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Abstract

The central message of this paper is that nobody should be using the sample

covariance matrix for the purpose of portfolio optimization. It contains estima-

tion error of the kind most likely to perturb a mean-variance optimizer. In its

place, we suggest using the matrix obtained from the sample covariance matrix

through a transformation called shrinkage. This tends to pull the most extreme

coefficients towards more central values, thereby systematically reducing estima-

tion error where it matters most. Statistically, the challenge is to know the optimal

shrinkage intensity, and we give the formula for that. Without changing any other

step in the portfolio optimization process, we show on actual stock market data

that shrinkage reduces tracking error relative to a benchmark index, and substan-

tially increases the realized information ratio of the active portfolio manager.
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1 Introduction

Since the seminal work of Markowitz (1952), mean-variance optimization has been the

most rigorous way to pick stocks in which to invest. The two fundamental ingredients

are the expected (excess) return for each stock, which represents the portfolio manager’s

ability to forecast future price movements, and the covariance matrix of stock returns,

which represents risk control. To further specify the problem, in the real world most

asset managers are forbidden from selling any stock short, and in the modern world they

are typically measured against the benchmark of an equity market index with fixed (or

infrequently rebalanced) weights. Fast and accurate quadratic optimization softwares

exist that can solve this problem — provided they are fed the right inputs, that is.

Estimating the covariance matrix of stock returns has always been one of the stickiest

points. The standard statistical method is to gather a history of past stock returns and

compute their sample covariance matrix. Unfortunately this creates problems that are

well documented (Jobson and Korkie, 1980). To put it as simply as possible, when

the number of stocks under consideration is large, especially relative to the number of

historical return observations available (which is the usual case), the sample covariance

matrix is estimated with a lot of error. It implies that the most extreme coefficients in the

matrix thus estimated tend to take on extreme values not because this is “the truth”,

but because they contain an extreme amount of error. Invariably the mean-variance

optimization software will latch onto them and place its biggest bets on those coefficients

which are the most extremely unreliable. Michaud (1989) calls this phenomenon “error-

maximization”. It implies that managers’ realized track records will underrepresent their

true stock-picking abilities, which is clearly the last thing they want.

On the back of this, some companies such as APT and BARRA have proposed pro-

prietary methods to generate covariance matrices that are advertized as better suited to

mean-variance optimization than the sample covariance matrix. The drawbacks are that

any manager using them establishes a costly and indefinite dependence on an external

entity who does not share in any downside risk, and that their proprietary methods are

not open for independent inspection and verification, so one can never be sure what is

really going on behind the curtain.

This is why we propose a new formula for estimating the covariance matrix of stock

returns that can beneficially replace the sample covariance matrix in any mean-variance

optimization application, and is absolutely free of charge and open to everybody. The

crux of the method is that those estimated coefficients in the sample covariance matrix

that are extremely high tend to contain a lot of positive error and therefore need to be

pulled downwards to compensate for that. Similarly, we compensate for the negative

error that tends to be embedded inside extremely low estimated coefficients by pulling
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them upwards. We call this the shrinkage of the extremes towards the center. If properly

implemented, this shrinkage would clearly fix the problem of the sample covariance

matrix described above. The key questions are towards what target to shrink, and how

intensely? Our contributions are: (1) to provide a rigorous statistical answer to both

these questions; (2) to describe this below so the reader can decide for him or herself

whether it makes sense; (3) to supply computer code that implements the resulting

mathematical formula; and finally (4) to show that it yields significant improvements on

actual stock return data.

Shrinkage is hardly a new and revolutionary concept in Statistics, although it cer-

tainly was when first introduced by Professor Charles Stein of Stanford University in

1955. An excellent non-technical primer on shrinkage using real-life examples of base-

ball batting averages was written by Efron and Morris (1977). That this idea has not

yet percolated to a field where it would be most useful, portfolio management, is a

testimony that Chinese walls still exist between theoretical and applied disciplines who

would benefit from talking to each other more. We endeavor to knock down these walls.

Early attempts to use shrinkage in portfolio selection were made by Frost and Savarino

(1986) and Jorion (1986), but their particular shrinkage techniques broke down when

the number of stocks on the menu exceeds the number of historical return observations,

which is very often the case in practice. Recently Jagannathan and Ma (2002) proved

that mean-variance optimizers are already implicitly applying some form of shrinkage to

the sample covariance matrix when short sales are ruled out, and that this is generally

beneficial in terms of improving weights stability. All the more reason then to do it

explicitly so that the optimal shrinkage intensity can be applied, as in our paper. Much

of the foundations for the present work has been laid out by the authors in other papers

(Ledoit and Wolf, 2003, 2004). Those were largely theoretical and general-interest ar-

ticles, whereas the present one focuses specifically on how to employ the technology to

add value to active portfolio management.

First we give a formal description of the portfolio optimization problem in order to

provide a solid base for our later exposition. Having described our estimator, we then

look at its out-of-sample performance, using historical stock return data.

2 Formal Description of the Problem

We study the most relevant case for equity portfolios. The benchmark is a weighted index

of a large number N of individual stocks, such as a value-weighted index. The universe

of stocks from which the portfolio manager selects includes all these stocks.1 Excess
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returns are defined relative to the chosen benchmark. Define the following notations:

wB = vector of benchmark weights for the universe of N stocks

x = vector of active weights

wP = wB + x = vector of portfolio weights

y = vector of stock returns

µ = E(y) = vector of expected stock returns

α = µ − w′
Bµ = vector of expected stock excess returns

Σ = covariance matrix of stock returns

We can write expected returns and variances in vector/matrix notation as:

µB = w′
Bµ = expected return on benchmark

σ2

B = w′
BΣwB = variance of benchmark return

µP = w′
P µ = expected return on portfolio

σ2

P = w′
PΣwP = variance of portfolio return

µE = x′µ = expected excess return on portfolio

σ2

E = x′Σx = tracking error variance

The portfolio selection problem is subject to the constraint that the portfolio be fully

invested, that is, the portfolio weights wP have to add up to unity. With 1 denoting

a conforming vector of ones, this can be written as w′
P1 = 1. Because the benchmark

weights also add up to unity, the vector of portfolio deviations must up to zero, or

x′1 = 0. Therefore, the portfolio of the manager can be viewed as a position in the

benchmark plus an active portfolio. The active portfolio is a long/short portfolio and

expresses the views of the manager. Two immediate implications are:

µP = µB + µE

σ2

P = σ2

B + 2w′
BΣx + σ2

E

While positions of the active portfolio are both positive and negative, the manager

does not have complete freedom. None of the portfolio weights wP can be negative, or

wP ≥ 0, due to the long-only constraint. The resulting constraint x ≥ −wB expresses

the limited freedom of the manager. Grinold and Kahn (2000, Chapter 15) illustrate how

this limitation can negatively affect the performance of the managed portfolio, especially

when the benchmark is a value-weighted index and when N is large. In addition, the

manager often is faced with the constraint that the total position in any given stock
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cannot exceed a certain value, like 10%. If this upper bound is denoted by c, the

resulting constraint on the weights of the active portfolio is x ≤ c1 − wB.

Having defined the various ingredients, we can now formalize the optimization prob-

lem of the manager as follows:2

Minimize: x′Σx (1)

such that: x′α ≥ g

x′1 = 0

x ≥ −wB

x ≤ c1 − wB

Here g is the manager’s target gain (i.e., expected excess return) relative to the bench-

mark. A typical number is 300 basis points (annualized). The manager chooses g and

the upper limit c and also knows the current vector of benchmark weights wB. She is

now left to provide estimates for α, the vector of expected stock excess returns, and

for Σ, the covariance matrix of stock returns. In a final step, all the inputs are fed into

a quadratic optimization software that will compute x, the optimal weights of the active

portfolio. It is our mission to provide the manager with a good estimator of Σ. We do

not help with the problem of how to estimate α, or at least not for free.

3 Shrinkage Estimator of the Covariance Matrix

3.1 Shrinkage Principle

This section briefly describes the shrinkage estimator for Σ which we propose; for a more

detailed exposition and relevant historical background the reader is referred to Ledoit

and Wolf (2003). We start with the sample covariance matrix S. Its advantages are

ease of computation and the property of being unbiased (i.e., its expected value is equal

to the true covariance matrix). Its main disadvantage is the fact that it contains a lot

of estimation error when the number of data points is of comparable or even smaller

order than the number of individual stocks; this is the common situation in financial

applications. Alternatively, one might consider an estimator with a lot of structure,

as the single-factor model of Sharpe (1963). Such estimators contain relatively little

estimation error but, on the other hand, tend to be misspecified and can be severely

biased. In one way or another, all successful risk models find a compromise between the

sample covariance matrix and a highly structured estimator.

The industry standard are multi-factor models. The idea is to incorporate multiple

5



factors instead of just the single factor of Sharpe (1963). Thereby the models become

more flexible and their bias is reduced. But the estimation error increases. Finding the

optimal tradeoff by deciding on the nature and the number of the factors included in

the model is as much an art as it is a science. One approach is to use a combination

of industry factors and risk indices, with the total number of factors being on the order

of 50. An example is BARRA’s U.S. Equity model. Another approach is to use statistical

factors, such as principal components, with the total number of factors being on the order

of 5. A commercial vendor offering risk models based on statistical factors is APT.

Our philosophy is different. Consider the sample covariance matrix S and a highly

structured estimator, denoted by F . We find a compromise between the two by com-

puting a convex linear combination δF +(1− δ)S, where δ is a number between 0 and 1.

This technique is called shrinkage, since the sample covariance matrix is ‘shrunk’ to-

wards the structured estimator. The number δ is referred to as the shrinkage constant.3

Intuitively, it measures the weight that is given to the structured estimator. Shrinkage

estimators have a long and successful history in statistics. The beauty of the principle

is that by properly combining two ‘extreme’ estimators one can obtain a ‘compromise’

estimator that performs better than either extreme. To make a somewhat sloppy anal-

ogy: most people would be prefer the ‘compromise’ of one bottle of Bordeaux and one

steak to either ‘extreme’ of two bottles of Bordeaux (and no steak) or two steaks (and

no Bordeaux).

Any shrinkage estimator has three ingredients: An estimator with no structure,

an estimator with a lot of structure, and a shrinkage constant. The estimator without

structure is generally quite obvious, given the context. For us it is the sample covariance

matrix. Less obvious are the choice of the structured estimator, or shrinkage target, and

the shrinkage constant.

3.2 Shrinkage Target

The shrinkage target should fulfill two requirements at the same time: it involves only a

small number of free parameters (that is, a lot of structure) but it also reflects important

characteristics of the unknown quantity being estimated. Ledoit and Wolf (2003) suggest

the single-factor matrix of Sharpe (1963) as the shrinkage target. In this paper we make

a different suggestion: the constant correlation model. In our experience, it gives com-

parable performance but is easier to implement. The model says that all the (pairwise)

correlations are identical.4 The estimation of the model is straightforward. The average

of all the sample correlations is the estimator of the common constant correlation. This

number together with the vector of sample variances implies our shrinkage target, de-

noted by F in the remainder of the paper. A formal description of the shrinkage target
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is provided in Appendix A; in particular, see equation (3).

3.3 Shrinkage Constant

The obvious practical problem is which value to choose for the shrinkage constant. Any

choice of δ strictly between 0 and 1 would yield a compromise between S and F . But

this results in infinitely many possibilities. Intuitively, there is an ‘optimal’ shrinkage

constant. It is the one that minimizes the expected distance between the shrinkage

estimator and the true covariance matrix. Call this number δ∗. Appendix B derives

a formula for estimating δ∗. The estimated optimal shrinkage constant is denoted δ̂∗;

see equation (5) in Appendix B. Our operational shrinkage estimator of the covariance

matrix Σ is now ready for use:

Σ̂Shrink = δ̂∗F + (1 − δ̂∗)S (2)

4 Empirical Study

We now study the out-of-sample performance of our shrinkage estimator, using historical

stock market data. DataStream provides monthly U.S. stock data. We use these data

to construct several value-weighted indices to serve as our benchmarks. Starting in

February 1983, the methodology is as follows. At the beginning of each month, we

select the N largest stocks as measured by their market value. The market values of

the stocks define their index weight. At the end of the month, we observe the (real)

returns of the individual stocks and, given their weights, compute the return on the

index. This prescription is repeated every month until the end of December 2002. Thus,

the constituents list and the index weights are constantly updated.

As far as the benchmark size N is concerned, we employ N = 30, 50, 100, 225, 500.

This range covers such important benchmarks as DJIA, Xetra DAX, DJ STOXX 50,

FTSE 100, NASDAQ-100, NIKKEI 225, and S&P 500. Summary statistics of the various

benchmark returns are provided in Table 1.

To mimic a skilled active manager, we first construct raw forecasts of the expected

excess returns by adding random noise to the realized excess returns. In a second

step, these raw forecasts are transformed into refined forecasts α̂ which are fed to the

quadratic optimizer. This is done in a way such that the unconstrained annualized ex

ante information ratio (IR) is approximately equal to 1.5, independently of the value of

the benchmark size N . The unconstrained IR could be attained by a manager who did

not face any lower or upper bound constraints on the weight vector x and who knew
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the exact nature of the covariance matrix Σ of stock returns. The details of the forecast

construction are described in Appendix C.

A risk model is evaluated by its out-of-sample performance.

Evaluation Algorithm:

• At the beginning of each month feed the following ingredients to the quadratic

optimizer: the benchmark weights wB, the forecasted expected excess returns α̂,

the estimated covariance matrix Σ̂, the desired gain g, and an upper bound of

c = 0.1 on the total weight of any stock.

• To compute an estimate Σ̂, we use the last T = 60 monthly returns of the current

constituents list of stocks.

• The quadratic optimizer computes a weight vector x.

• At the end of the month, the realized excess return is given by e = x′y, where y is

the vector of stock returns for the month.

• The out-of-sample period ranges from 02/1983 until 12/2002, so a total of 239

monthly realized excess returns are obtained.

• From the excess returns we compute the (annualized) ex post information ratio as√
12ē/se, where ē is the sample average of the excess returns and se is the sample

standard deviation of the excess returns.

• Since the results depend on the monthly forecasts α̂, which are random, we repeat

this process 50 times and then report mean-summary statistics.

• For the (annualized) gain, we use both 300 basis points.

Apart from our shrinkage estimator, we include the sample covariance matrix in

the study. The sample covariance matrix is widely-known and very easy to compute.

Based on the recent paper by Jagannathan and Ma (2002), a portfolio manager facing

a long-only constraint might hope that it yields reasonable performance.

Mean-summary statistics for the realized excess returns are presented in Table 2.

The results can be highlighted as follows.

• In all scenarios, the shrinkage estimator yields the highest (average) information

ratio.

• In most scenarios, the shrinkage estimator yields the highest (average) mean excess

return.
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• In all scenarios, the shrinkage estimator yields the lowest (average) standard devi-

ation of excess return.

• The (average) information ratio decreases as index size N increases.5

Figure 1 shows boxplots of the realized information ratios over the 50 repetitions for

the various scenarios. The message is identical to the one of Table 2: (i) shrinkage im-

proves on the sample covariance matrix; (ii) realized information ratios tend to decrease

as N increases. The plots also show considerable variation in the realized information

ratios. In addition to having good forecasting skill and using a good risk model, the

successful active manager can benefit from a bit of good luck.

Table 3 presents mean-summary statistics on the average monthly turnover. Turnover

is defined as the total turnover of Grinold and Kahn (2000, Chapter 16) Note that this

definition corresponds to updating the entire portfolio, not just the active portfolio.

A part of the turnover, therefore, is due to the constituents list of the benchmark and

their weights, both of which change over time. In general, the turnover is too high to

be attractive for an active manager. But no effort was made to limit turnover, and a

constraint to this effect could be easily added to the quadratic optimization problem (1).

The important message to take away from Table 3 is that the sample covariance matrix

results in a higher turnover compared to our shrinkage estimator.

We finish this section with two remarks.

Remark 1 Many active managers face further constraints, apart from the long-only

constraint and an upper bound on the weight of any given stock. Examples are market-

cap-neutral constraints, turnover constraints, and dividend-yield neutrality with respect

to the benchmark. Adding further constraints generally reduces the ex post information

ratio; see Clarke et al. (2002). Nevertheless, the manager will still benefit from using a

superior risk model.

Remark 2 It is by now well-understood that tracking-error efficient portfolios are not

mean-variance efficient: The tracking-error efficient frontier is shifted below and to the

right compared to the mean-variance efficient frontier. For example, see Roll (1992),

Wilcox (1994), and Scherer (2002, Chapter 6). Jorion (2003) shows that adding a

constraint on the total portfolio variance, σ2
P = w′

PΣwp, to the quadratic optimization

problem (1) improves the mean-variance efficiency of the managed portfolio.6 Obviously,

the additional constraint requires an estimate of Σ in practice and therefore a superior

risk model will again be beneficial to the manager.
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5 Conclusion

This paper proposes a risk model that dominates the traditional one, the sample co-

variance matrix, for the purpose of mean-variance optimization in the context of active

portfolio management. We claim that, given the well-documented flaws of the sample

covariance matrix, nobody should be using it any more now that an enhanced alternative

is available. Using the simple modification we propose substantially increases the real-

ized information ratio of the portfolio manager. For example, when an annual expected

excess return of 300 basis points over the benchmark is specified, a typical increase is on

the order of 50%. Computer code in the Matlab programming language implementing

this improved estimator is freely downloadable from http://www.ledoit.net. Portfolio

management firms that are sophisticated enough to employ a mean-variance optimiza-

tion software would have the expertise required to implement our simple formulas in

any computer language. All types of portfolio optimization procedures, even advanced

ones such as the resampled efficient frontier, would benefit from shrinking the sample

covariance matrix. The intuitive justification for this statistical transformation is pru-

dence: not betting the ranch on noisy coefficients that are too extreme. We hope that

the profession can find value in our proposal.

Notes

1The problem can be generalized to the setting where the universe contains further

stocks not contained in the benchmark. However, to keep transaction costs down, the

more general setting is of limited practical interest.

2Jorion (2003) considers the problem of maximizing x′α subject to an upper bound

on the tracking error variance x′Σx. Grinold and Kahn (2000) consider the problem

of maximizing x′α − λ x′Σx, where λ is a risk-aversion constant. These are equivalent

problem formulations, leading to the same frontier in risk-return space.

3Ledoit and Wolf (2003) denote the shrinkage constant by α. We switch to the

symbol δ in this paper to avoid confusion with expected excess returns.

4The constant correlation model would not be appropriate if the assets came from

different asset classes, such as stocks and bonds. But in such cases more general models

for the shrinkage target are available.

5Grinold and Kahn (2000, Chapter 15) explain why this happens. In case N is very

large, a manager is probably ill-advised to actively invest in all the stocks making up

the index. The realized information ration can be improved by, for example, focusing on
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the 50 or 100 largest stocks in the index and setting the weights of the remaining ones

equal to zero.

6A related idea already appears in Wilcox (1994).

A Formula for Shrinkage Target

Some notation is needed. Let yit, 1 ≤ i ≤ N, 1 ≤ t ≤ T , denote the return on stock i

during period t. Our analysis assumes that stock returns are independent and identically

distributed (iid) over time and have finite fourth moments. The sample average of the

returns of stock i is given by ȳi· = T−1
∑T

t=1
yit. Let Σ denote the population (or true)

covariance matrix and let S denote the sample covariance matrix. Typical entries of the

matrices Σ and S are denoted by σij and sij, respectively.

The population and sample correlations between the returns on stocks i and j are

given by

%ij =
σij√
σiiσjj

and rij =
sij√
siisjj

The average population and sample correlations are given by

%̄ =
2

(N − 1)N

N−1
∑

i=1

N
∑

j=i+1

%ij and r̄ =
2

(N − 1)N

N−1
∑

i=1

N
∑

j=i+1

rij

Define the population constant correlation matrix Φ by means of the population vari-

ances and the average population correlation:

φii = σii and φij = %̄
√

σiiσjj

Correspondingly, define the sample constant correlation matrix F by means of the sample

variances and the average sample correlation:

fii = sii and fij = r̄
√

siisjj (3)

This matrix F is the shrinkage target introduced in Subsection 3.2.

B Formula for Shrinkage Intensity

We have to choose the objective according to which the shrinkage intensity δ is optimal.

All existing shrinkage estimators from finite-sample statistical decision theory and also
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the one of Frost and Savarino (1986) break down when N ≥ T because their loss functions

involve the inverse of the covariance matrix. Instead, we propose a loss function that

does not depend on this inverse and is very intuitive: it is a quadratic measure of distance

between the true and the estimated covariance matrices based on the Frobenius norm.

The Frobenius norm of the N × N symmetric matrix Z with entries (zij)i,j=1,...,N is

defined by

‖Z‖2 =

N
∑

i=1

N
∑

j=1

z2

ij

By considering the Frobenius norm of the difference between the shrinkage estimator

and the true covariance matrix, we arrive at the following quadratic loss function:

L(δ) = ‖δ F + (1 − δ) S − Σ‖2

The goal is to find the shrinkage constant δ which minimizes the expected value of

this loss, that is, the risk:

R(δ) = E(L(δ)) = E
(

‖δ F + (1 − δ)S − Σ‖2
)

(4)

Under the assumption that N is fixed while T tends to infinity, Ledoit and Wolf (2003)

prove that the optimal value δ∗ asymptotically behaves like a constant over T (up to

higher-order terms). This constant, called κ, can be written as

κ =
π − ρ

γ

Here, π denotes the sum of asymptotic variances of the entries of the sample covari-

ance matrix scaled by
√

T : π =
∑N

i=1

∑N

j=1
AsyVar

[√
Tsij

]

. Similarly, ρ denotes the

sum of asymptotic covariances of the entries of the shrinkage target with the entries of

the sample covariance matrix scaled by
√

T : ρ =
∑N

i=1

∑N

j=1
AsyCov

[√
Tfij,

√
Tsij

]

.

Finally, γ measures the misspecification of the (population) shrinkage target: γ =
∑N

i=1

∑N

j=1
(φij − σij)

2.

If κ were known, we could use κ/T as the shrinkage intensity in practice. Unfortu-

nately, κ is unknown, so we find a consistent estimator for κ. This is done by finding

consistent estimators for the three ingredients π, ρ, and γ.

First, a consistent estimator for π is

π̂ =

N
∑

i=1

N
∑

j=1

π̂ij with π̂ij =
1

T

T
∑

t=1

{(yit − ȳi·)(yjt − ȳj·) − sij}2
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This result is proven by Ledoit and Wolf (2003).

Second, a consistent estimator for ρ is a bit tedious to write down but quite straight-

forward to implement. By definition

ρ =
N

∑

i=1

N
∑

j=1

AsyCov
[√

Tfij,
√

Tsij

]

=
N

∑

i=1

AsyVar
[√

Tsii

]

+
N

∑

i=1

N
∑

j=1,j 6=i

AsyCov
[√

T r̄
√

siisjj,
√

Tsij

]

On the diagonal, we know from Ledoit and Wolf (2003) again that

AsyVar
[√

Tsii

]

= π̂ii =
1

T

T
∑

t=1

{

(yit − ȳi·)
2 − sii

}2

On the off-diagonal, we have

AsyCov
[√

T r̄
√

siisjj,
√

Tsij

]

Since the estimation error in r̄ is asymptotically negligible and by use of the delta-

method, any term AsyCov
[√

T r̄
√

siisjj,
√

Tsij

]

can be consistently estimated by

r̄

2

(√

sjj

sii

AsyCov
[√

Tsii,
√

Tsij

]

+

√

sii

sjj

AsyCov
[√

Tsjj,
√

Tsij

]

)

Standard theory implies that a consistent estimator for AsyCov
[√

Tsii,
√

Tsij

]

is given

by

ϑ̂ii,ij =
1

T

T
∑

t=1

{

(yit − ȳi·)
2 − sii

}

{(yit − ȳi·)(yjt − ȳj·) − sij}

and that, analogously, a consistent estimator for AsyCov
[√

Tsjj,
√

Tsij

]

is given by

ϑ̂jj,ij =
1

T

T
∑

t=1

{

(yjt − ȳj·)
2 − sjj

}

{(yit − ȳi·)(yjt − ȳj·) − sij}

Collecting terms now yields a consistent estimator for ρ:

ρ̂ =
N

∑

i=1

π̂ii +
N

∑

i=1

N
∑

j=1,j 6=i

r̄

2

(√

sjj

sii

ϑ̂ii,ij +

√

sii

sjj

ϑ̂jj,ij

)
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Third, a consistent estimator for γ is

γ̂ =

N
∑

i=1

N
∑

j=1

(fij − sij)
2

This result follows from fij and sij being consistent estimators of φij and σij, respectively.

Putting the pieces together yields a consistent estimator for κ:

κ̂ =
π̂ − ρ̂

γ̂

Finally, the estimated shrinkage intensity we propose for use in practice is:

δ̂∗ = max

{

0, min

{

κ̂

T
, 1

}}

(5)

The reason for this formula is the following. Although very unlikely, in principle it can

happen in finite sample that κ̂/T < 0 or that κ̂/T > 1, in which case we simply truncate

it at 0 or at 1, respectively.

C Forecasting Expected Excess Returns

We want to mimic a skilled active manager. To do this, we rely on hindsight and

the forecast principles laid out in Grinold and Kahn (2000, Chapters 6 and 10). Our

description is necessarily brief and the reader is referred to this book for further details.

Let eit denote the excess return of stock i during period t, that is, the return on the

stock minus the benchmark return. In a first step, we generate raw forecasts by adding

noise to the realized excess returns:

rawit = eit + uit

The noise terms uit are normally distributed with mean zero and are independent of each

other both cross-sectionally and over time. For a given stock, the ex ante correlation

between eit and uit over time is known as the information coefficient (IC). In principal,

the IC could depend on i but, as is common, we choose a coefficient constant across

stocks. Which is an appropriate value for IC? In the absence of constraints on the active

manager (apart from being fully invested), the well-known Fundamental Law of Active

Management states that the ex ante information ratio (IR) of the manager is determined
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by the IC and the breadth of the strategy:

IR ≈ IC ·
√

Breadth

The breadth term measures the number of independent active ‘bets’ the manager makes

in one year. Since in our study the portfolio will be updated every month and, by

construction, the forecasts are independent of each other, we have

Breadth = 12 · N

Therefore, the IC is determined by the size of the benchmark, N , and the desired ex ante

information ratio, IR, which we fix at 1.5. Putting the various pieces together yields

IC = 1.5/
√

12 · N

To give three examples, N = 30 yields IC = 0.0791, N = 100 yields IC = 0.0433, and

N = 500 yields IC = 0.0194.

In a second step, the raw forecasts for each stock are converted to scores by subtract-

ing their sample mean, rawi·, and dividing by their sample standard deviation, sraw,i.

scoreit =
rawit − rawi·

sraw,i

In a third and final step, the scores are transformed into refined forecasts using the

relationship

Alpha = Volatility · IC · Score

Here, volatility refers to the excess return of a given stock. We estimate this by the

sample standard deviation of the realized excess returns eit over time. Denoting this

standard deviation by se,i, the formula for the final step is

α̂it = se,i · IC · scoreit

Note that the ex post information ratio of an active manager will in general not be

equal to the ex ante value of 1.5. This is because (i) the manager is bound by constraints

(such as a long-only constraint and upper limits on the portfolio weight of each stock);

(ii) the manager has to estimate Σ in practice; (iii) due to the randomness of the uit,

the ex post correlation between between eit and uit over time will not be equal to IC.

The first two facts have a negative effect on the ex post information ratio. The third

fact can go either way. It is therefore possible in practice, though not very likely, that

the ex post information ratio is higher than the ex ante value of 1.5. To smooth out the
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inherent randomness in the realized information ratios, we repeat the forecasting process

50 times in our empirical study of Section 4 and then report mean-summaries.
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D Tables and Figures

Table 1: Summary Statistics of Benchmark Returns. This table presents summary
statistics for monthly real returns of several value-weighted benchmark indices. The data
range from 02/1983 until 12/2002, yielding 239 returns. The size of the benchmark is
denoted by N . All numbers are annualized.

N = 30 N = 50 N = 100 N = 225 N = 500

Mean 13.63 13.50 13.29 13.45 13.42
Standard Deviation 15.12 15.02 14.76 14.56 14.52
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Table 2: Mean-Summary Statistics for Excess Returns with Gain = 300 bp

This table presents ex post information ratios, means, and standard deviations of realized
excess returns. The gain (i.e., the expected excess return) was fixed at 300 basis points.
The out-of-sample period is 02/1983 until 12/2002, yielding 239 monthly excess returns.
The size of the benchmark is denoted by N . ‘Sample’ denotes the sample covariance
matrix; ‘Shrink’ denotes our shrinkage estimator (2). The results are mean-summaries
over 50 repetitions. All numbers are annualized.

IR Mean SD

N = 30

Sample 0.97 2.18 2.26
Shrink 1.24 2.50 2.03

N = 50

Sample 0.79 1.92 2.44
Shrink 1.14 2.21 1.95

N = 100

Sample 0.59 1.71 2.93
Shrink 0.91 1.87 2.06

N = 225

Sample 0.37 2.37 6.45
Shrink 0.54 2.53 4.97

N = 500

Sample 0.20 1.92 8.53
Shrink 0.30 1.82 5.77
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Table 3: Mean-Summary Statistics for Average Monthly Turnover This table
presents average monthly turnovers for various strategies. The gain (i.e., the expected
excess return) was fixed at 300 basis points. The out-of-sample period is 02/1983 until
12/2002, yielding 239 monthly portfolio updates. The size of the benchmark is denoted
by N . ‘Sample’ denotes the sample covariance matrix; ‘Shrink’ denotes our shrinkage
estimator (2). The results are mean-summaries over 50 repetitions.

N = 30 N = 50 N = 100 N = 225 N = 500

Sample 0.39 0.50 0.66 0.80 0.85
Shrink 0.33 0.39 0.50 0.65 0.75
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Realized Information Ratios; Gain = 300bp

Figure 1: Boxplots of the realized information ratios with a gain of 300 basis points. For
any given index size N , the first boxplot corresponds to the sample covariance matrix
and the second one corresponds to the shrinkage estimator. The plots show the 50
repetitions which gave rise to the mean-summaries in Table 2.
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