whether the processing provided by a separation model
before convergence can also be a valid form of augmentation for
contrastive representation learning. To answer this, we experiment
with separation examples generated by multiple training checkpoints
of a single separation network. We view the separation checkpoints
as audio processors that implement complex modifications on the
incoming audio. A qualitative assessment of output streams as learn-
ing progresses indicates four types of processors corresponding to
four convergence states, and we empirically characterize their be-
havior as follows.1 (Fig. 2 shows example spectrograms of the
separated channels for each of these processors given the same input
mixture.)

• Separation after full convergence (S2, 1.7M steps). This is
the separation model used for experiments in Sec. 5.2.

• Separation before convergence (S1, 5k steps). Separation
performance is more limited.

• Filtering with early training model (F, 500 steps). Outputs
are produced by the separation model very early during training.
After ∼500 steps, sources are not separated, and the output
channels are differently filtered versions of the input. Most
sources in the input are present in all outputs, but often with dif-
ferent levels/spectral content, such as different spectro-temporal
modulations.

• Noise with untrained model (N, 0 step). Outputs are produced
by the separation model untrained. They feature a clearly audi-
ble, wideband structured noise, correlated with the input signal.
Audio artifacts are sometimes present. Both output channels
are very similar.

Table 4 shows results of substituting S2 with the other identified
processors, while keeping the rest of the framework as in Fig. 1. By
looking at the top left section of Table 4, two observations can be
made: First, the four processors all provide valid forms of augmenta-
tion to generate positive views for contrastive learning. While sound
separation is beneficial (S2), a poorer separation is also valuable
(S1) and the earlier checkpoints of the separation network (which do
not actually provide separation) are also useful (F and N). Second,
an untrained, quasi-random TDCN++ provides structured noise that
surprisingly yields the best single-checkpoint performance (N).

Following the common practice of composing augmentations
to achieve more powerful representations [9, 18], we investigate
combining the processors. The bottom left section of Table 4 shows
the best results obtained when combining processors using the OR
rule, that is, applying only one randomly selected processor at a
time. It can be seen that sound separation and the quasi-random
TDCN++ noise turn out to be complementary augmentations, result-

1Note that the description of every processor is approximate and some-
what dependent on the input’s complexity. For example the S1 model could
provide a good separation when fed with an easy mixture.
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Figure 2: Spectrograms of the two separated channels obtained with four checkpoints (S2, S1, F, N) of the same separation model, given one
input mixture (top left). The input mixture contains a guitar melody (up to ≈8 s) followed by applause. For illustration purposes, this is a
simple case where the separation is purely temporal (i.e., sources do not overlap). The general case features overlapping sources.

Table 4: mAP using different checkpoints of the separation model
as learning progresses (top), as well as some combinations (bottom).
As back-end, the SimCLR task is used (left), as well as the two
proxy tasks trained jointly (right). TP and SpecAugment are applied.
Comparison is always mix vs chan.

Models SimCLR SimCLR & CP
QbE Classif. QbE Classif.

S2 (1.7M) 0.640 0.282 0.649 0.289
S1 (5k) 0.639 0.283 0.651 0.293
F (500) 0.651 0.280 0.659 0.297
N (0) 0.659 0.286 0.663 0.301

S2 ∨ F 0.653 0.283 0.658 0.300
S2 ∨ N 0.660 0.297 0.671 0.306
S2 ∨ F ∨ N 0.667 0.285 0.672 0.310

ing in a more beneficial composition. Adding the F processor seems
to provide lift for QbE mAP, but not for classification mAP. Apply-
ing two processors in cascade to every example does not improve
performance.

5.4. Joint Learning Framework

Lastly, the right side of Table 4 lists the results when training the
entire framework of Fig. 1, jointly optimizing both proxy tasks. We
observe trends similar to using the SimCLR back-end alone (left side
of Table 4), but with increased performance. When compared to
the CP back-end alone (i.e., S2 in Table 4 vs second row of Table
3), QbE mAP is improved by a large margin whereas classification
mAP is on par. Overall, while the boost from jointly optimizing
both tasks is sometimes not very large, it is consistent across almost
all cases considered, both for individual processors as well as their
combinations. We also note that the changes needed in the frame-
work to accommodate a second task are minimal—only an additional
MLP head and corresponding loss function—and the training setup
carries no modifications—both tasks are trained jointly from scratch
using one optimizer. Adopting a curriculum learning instead could

Table 5: Comparison with previous work using shallow model clas-
sification. mAP reported is classification mAP. MM = Multimodal
approach.

Method d MM mAP

Unsupervised triplet [14] 128 - 0.244
C3 [15] 128 X 0.285
Separation-based framework (ours) 128 - 0.310

CPC [16] 512 - 0.277

Separation-based framework (ours) 1024 - 0.326

MMV [40] 2048 X 0.309
Multi-format [19] 2048 - 0.329

L3 [33] 6144 X 0.249

Supervised PANN [34] - - 0.439
Supervised PSLA [41] - - 0.474

enhance performance [15].
Results suggest that the key ingredient is not the quality of the

sound separation process, but rather the combination of diverse pro-
cessing provided by the separation model as its learning progresses.
While training a separation model requires a certain effort, once
it is done several non-parametric augmentation generators become
available, facilitating the generation of useful positive examples.
While we choose a MixIT-based TDCN++, any source separation
methodology could be used (and there may be additional benefit to
using supervised systems).

5.5. Comparison with Previous Work

Table 5 compares our best setup with previous work on the down-
stream classification task (see Sec. 4.1). Works are grouped by
ascending embedding dimensionality, d. Results are strictly compa-
rable only in the top section as those works are the only ones using
the same training data, evaluation protocol and downstream embed-
ding dimensionality, d = 128. Note that C3 is based on audio-video



multimodality for representation learning [15], while our proposed
framework outperforms it using only audio. We also compare our
system with works that use somewhat different evaluation settings
in terms of, e.g., training data, embedding dimensionality or shallow
classifier type, thus hindering a fair comparison. For example, most
previous works use larger d values, ranging from 512 to 6144; we
expect performance to improve to some extent as d increases [34]—
the embedding representation contains more information that can be
leveraged by the shallow model in the downstream task. We confirm
this by increasing our d from 128 to 1024, which yields an absolute
increase of 0.016 mAP. Some of these works leverage multimodal
data for training such as audio-video (L3 [33]) or audio-video-text
(MMV [40]), while reporting worse performance than our lower-d
audio-only framework. The current unsupervised state-of-the-art on
this task is achieved by a contrastive learning setup that maximizes
the agreement between raw audio and its spectral representation [19].
Among several variants proposed by the authors, we select the one
that is more comparable to our proposed framework (i.e., using only
log-mel as input and one encoder). Our reported performance is on
par with this approach (0.326 vs 0.329) despite it leveraging higher
d (2048 vs our 1024) and a much larger batch size (32768 vs our 64),
potentially having an impact on performance as discussed in Sec.
4.2. Better results are reported in previous work [19] by combining
two different encoders (one per audio format) and concatenating
their output representations. Finally, for reference, we include the
current supervised state-of-the-art on this task. PANN is based on
data balancing and augmentation [34], whereas PSLA makes use of
a collection of training techniques to boost performance (ImageNet
pretraining, data balancing and augmentation, label enhancement
and model aggregation) [41].

6. CONCLUSION

We have presented a sound separation-based contrastive learning
framework for unsupervised audio representation learning. We show
that sound separation can be seen as a valid augmentation to generate
positive views for contrastive learning, and that learning to associate
sound mixtures with their constituent separated channels elicits se-
mantic structure in the learned representation, outperforming com-
parable systems without separation. We demonstrate that sound
separation can be successfully combined with other commonly-used
augmentations to define more challenging proxy tasks. We discover
that the transformations provided by different checkpoints of the
same separation model as learning progresses are valid, and some-
times complementary, forms of augmentation for generating posi-
tives. In addition, we show the benefit of jointly training the proxy
tasks of similarity maximization and coincidence prediction. By
appropriately combining several separation processors followed by
the joint optimization of the two proxy tasks, we obtain downstream
AudioSet classification results competitive with the state-of-the-art
in unsupervised representations, and outperforming multimodal ap-
proaches.
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E. Buchatskaya, C. Doersch, B. A. Pires, Z. D. Guo, M. G.
Azar, et al., “Bootstrap your own latent: A new approach to
self-supervised learning,” arXiv preprint arXiv:2006.07733,
2020.

[12] A. van den Oord, Y. Li, and O. Vinyals, “Representation
learning with contrastive predictive coding,” arXiv preprint:
1807.03748, 2018.

[13] A. Baevski, S. Schneider, and M. Auli, “vq-wav2vec: Self-
supervised learning of discrete speech representations,” arXiv
preprint arXiv:1910.05453, 2019.

[14] A. Jansen, M. Plakal, R. Pandya, D. P. W. Ellis, S. Hershey,
J. Liu, R. C. Moore, and R. A. Saurous, “Unsupervised learn-
ing of semantic audio representations,” in Proc. IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2018.



[15] A. Jansen, D. P. Ellis, S. Hershey, R. C. Moore, M. Plakal,
A. C. Popat, and R. A. Saurous, “Coincidence, categorization,
and consolidation: Learning to recognize sounds with mini-
mal supervision,” in Proc. IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), 2020, pp.
121–125.

[16] L. Wang, K. Kawakami, and A. van den Oord, “Contrastive pre-
dictive coding of audio with an adversary,” Proc. Interspeech
2020, pp. 826–830, 2020.

[17] A. Saeed, D. Grangier, and N. Zeghidour, “Contrastive learn-
ing of general-purpose audio representations,” in Proc. IEEE
International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), 2021.

[18] E. Fonseca, D. Ortego, K. McGuinness, N. E. O’Connor, and
X. Serra, “Unsupervised contrastive learning of sound event
representations,” in Proc. IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), 2021.

[19] L. Wang and A. van den Oord, “Multi-format contrastive learn-
ing of audio representations,” in Self-Supervised Learning for
Speech and Audio Processing Workshop, NeurIPS, 2020.

[20] P. H. Le-Khac, G. Healy, and A. F. Smeaton, “Contrastive rep-
resentation learning: A framework and review,” IEEE Access,
vol. 8, pp. 193 907–193 934, 2020.

[21] N. Turpault, S. Wisdom, H. Erdogan, J. R. Hershey, R. Ser-
izel, E. Fonseca, P. Seetharaman, and J. Salamon, “Improving
sound event detection in domestic environments using sound
separation,” in Proceedings of the Detection and Classification
of Acoustic Scenes and Events 2020 Workshop (DCASE2020),
2020, pp. 205–209.

[22] N. Turpault, R. Serizel, S. Wisdom, H. Erdogan, J. Hershey,
E. Fonseca, P. Seetharaman, and J. Salamon, “Sound event de-
tection and separation: a benchmark on Desed synthetic sound-
scapes,” in Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2021.

[23] Y. Tian, C. Sun, B. Poole, D. Krishnan, C. Schmid, and P. Isola,
“What Makes for Good Views for Contrastive Learning?” arXiv
preprint: 2005.10243, 2020.

[24] S. Wisdom, E. Tzinis, H. Erdogan, R. J. Weiss, K. Wilson,
and J. R. Hershey, “Unsupervised sound separation using mix-
ture invariant training,” in Advances in Neural Information
Processing Systems, 2020.

[25] I. Kavalerov, S. Wisdom, H. Erdogan, B. Patton, K. Wilson,
J. Le Roux, and J. R. Hershey, “Universal sound separation,”
in Proc. IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics (WASPAA), 2019, pp. 175–179.

[26] S. Wisdom, H. Erdogan, D. Ellis, R. Serizel, N. Turpault,
E. Fonseca, J. Salamon, P. Seetharaman, and J. Hershey,
“What’s all the FUSS about free universal sound separation
data?” in Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2021.

[27] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen,
W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter, “Au-
dio Set: An ontology and human-labeled dataset for audio
events,” in Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2017.

[28] Y. Luo and N. Mesgarani, “Conv-TasNet: Surpassing ideal
time–frequency magnitude masking for speech separation,”

IEEE/ACM transactions on audio, speech, and language pro-
cessing, vol. 27, no. 8, pp. 1256–1266, 2019.

[29] S. Wisdom, J. R. Hershey, K. Wilson, J. Thorpe, M. Chinen,
B. Patton, and R. A. Saurous, “Differentiable consistency con-
straints for improved deep speech enhancement,” in Proc. IEEE
International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), 2019.

[30] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D.
Cubuk, and Q. V. Le, “SpecAugment: A simple data aug-
mentation method for automatic speech recognition,” Proc.
Interspeech 2019, pp. 2613–2617, 2019.

[31] A. Nandan and J. Vepa, “Language Agnostic Speech Embed-
dings for Emotion Classification,” in International Conference
on Machine Learning (ICML) Workshop, 2020.

[32] L. Wiskott and T. J. Sejnowski, “Slow feature analysis: Unsu-
pervised learning of invariances,” Neural computation, vol. 14,
no. 4, pp. 715–770, 2002.

[33] R. Arandjelovic and A. Zisserman, “Look, listen and learn,”
in Proceedings of the IEEE International Conference on Com-
puter Vision, 2017, pp. 609–617.

[34] Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D.
Plumbley, “PANNs: Large-scale pretrained audio neural net-
works for audio pattern recognition,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 28, pp. 2880–
2894, 2020.

[35] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” in
International Conference on Machine Learning (ICML), 2015,
pp. 448–456.

[36] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting,” The journal of machine learning
research, vol. 15, no. 1, pp. 1929–1958, 2014.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[38] Z. Wu, Y. Xiong, S. Yu, and D. Lin, “Unsupervised Feature
Learning via Non-Parametric Instance Discrimination,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2018.

[39] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum
contrast for unsupervised visual representation learning,” in
Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2020, pp. 9729–9738.

[40] J.-B. Alayrac, A. Recasens, R. Schneider, R. Arandjelović,
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A. SELECTION OF NUMBER OF SEPARATED
CHANNELS

A critical parameter in the proposed framework is the number of
output waveforms in the separation model, M , which must be de-
fined at train time. Upon inspection of a few AudioSet clips selected



randomly, we realize that many clips contain one or two dominant
sources (i.e., in the foreground, lasting long within the clip), some-
times accompanied by additional sources (either in the foreground
but very short, e.g., impact sounds, or in the background).2 We
therefore ran preliminary experiments with M = {2, 4} and saw
that results using M = 4 were slightly worse for both proxy tasks.
We attribute this to the fact that when M = 4 it is not uncommon
to find output channels which are almost empty, filled with mild
background noise, or with sound sources active only in a very short
period of time. We hypothesize that using these channels to create
positive pairs can hurt performance.

To confirm our hypothesis, we designed simple heuristics (based
on energy and cosine similarity) to detect these quasi-empty channels,
in order to allow discarding the “worst” channel in every contrastive
setup, thus keeping only the other 3 channels from where to pool
positive examples. This led to a small but consistent performance
improvement, confirming our initial hypothesis, yet still underper-
forming results with M = 2. While further optimizations to allow
using M = 4 could be pursued, for simplicity we decided to adopt
M = 2 for our experiments, which is the minimal separation pos-
sible. In some cases, the two output waveforms coming out of the
separation model will contain one source each, whereas in other
cases they will contain several sources each. Consequently, we use
the term separated channels (and not sources) as it is deemed more
appropriate. We believe M = 2 is sufficient to evaluate our hypoth-
esis of sound separation serving as a valid transformation for view
generation in contrastive learning.

2The main exception to this rule is music segments.


