
Genome analysis

SEGCOND predicts putative transcriptional

condensate-associated genomic regions

by integrating multi-omics data

Antonios Klonizakis 1,2, Christoforos Nikolaou 3,* and Thomas Graf1,2,*

1Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), C/ del Dr.

Aiguader 88, Barcelona 08003, Spain, 2Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Doctor Aiguader

88, Barcelona 08003, Spain and 3Institute for Bioinnovation, Biomedical Sciences Research Centre ‘Alexander Fleming’, Fleming 34,

Vari 16672, Greece

*To whom correspondence should be addressed.

Associate Editor: Tobias Marschall

Received on June 10, 2022; revised on October 19, 2022; editorial decision on November 10, 2022; accepted on November 16, 2022

Abstract

Motivation: The compartmentalization of biochemical reactions, involved in the activation of gene expression in the
eukaryotic nucleus, leads to the formation of membraneless bodies through liquid–liquid phase separation. These
formations, called transcriptional condensates, appear to play important roles in gene regulation as they are
assembled through the association of multiple enhancer regions in 3D genomic space. To date, we are still lacking
efficient computational methodologies to identify the regions responsible for the formation of such condensates,
based on genomic and conformational data.

Results: In this work, we present SEGCOND, a computational framework aiming to highlight genomic regions
involved in the formation of transcriptional condensates. SEGCOND is flexible in combining multiple genomic
datasets related to enhancer activity and chromatin accessibility, to perform a genome segmentation. It then uses
this segmentation for the detection of highly transcriptionally active regions of the genome. At a final step, and
through the integration of Hi-C data, it identifies regions of putative transcriptional condensates (PTCs) as genomic
domains where multiple enhancer elements coalesce in 3D space. SEGCOND identifies a subset of enhancer
segments with increased transcriptional activity. PTCs are also found to significantly overlap highly interconnected
enhancer elements and super enhancers obtained through two independent approaches. Application of SEGCOND
on data from a well-defined system of B-cell to macrophage transdifferentiation leads to the identification of
previously unreported genes with a likely role in the process.

Availability and implementation: Source code and details for the implementation of SEGCOND is available at
https://github.com/AntonisK95/SEGCOND

Contact: cnikolaou@fleming.gr or thomas.graf@crg.eu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The finding that transcriptionally active regions in eukaryotic nuclei
are spatially confined was first reported more than three decades ago
(Jackson et al., 1993). The concept of these structures, originally
termed ‘transcription factories’ has been extended by the more recent
discovery of transcriptional condensates within the eukaryotic nucleus
that contain transcription factors and co-factors, such as MED1 and
BRD4, as well as PolII and are associated with chromatin (Cramer,
2019). They have been proposed to materialize through liquid–liquid
phase separation events into membraneless organelles that regulate

the expression of key lineage genes (Hnisz et al., 2017; Schoenfelder
and Fraser, 2019; Stadhouders et al., 2019). This process is likely de-
pendent on weak interactions between low-complexity, intrinsically
disordered domains (IDRs) of transcription factors and co-factors
(Boija et al., 2018).

Although the molecular mechanisms that drive the formation of
transcriptional condensates are largely unknown, a subset of gene
regulatory elements termed super-enhancers have been proposed to
play a role in their assembly in vivo (Sabari et al., 2018; Shrinivas
et al., 2019; Whyte et al., 2013). Super-enhancers consist of
hundreds of cell type-specific regions identified on the basis of
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exceptionally high occupancy of MED1, decoration with activation-
related histone marks, such as H3K27ac and high density of
transcription factor binding (Hnisz et al., 2017; Whyte et al., 2013).
Super-enhancers have been described to drive high levels of lineage-
specific gene expression (Whyte et al., 2013) and proposed to func-
tion as scaffolds that concentrate transcription factors which subse-
quently lead to the formation of phase-separated structures (Blobel
et al., 2021). Evidence for this hypothesis has been provided for spe-
cific super-enhancer regions in mouse embryonic stem cells, includ-
ing at the Nanog, Trim28 and Klf4 loci, coinciding with the
detection of MED1 and BRD4 containing punctae in fixed cells
(Sabari et al., 2018).

The concept of super-enhancers has received some criticism
(Blobel et al., 2021; Hamdan and Johnsen, 2018; Moorthy et al.,
2017; Pott and Lieb, 2015). The currently used method for their
identification, the ROSE algorithm (Lovén et al., 2013; Whyte et al.,
2013), has some limitations as it only processes one type of ChIP-
seq dataset at a time, it needs an a priori defined enhancer dataset
and eventually stitches enhancers within a minimal distance into a
new, larger enhancer. Evidence supporting the idea that large enhan-
cer elements control cell-fate genes has been independently reported
(Parker et al., 2013). However, the notion that enhancer stretches
serve as platforms that crowd transcription factors (Blobel et al.,
2021) has so far been tested only for super-enhancers and synthetic
DNA (Schneider et al., 2021; Trojanowski et al., 2021). Thus,
whether there are other genomic regions that can participate in the
formation of condensates besides super-enhancers is not known.

In this report, we describe SEGCOND, a concise computational
framework for the identification of potential transcriptional
condensate-forming regions. Our method integrates several epigen-
etic and genomic parameters including histone marks, transcription-
al regulator occupancy and chromatin accessibility. It also integrates
conformational data (such as those obtained by Hi-C), to detect
regions of increased potential to participate in condensates.
Crucially, it implements a genome segmentation algorithm that is
inspired from time-series forecasting models (Zeileis et al., 2002,
2003), which allows greater flexibility in segment annotation than
existing methods. We have developed SEGCOND using the data
obtained with a time-resolved cell conversion system consisting of a
B-cell line that can be transdifferentiated into macrophages (Borsari
et al., 2020; Choi et al., 2021; Rapino et al., 2013; Stik et al., 2020).
Functional analyses of potential condensate regions predicted by
SEGCOND exhibit characteristics that overlap with super-
enhancers and other genomic sequences, associated with high level
expression of lineage-associated genes. These regions await valid-
ation by further experimental approaches.

2 Materials and methods

2.1 Datasets used
We used data obtained with a malignant human B-cell line to
macrophage transdifferentiation system established in our lab
(Rapino et al., 2013). We integrated ATAC-seq, Hi-C and RNA-seq
experiments from Stik et al. (2020), H3K27ac and H3K4me3 ChIP-
seq experiments from Borsari et al. (2020) and C/EBPa ChIP-seq
experiments from Choi et al. (2021). All datasets were available at
three distinct timepoints during C/EBPa-induced transdifferentia-
tion, namely 0, 1 and 7 days after induction (Fig. 1A).

2.2 Computational approach
Our goal was to develop a computational framework that enables
the identification of candidate condensate-forming genomic regions
through the integration and analysis of multi-omics data. Based on
the identification of super-enhancers such regions are co-occupied
by multiple transcription factors, display high nuclease accessibility
and high levels of enhancer-related marks (Hnisz et al., 2017; Sabari
et al., 2018). Condensate-associated regions have also been reported
to harbour multiple 3D interactions between gene promoters and
regulatory elements (Hnisz et al., 2017; Sabari et al., 2018).

The SEGCOND method consists of three distinct stages and is
outlined below:

1. Omics-tracks integration and genome segmentation: We inte-

grate multiple omics datasets and through dimensionality reduc-

tion and genome segmentation create a set of distinct genomic

segments in linear chromosomes (Fig. 1B).

2. Segment annotation: Each segment is scored and assigned to a

different functional class with the focus being on enhancer-

associated properties (Fig. 1C).

3. Hi-C integration and candidate identification: 3D interaction be-

tween and within segments is scored with the integration of Hi-

C data. Candidate regions are identified through the application

of a set of thresholds associated with chromosomal interaction

values (Fig. 1D).

Fig. 1. Datasets and description of methods used to develop the SEGCOND pipe-

line. (A) Diagram of the B-cell-to-macrophage transdifferentiation system and over-

view of the associated datasets used in this study. (B) Overview of the segmentation

step. A genomic region in chromosome 22 at Day 0 is used as an example. Principal

Component 1 values are calculated for 5 kb bins and are sorted across chromosomal

coordinates. A sliding window of 1000 bins is used and a function aiming to detect

break points is applied at each iteration. The window is slided 500 bins as depicted.

The break points output is shown on the right. (C) Overview of the annotation step.

Segments are classified as ‘enhancer-enriched’ or ‘enhancer-depleted’ based on a

background zero-inflated negative binomial model that generates an ‘expected’

number of enhancers per segment. Annotation is performed on the basis of an

observed over expected ratio. (D) Overview of the Hi-C integration step. SHAMAN

normalized contact frequencies are pooled for intra/inter-segment interactions and

the median values are reported in a symmetric matrix format

2 A.Klonizakis et al.



2.2.1 Omics-tracks integration and genome segmentation

As discussed above, condensate forming regions are expected to ex-
hibit particular ‘footprints’ in 1D next-generation sequencing (NGS)
data, related to chromatin accessibility, such as ATAC-seq, and gene
regulation, such as ChIP-seq data of transcription factors and co-
factors. In line with this assumption, the first step of the pipeline we
generated is a genome segmentation process, in which genomic coor-
dinates are broken up into segments based on the combined input of
multiple omics datasets measuring protein occupancy, chromatin ac-
cessibility or any other 1D feature of the genome.

The desired input dataset in our analysis is multi-dimensional, as
multiple different NGS datasets, such as ATAC-seq and ChIP-seq of
different TFs, are to be used as input. To this end, we developed a
custom segmentation algorithm, inspired from time-series data ana-
lysis (Fig. 1B). We treat chromosomal coordinates as the pseudo-
time variable and proceed by

i. Binning the genome in 5-kb bins, a bin size that is large enough

to allow for the integration of Hi-C data.

ii. Normalizing the NGS read input per bin, using deeptools2

(Ram�ırez et al., 2016).

iii. Applying a dimensionality reduction technique to ‘project’ data

from multiple experiments into a 1D value. In our case, we per-

formed a principal component analysis (PCA) analysis keeping

the first principal component values (PC1) as they appear to

capture a significant portion of the variance in our datasets

(55.69%, 59.01%, 57.92% for timepoints 0, 1 and 7 days, re-

spectively). Moreover, all datasets correlated positively with

PC1 values and contributed similarly toward PC1 values, with

the exception of C/EBPa ChIP-seq data (Supplementary Fig.

S1A and B).

iv. Identifying boundaries in the 1D signal through the implemen-

tation of the R function breakpoints() from the strucchange

package (Zeileis et al., 2002). breakpoints() applies multiple lin-

ear regression models along the serial data and uses an F-test

(Chow test) to identify boundaries between consecutive seg-

ments (Fig. 1B).

We should note here that as strucchange cannot process all of
the values in a chromosome simultaneously, the algorithm is imple-
mented via a sliding window approach. Windows are overlapping
and identified boundaries that fall within the same window are
merged. A window size of 1000 bins, corresponding to 5 Mb of
DNA, was chosen after different lengths (250–1000 bins) provided
robust and highly similar outputs. A final important parameter of
strucchange is a given minimum segment size value, expressed as a
percentage of the window size. No segments beneath this value can
be returned by a single iteration of the algorithm. This value is im-
portant as it also imposes a threshold on the maximum structural
breaks that can be calculated per iteration. We tested multiple cut-
off values (1%, 2.5%, 5%, 7.5%, 10%, 15%, 20% and 25%) on
the 0-day dataset. We evaluated the size of the generated segments
(Supplementary Fig. S1C), the difference between the average PC1
values of segments with their neighbouring segments
(Supplementary Fig. S1D) and the standard deviation of the PC1 val-
ues within segments (Supplementary Fig. S1E). We opted for a cut-
off where segments are sufficiently large and show optimal behavior
for the other two metrics we examined. We picked a cut-off of 5%,
corresponding to 250 kb of DNA, for all further analyses.

2.2.2 Segment annotation

In order to isolate segments that show an abundance of enhancer-
associated features (Fig. 1C), we employed an annotation scheme
based on a background zero-inflated negative binomial distribution.
For each segment, we calculated the number of bins that simultan-
eously showed signature enhancer marks as high ATAC-seq and
H3K27ac signals. To do so, we log10-transformed the initial data
matrix and Z-score transformed the values of each experiment. A

Z-score of �1, corresponding approximately to the top 5% of val-
ues, was imposed as a cutoff. Bins that had simultaneously Z-scores
of �1 for both H3K27ac ChIP-seq and ATAC-seq samples were
converted into values of ‘1’ while the rest to ‘0’ values. We aggre-
gated the score of every segment.

In order to statistically evaluate which regions show an enrich-
ment of enhancer bins, a background model was generated for every
segment. Segments of equal size were randomly shuffled across the
genome 1000 times and the sum of enhancer-bins was calculated for
every random iteration. The random values were used to fit a zero-
inflated negative binomial background distribution. A P-value and
an enrichment score for each segment were obtained using this back-
ground distribution. Segments that had a P-value of less than 0.05
and a positive enrichment score were deemed as ‘enhancer-enriched’
segments. Other possible models were also fit to a series of random-
ly generated distributions: Negative Binomial, Normal and a Tobit-
Normal model with negative values censored. We used Akaike’s in-
formation criterion to evaluate the performance of each model. In
all cases tested, the Zero-Inflated Negative Binomial model proved
to be performing better (Supplementary Fig. S2A and B).

2.2.3 Hi-C integration and candidate identification

A Hi-C normalization algorithm, SHAMAN (Mendelson Cohen
et al., 2017), was used to generate normalized contact maps.
SHAMAN was chosen as it provides flexibility regarding the inte-
gration of Hi-C data, given that it doesn’t require a predefined bin-
ning resolution for its operation. To create normalized SHAMAN
Hi-C tracks per timepoint, we ran SHAMAN on our Hi-C data fol-
lowing SHAMAN’s documentation (https://tanaylab.bitbucket.io/
shaman/articles/import.html and https://tanaylab.bitbucket.io/sha
man/articles/shaman-package.html). Only filtered Hi-C reads were
used, as described in Stik et al. (2020).

For every segment pair, the complete set of normalized interac-
tions was pooled and the median value was calculated. Each seg-
ment is also assigned an intra-segment interaction score, based on
the normalized interactions found within its own coordinates. For
interaction scores between different segments, only segments within
2 Mb of each other were scored. This is due to the decaying number
of SHAMAN normalized contacts (Supplementary Fig. S3A).

In order to identify ‘enhancer-enriched’ segments that exhibit a
high intra-segment or inter-segment interaction score, a cut-off was
estimated on the basis of a permutation test. Segment coordinates
were shuffled randomly 100 times and Hi-C interaction scores were
calculated for all pairwise random segment combinations. For a ser-
ies of cutoffs, we tried to maximize the number of ‘true’ segment
pairs passing the threshold minus the one of randomized segment
pairs passing the threshold. The resulting number was averaged
across permutations for each timepoint. A maximum was obtained
at a cutoff of 17 after averaging the scores across timepoints as well
(Supplementary Fig. S3B). Segments forming putative condensates
are isolated after converting the SHAMAN interaction matrices into
binary ones. An entry is transformed into a value of 1 (and thus con-
sidered to be linking segments in 3D) if it combined:

• A SHAMAN score �17.
• Both segments being ‘enhancer-enriched’.
• A distance of segments �2 Mb.

At the last step, the binary matrix was converted to a graph via
the R igraph package (https://igraph.org/r/). Connected components
were isolated and were labeled as putative condensates.

2.3 Benchmarking with ChromHMM
We benchmarked our method’s segmentation and annotation steps
against a widely used segmentation algorithm, ChromHMM (Ernst
and Kellis, 2012). (For a detailed description and discussion related
to benchmarking. see ‘Supplementary Materials and Methods’
and Supplementary Figs S4 and S5). In brief, we observe a high
degree of overlap between enhancer-related segments produced
by SEGCOND and enhancer-related ChromHMM segments.
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However, ChromHMM identifies multiple additional segments
compared with SEGCOND (up to two times more in certain cases)
that are overall smaller in size, making the integration of Hi-C data
impractical.

3 Results

3.1 Identification of putative transcriptional

condensates
We employed SECGOND in datasets derived from three distinct
timepoints of our B-cell to macrophage transdifferentiation system,
to identify a set of regions that are enriched for enhancer-related
marks and form strongly associating hubs in 3D space. We termed
these regions as putative transcriptional condensates (PTCs). The
number of PTCs identified ranged between 271 and 373 per sample
at a given time point, showing that at the intermediate time point
(Day1 of trans-differentiation) there were more PTCs than in either
B cells (Day0) or induced macrophages (Day7) (Fig. 2A). The iso-
lated hubs consisted of one to five segments each and were of com-
parable size in all three timepoints (Fig. 2B and C). We also checked
the overlap of PTCs between different timepoints. 252 Day0 PTCs
overlapped a Day1 PTC, while 181 Day0 PTCs overlapped a Day7
PTC. Finally, 204 Day1 PTCs overlapped a Day7 PTC. Overall, a
big subset of PTCs per timepoint appeared to remain stable through-
out transdifferentiation.

3.2 Candidate condensate segments identified by

SEGCOND partially overlap with super-enhancers and

highly interconnected enhancer communities
To our knowledge, SEGCOND is the first method that attempts to
identify putative condensate regions. Due to the lack of other meth-
odologies against which we could benchmark, we compared our

PTCs with super-enhancer predictions using the ROSE algorithm
and a set of highly interconnected enhancers (HICE), identified in an
independent study (Madsen et al., 2020). We ran ROSE (https://
github.com/stjude/ROSE) with an input of enhancer regions (in our
case, the overlap of H3K27ac þ ATAC-seq peaks that were called
with MACS2 for our data), using the default stitching parameter
and distance parameters (12.5 and 2.5 kb, respectively). We then
identified the genes lying within regions overlapping both our PTCs
and ROSE’s super-enhancer predictions and found that roughly one
out of five super-enhancer genes overlapped with PTCs (17%, 22%
and 19% for Day 0, Day 1 and Day 7, respectively). More import-
antly, we found significant (almost 2-fold) higher than average ex-
pression of super-enhancer genes that overlapped our PTCs
compared with non-PTC-associated super-enhancer (i.e. ROSE)
genes. Finally, PTC-specific genes found in Day 0 and Day 1 also
exhibited statistically significant higher expression compared with
super-enhancer specific genes on the same timepoints, suggesting
that our method is likewise able to detect regions that are enriched
in transcriptional activity to a degree that is superior to the one that
is pertinent to super-enhancers in general (Supplementary Fig. S6A).

In order to compare SEGCOND-identified PTCs with HICE ele-
ments, we run SEGCOND on an independent set of data described
for adipocyte differentiation (Madsen et al., 2020). We integrated
MED1, C/EBPb, H3K27Ac and DNaseI data for the genome seg-
mentation step and Hi-C for the definition of PTCs. We then tested
the overlap of our defined PTCs with the HICE elements identified
by the authors using a permutation analysis and found a highly sig-
nificant colocalization, exceeding the one found for other actively
transcribed elements (Supplementary Fig. S6B).

We conclude that SEGCOND is able to identify highly active en-
hancer regions with increased connectivity in 3D space. The elevated
transcriptional activity of genes lying in the proximity of this enhan-
cer subset further supports the notion that these regions exhibit
properties of transcriptional condensates. The significant overlap of
PTCs with super-enhancers as well as with HICE elements, even
though the latter are not considered to be bonafide condensate-
forming regions, is an additional indication of our method’s poten-
tial to combine linear genomic and 3D conformational data in a
meaningful way.

3.3 Genes in putative condensates reflect

transdifferentiation dynamics
Current literature suggests that transcriptional condensates preferen-
tially control the expression of highly expressed lineage instructive
genes (Sabari et al., 2018). We thus focused first on the properties of
genes contained in our putative condensate regions. We split our
segments into four categories: ‘Condensate’ segments, ‘Enhancer’
segments, ‘Active’ segments and ‘Repressed’ segments (Fig. 2D). We
identified the genes falling exclusively within the different segment
types and calculated their transcript per million (TPM) values.
These were plotted separately for each timepoint (Fig. 3A).
Consistent with expectations, genes falling in ‘Condensate’ segments
were significantly over-expressed compared with genes in genomic
segments defined as transcriptionally active or enhancer containing.

Since our Day 0 B cells correspond to highly proliferating B-cell
lymphoma cells and induced macrophages stop dividing, we used
gProfiler2 (Kolberg et al., 2020) to perform a GO-term enrichment
analysis of genes falling within ‘Condensate’ segments at the three
cell stages (Fig. 3B) to inquire for functional changes reflecting the
dynamics. This showed that cells at Day 0 are enriched for lympho-
cyte related but not macrophage-related terms, while Day 7 cells are
enriched for myeloid terms. Terms associated with cell-cycle arrest
appear at Day 1 and persist until Day 7, consistent with the observa-
tion that C/EBPa induces a cell-cycle arrest (Rapino et al., 2013).
Moreover, Day 1 cells resemble an intermediate state, as both
macrophage- and lymphocyte-related functions are enriched, con-
sistent with recent reports (Borsari et al., 2020).

Together, these results strongly suggest that our method detects
regions with increased gene expression, which are functionally asso-
ciated with the B-cells-to-macrophage transdifferentiation process.

Fig. 2. Number of identified putative condensates and segments found within. (A)

Number of putative condensates per timepoint. (B) Size distribution of segments

within putative condensates. No significant differences found between timepoints.

(C) Distribution of number of segments comprising putative condensates per time-

point. (D) Separation of segments in four categories for downstream analyses
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3.4 SEGCOND captures putative condensate regions as

potential new players in the transdifferentiation process
To search for candidate condensate regions that participate in trans-
differentiation we focused on genes within PTC regions. Across the
three timepoints, we identified 3849 genes that (i) were located
within a PTC, (ii) had non-zero expression (TPM>0) and (iii) had a
promoter proximal region (65 kb) accessible and decorated with
H3K27ac. Out of these, 1021 were in PTCs consistently across the
whole process. Of these, we identified 256 genes lying consistently
within Day 1–Day 7-specific PTCs (but not Day0) and therefore can
be considered potentially important for transdifferentiation. An ex-
ample of such a candidate is the Hif1a gene (Fig. 3C). The Hif1a
locus exhibits higher interaction scores at Day 1 than at Day 0,
accompanied by a more than 2-fold increase in the gene’s expression
levels, suggesting a functional role for the gene. An additional ex-
ample is the Fos gene locus (Fig. 3D) where H3K27ac signal changes
dramatically from Day 0 to Day1, alongside its expression levels
(>60-fold increase). Candidate loci like these allow the experimental

validation of novel genes that have so far not been implicated in the
B-cell-to-macrophage cell fate conversion.

4 Discussion

Transcriptional condensates play key roles in processes ranging
from transcription to translation, metabolism and signaling, how-
ever, there is a lack of existing methodologies for their identification
from genomic readouts. The computational framework described
here was developed to identify genomic regions that may act as nu-
cleation points for the assembly of transcriptional condensates.
SEGCOND’s segmentation approach is different from existing
methods, mostly depending on Hidden Markov Models, by integrat-
ing Hi-C data. Existing HMM segmentation approaches lead to a
fragmentation of genomic space that is incompatible with the reso-
lution of current genome conformational data, such as Hi-C, which
are, nonetheless crucial for condensate identification. Another major
difference of SEGCOND from existing segmentation methods is the
statistical approach, used for the annotation of the defined seg-
ments. This combines a permutation test and the use of a zero-
inflated negative binomial distribution to assess the significance of
each segment’s attribution to a given status. SEGCOND is also flex-
ible in the possibility of incorporating additional data. Segment an-
notation is conditional to the original input and thus, it can identify
both active and repressive regions depending on the combination of
the genomics data used in the segmentation step.

As with all segmentation methodologies, one limitation of
SEGCOND is the choice of parameters. Depending on the value
used to identify structural breakpoints the resulting segments vary in
size. Nevertheless, the median segment size does not vary more than
half an order of magnitude even for a very extreme range of break-
point parameters (see Supplementary Fig. S1C). Greater variability
is observed, as would be expected, in the quantitative signal of the
segments depending on their size, with smaller segments, corre-
sponding to a larger fragmentation, having more intense signal
changes (Supplementary Fig. S1D). Most of this variability is
resolved through SEGCOND’s dimensionality reduction step, which
distributes the variation more evenly across the breakpoint cut-off
range (Supplementary Fig. S1E). This robust behavior allows the
user to opt for different cutoffs and segment sizes without undermin-
ing the classification potential. The empirically chosen 5% cutoff
guarantees an optimal trade-off between signal variability and a seg-
ment size distribution that reflects the expected length scale of the
phenomenon under study.

As data accumulate and our knowledge on the mechanisms
underlying condensate formation becomes enriched, new transcrip-
tional regulators may be associated with the phenomenon.
Integrating multiple TF ChIPSeq tracks via SEGCOND may require
some additional care. Depending on the nature of the analyzed TFs,
the user may opt to include all tracks in a single run, if they are
expected to co-operate (and likely to co-localize). In case they are
likely to exert complementary functions, multiple runs of
SEGCOND would probably be more suitable, followed by a merg-
ing of the predicted candidate PTCs, each labeled under the TF from
which they were derived.

Additional limitations of SEGCOND are related to computa-
tional demands. The application of the breakpoint function is mem-
ory demanding and thus needs to be run serially on sliding windows.
This means that the method is only ‘aware’ of a section of the data
each time. The Hi-C integration is also computationally intensive,
especially for small segment sizes, which is imposed by the use of
SHAMAN. Therefore, in its current version, SEGCOND requires
the computational capacity of a computer cluster in order to per-
form the full set of necessary functions.

Besides the increased computational demands, our analyses
show that SEGCOND is an efficient method for condensate predic-
tion. The regions it proposes partially match a subset of super-
enhancers and HICE hubs that are identified by two independent
methodologies. We furthermore show that the identified PTCs har-
bor a subset of highly expressed genes, with expression levels that
exceed all other genomic transcriptionally active regions.

Fig. 3. Functional characterization of putative condensate regions. (A) Expression of

genes (as TPM) belonging to different segment types. Stars denote a Wilcoxon Rank

Sum test P-value of less than 0.001. (B) Selected, enriched, GO: BP terms of genes

residing in putative condensates per timepoint. Enrichment analysis was performed

with gprofiler2. (C) SHAMAN Hi-C profiles showing changes in a putative conden-

sate forming region during transdifferentiation within the Hif1a locus. This region

is predicted not to be part of a condensate at Day 0 but at Day 1. Red and yellow

pixels depict an enrichment of contact frequencies, while gray and blue depict no en-

richment or depletion respectively. Note increased interaction frequencies within

the circled region at Day 1. (D) SHAMAN Hi-C profiles showing changes in a puta-

tive condensate forming region of Fos. Note an increase in the H3K27ac signal at

Day 1 within the highlighted square
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Application of SEGCOND to data from a well-studied transdiffer-
entiation system allowed us to propose novel genes potentially
involved in cell fate changes, testable in validation experiments. For
example, DNA and RNA FISH experiments involving the identified
regions could reveal whether they colocalize with MED1 punctae, as
has been shown for super-enhancer regions (Sabari et al., 2018).
The link between specific enhancer elements in PTCs and the forma-
tion of transcriptional condensates could also be investigated using
CRISPR-Cas9. To our knowledge, the computational method
described here is the first one specifically designed toward proposing
genomic regions participating in the formation of transcriptional
condensates.
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