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Abstract

Motivation: Parkinson’s disease (PD) is the second most common neurodegenerative disorder after
Alzheimer’s disease. It develops when nerve cells die or become impaired, losing the ability to produce an
important chemical called dopamine. Gut microbiota have been studied in relation to the pathophysiology of
Parkinson’s disease (PD) due to the early gastrointestinal symptomatology and the presence of α-synuclein
pathology in the enteric nervous system, hypothesized to ascend via the vagal nerve to the central nervous
system. Recent studies report Bacteriophages to the list of possible factors associated with the development
of PD, showing shifts of the phage/bacteria ratio in lactic acid bacteria known to produce dopamine and
regulate intestinal permeability.

Results: The objective of this study was to discover biomarkers through differences between the gut
microbiome of controls and PD patients, by identifying candidate taxa, gene families and pathways to get
insight of some possible variables that could become important for the early detection of the disease. Here,
shotgun metagenomic data is analyzed with the read-based approach in order to compare the microbiome
compositions of 20 control subjects and 20 PD patients using different metagenomics programs and
machine learning algorithms. The most relevant features found were an increased abundance of Lactococcus
phage and an overexpression of the Myo-chiro and scyllo-inositol degradation pathway in patients with PD.

1. Introduction

Parkinson’s disease (PD) is the second most
common neurodegenerative disease worldwide that
afflicts about 1%-2% of the population aged over 65
years.1,2 Growing lines of evidence suggest genetic
and environmental risk factors play important roles
in the pathogenesis of PD.3–5 The disease is
characterized by pathological accumulation of the
protein α-synuclein (αS) leading to the slow and
progressive degeneration of dopaminergic neurons in
the pars compacta of the substantia nigra (SN).6,7

Despite the huge amount of research about the
disease, the cause of the neural loss in Parkinson’s
disease is poorly understood, and includes an
emerging body of evidence suggesting that
activation of neuro-inflammatory mechanisms
contribute to the neurodegenerative process.8

Evidences suggest that the accumulation of
α-synuclein starts in the gut years before affecting
the central nervous system (CNS); this is coupled
with the dysbiosis state in the gut, where a change in
the bacteria population likely leads to an
inflammatory reaction, causing abnormal
permeability of the intestinal epithelium,9 allowing
bacterial products enter to the circulatory system and

https://www.zotero.org/google-docs/?JxJvTx
https://www.zotero.org/google-docs/?feMlAi
https://www.zotero.org/google-docs/?pJnNdH
https://www.zotero.org/google-docs/?XearvI
https://www.zotero.org/google-docs/?rphTU9
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go to the CNS, via the sympathetic nervous system,
the glossopharyngeal nerve and the vagus nerve.6

Once α-synuclein reaches the CNS; it is
believed that there is a spread in a prior-like fashion
transferring from affected to unaffected cells acting
as a template, promoting misfolding of the normal
α-synuclein in the host. This process leads to the
formation of larger aggregates, neural dysfunction
and neurodegeneration. Indeed, recent reports
demonstrate that a single intracerebral inoculation of
misfolded α-synuclein can induce Lewy-like
pathology in cells that can spread from affected to
unaffected regions and can induce neurodegeneration
with motor disturbances in both transgenic and
normal mice.10 Importantly, there is a strong
bidirectional interaction between the gut microbiota
and the central nervous system (CNS), a connection
termed ‘microbiota-gut-brain-axis’. Dysregulation of
the brain-gut-microbiota axis in PD may be
associated with gastrointestinal manifestations
frequently preceding motor symptoms, as well as
with the pathogenesis of PD itself, supporting the
hypothesis that the pathological process is spread
from the gut to the brain (Figure 1).11

However, the factors promoting alterations
of gut bacteria in neurodegenerative diseases remain
unexplored. Therefore, understanding the
mechanisms underlying shifts in the intestinal
bacterial community that may trigger pathogenic
pathways leading to PD is essential for the
development of new approaches to prevent, treat and
diagnose this incurable disease.

The microbial community of the human GI
tract is composed of bacteria, archaea, fungi, and
viruses, including bacteriophages; this highly diverse
and complex ecosystem is characterized by dynamic
stability. Bacteriophages are the most abundant
group outnumbering other viral as well as bacterial
species, and are considered important regulators of
microbiota stability. 12 However, bacteriophages as
possible agents that may negatively affect
mammalian health have attracted scientific attention
only recently.12,13

Figure 1: Model of gut-originating, inflammation-driven PD
pathogenesis. In a susceptible individual, inflammatory triggers (1)
initiate immune responses in the gut that deleteriously impact the
microbiota, increase intestinal permeability, and induce increased
expression and aggregation of αSYN (2). Synucleinopathy may be
transmitted from the gut to the brain via the vagus nerve (3b), and
chronic intestinal inflammation and permeability promote systemic
inflammation, which, among other things, can increase blood-brain
barrier permeability (3a). Intestinal inflammation, systemic
inflammation, and synuclein pathology in the brain all promote
neuroinflammation (4) which drives the neurodegeneration that
characterizes PD (5). Figure extracted from “The gut-brain axis: is
intestinal inflammation a silent driver of Parkinson’s disease
pathogenesis?”, by Houser, M.C., Tansey, M.G. (2017).

It seems self-evident that if phages have the potential
to modulate the gut microbiota, then in turn they can
have an indirect but important impact on
host-microbe interactions and thus on host health.
Furthermore, phages can translocate through the gut
mucosa to local lymph nodes and internal organs,
leading to intimate interactions with the host
immune system. An unanswered question is to what
extent the composition and flux in the phageome
could be used as biomarkers of the microbiota, and
thus as indirect biomarkers of health or disease in the
host.14

Various clinical studies have shown evidence
indicating the occurrence of intestinal dysbiosis in

https://www.zotero.org/google-docs/?HmTA3y
https://www.zotero.org/google-docs/?RWpBDY
https://www.zotero.org/google-docs/?AOhLER
https://www.zotero.org/google-docs/?6AMSxe
https://www.zotero.org/google-docs/?x4Ctsp
https://www.zotero.org/google-docs/?LM1P6t
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PD patients compared with healthy controls, and the
compositions of both fecal and mucosal
microorganisms have been reported to change in PD
patients.15,16 These differences become particularly
pronounced at the family, genus, and operational
taxonomic unit (OTU) levels. At taxonomic level
butyrate-producing bacteria were reported to be
much more abundant in fecal samples from controls
than in those from PD patients.16 One study reported
that the putative cellulose-degrading bacteria, from
the genera Blautia, Faecalibacterium, and
Ruminococcus, were significantly decreased,
whereas the putative pathobionts from the general
Escherichia-Shigella, Streptococcus Proteus, and
Enterococcus were significantly increased, in PD
subjects compared with healthy controls.17

1.1 Objectives

Considering the limitations of statistical testing
methods, we are interested in performing predictive
analysis from microbiome data. In this study, we
used next-generation sequencing to analyze and
compare gut microbiota data from stool samples
from control subjects and PD patients submitted by
the National Taiwan University. We have employed
statistical machine learning methods to make
predictions based on taxonomic and pathway
abundance on the microbial samples collected. We
hypothesize that the fecal microbiome of PD patients
differs from the controls in terms of taxonomic
composition and pathway abundance. The results
may help the establishment of the association
between gut microbiota and PD etiology and to
elucidate important biomarkers for PD making use of
artificial intelligence techniques.

2. Methods

2.1 Data collection

The first part of the project was intended to search
for WGS metagenomic data from the gut
microbiome of healthy patients and patients who had
the disease in the NCBI database. This was

accomplished by the data from the Sequence Read
Archive (SRA), available through multiple cloud
providers and NCBI servers, which is the largest
publicly available data repository of high throughput
sequencing data. SRA stores raw sequencing data to
enhance reproducibility and facilitate new
discoveries through data analysis.

To obtain the needed data for our analysis
we searched in the NCBI SRA webpage
(https://www.ncbi.nlm.nih.gov/sra) using the
keyword “parkinson gut metagenome”. We used the
data from the accession PRJNA762484 which came
from PD patients and healthy controls. The data was
submitted by the National Taiwan University;
Illumina NovaSeq 6000 was the instrument used and
were paired-end reads.

In this work, 40 samples of sequenced-reads
from the gut microbiota of PD and healthy patients (
> 41 years) have been downloaded, having 20 for
each group. Afterwards, for downloading the
samples we used the SRA toolkit, which is
connected with the NCBI.

2.2 Quality control

A quality check with FastQC (v0.11.5) was made to
check the quality of the sequencing. After that, we
used the program bbduk (v38.96) to remove the
bad-quality portions of the reads.18 The forward and
reverse files were our input for bbduk, also
specifying some parameters such as the number of
threads or CPU’s, which was four: threads=4, then a
minimum length of 50, with the argument:
minlength=50; then we define the start of the
trimming, which was on the right (3’): qtrim=r.
Finally, we define the minimum Phred score as
trimq=25. Then, we executed again FastQC on the
trimmed data.

2.3 Taxonomic classification

The assembly-free approach was performed in order
to do the taxonomic classification step with
Centrifuge (v1.0.4_beta)19 in order to assign
taxonomic labels to the sequencing reads. We

https://www.zotero.org/google-docs/?QOZ9Ma
https://www.zotero.org/google-docs/?1aTN1P
https://www.zotero.org/google-docs/?nLwm6a
https://www.ncbi.nlm.nih.gov/sra
https://www.zotero.org/google-docs/?MOIj07
https://www.zotero.org/google-docs/?5hWXLo
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performed the analysis with R-studio (v.4.1.2), a free
environment software for graphics and statistics
computations, having as input the output files
generated from the program. Only the rows having
the “species” annotation in the column taxRank of
the file were selected. After that we merged all
sample files into one. A filtering was done across all
samples whose species had only one read support, in
order to remove putative false positives. Moreover,
we removed the species Homo sapiens as it was a
contamination of the host. Subsequently, we made a
stacked bar plot showing the abundances of each
species in each sample collected. Remark that for
this analysis a VM instance in Google Cloud was
created with a 120GB of RAM, 50 GB of swap
memory and 32 vCPU due to the high computational
cost.

To complement our taxonomic analysis, we
studied the results with another program, which was
Gaia (v2.0), a metagenomics analysis tool developed
by Sequentia Biotech. Gaia is an online
metagenomics integrated suite which is able to
perform metagenomics analysis for both amplicon
and WGS metagenomics, as well as
metatranscriptomics.20

2.4 Functional classification

Metagenomes and metatranscriptomes were
functionally profiled using HUMAnN3 (v3.0.1)21 to
quantify genes and pathways. A concatenated file
was created by merging the forward and reverse files
to serve as our input for the program. Three output
files for each input file were generated, one
containing the abundance of each gene family in the
community, which abundance was reported in RPK
(reads per kilobase), the second file created will
contain details for the abundance of each pathway in
the community, and the last one is the pathway
coverage file, which provides an alternative
description of the presence (1) and absence (0) of
pathways in a community, independent of their
quantitative abundance. We performed the analysis
with the first two files: the gene family and the
pathway abundance files. The two files were

normalized in order to facilitate the comparisons
between samples with different sequencing depths.
The HUMAnN 3.0 renorm table tool was used to
compute the normalized abundances, which was
converted to “copies per million” (CPM) units. In
addition, the data was filtered by removing the
UNINTEGRATED values.

2.5 Machine learning

The next part of the project was focused on
supervised machine learning methods, whose
objective was to set up predictive models based on
training samples already tagged, for later making
predictions or inferences to samples not labeled.
There were selected five different machine learning
algorithms to evaluate how well our algorithms will
perform in order to classify patients according to
their condition, making use of the data obtained in
the taxonomic and functional analysis. The used
algorithms are:

• Decision Tree
• Random Forest
• Naive Bayes
• SVM or Support Vector Machines
• k-NN or k-Nearest Neighbor

2.6 Data preparation for ML

The data from the taxonomic and functional
classification was transformed into a matrix
containing as many rows as samples available in the
experiment and as many columns as features
(taxa/genes/pathways), and also an extra column
containing the metadata belonging to the condition
of the patients: healthy (without PD) or sick (with
PD) is needed.

A pre-processing step of the data obtained
from Centrifuge was made. We normalized the
species abundances into a scale of rank from 0 to
100, to make sure that each variable contributes
equally into the analysis.

For the functional gene family and the
pathway matrix, we removed the pathways/genes
classified for each species, leaving us only with the

https://www.zotero.org/google-docs/?lxgGiy
https://www.zotero.org/google-docs/?SdHhAa
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abundance of each unique pathway and gene family
independently from the derived species. In addition,
a transformation of the variable “condition” to a
factor was done, since, unlike the rest of the
variables, it is a categorical variable (PD/control).
Once the 3 matrices were ready, they were
transformed into CSV format in order to work with
them in R.

2.7 Leave-One-Out Cross-Validation (LOOCV)

Since our dataset was small, this can lead to model
overfitting during training and biased estimates of
model performance. Leave-One-Out
Cross-Validation (LOOCV) was the method used to
train our ML algorithms in order to evaluate the
performance of the model on our dataset. LOOCV is
an extreme version of k-fold cross-validation that has
the maximum computation cost. The method works
by splitting the dataset into a training set and a
testing set, using all but one observation as a part of
the training set and evaluating the model on the test
using all the observations in the train dataset. The
process is repeated n times (where n is the total
number of observations in the dataset), leaving out a
different observation from the training set each time.
The benefit of so many fit and evaluated models
becomes a more robust estimate of model
performance as each row of data is given an
opportunity to represent the entire of the test
dataset.22–24

2.8 Feature selection by Boruta algorithm

Some predictive modeling problems have a large
number of variables that can slow the development
and training of models;25 in our case we initially had
5,657 species, 487 pathways and 735 gene families.
Additionally, the performance of some models can
degrade when including input variables that are not
relevant to the target variable. Boruta was used as
our feature selection algorithm which works as a
wrapper algorithm around Random Forest, provided
by the package “Boruta” v(7.0.0) in R and was

applied on the three matrices: the gene family, the
taxonomic and the pathway abundance.26

2.9 Project code

All code for this project is available at GitHub link :
https://github.com/xeniaroda/ML_GutMicrobiome.gi
t
Gaia analysis is available at this link:
https://metagenomics.sequentiabiotech.com/shared/T
askFlow/667339ea-8a13-4e4d-826f-b204ab9da925/1
f0a21ef-17b5-4ec0-917b-2e3b88e64c3e

3. Results

A total of 40 North-eastern Han Chinese included 20
healthy elders and 20 Parkinson’s disease cases were
included in the study. Detailed information about the
clinical data was presented in Supplementary Table
1.

3.1 Taxonomic profiling of the fecal microbiota

Clean sequence reads were used by Centrifuge to
classify accurately our reads for species
quantification. Bacteroides (49.71% on average
across all samples) were dominated but with high
variation in terms of abundance across all samples.
Bacteroides species found were: Bacteroides
cellulosilyticus, B. fragilis, B. ovatus, B. sp. I48 and
B. thetaiotaomicron with on-average abundances of
9.64%, 7.14%, 13.67%, 7.98%, 10.27%,
respectively. The abundances of phylum Firmicutes
was increased by 1.53% more in the PD patients than
controls, being Ruminococcus bicirculans the one
with more difference (1.23% in controls and 2.21%
of abundances in the PD condition). In addition, the
family Bifidobacteriaceae was also reported with a
higher abundance, for Bifidobacterium adolescentis
(0.97%) and Bifidobacterium longum (0.913%) in
PD. Prevotella intermedia showed minor levels in
controls (0.73%) compared to PD patients (0.97%),
and Prevotella enoeca did not show major
differences between control or PD patients, with

https://www.zotero.org/google-docs/?Qt6491
https://www.zotero.org/google-docs/?8PuRRy
https://www.zotero.org/google-docs/?vhBaQ9
https://github.com/xeniaroda/ML_GutMicrobiome.git
https://github.com/xeniaroda/ML_GutMicrobiome.git
https://metagenomics.sequentiabiotech.com/shared/TaskFlow/667339ea-8a13-4e4d-826f-b204ab9da925/1f0a21ef-17b5-4ec0-917b-2e3b88e64c3e
https://metagenomics.sequentiabiotech.com/shared/TaskFlow/667339ea-8a13-4e4d-826f-b204ab9da925/1f0a21ef-17b5-4ec0-917b-2e3b88e64c3e
https://metagenomics.sequentiabiotech.com/shared/TaskFlow/667339ea-8a13-4e4d-826f-b204ab9da925/1f0a21ef-17b5-4ec0-917b-2e3b88e64c3e
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abundances of 0.64% and 0.67%, respectively. What
is more, Proteobacteria phylum showed high
abundance in control subjects specifically regarding
Scherichia coli (5.62%) compared to PD patients
(1.9%) (Figure 2).

The abundance of microbial metabolic
pathways and gene families from the sequencing
data was accurately and efficiently profiled by
HUMAnN 3.0. Results were visualized as two
heatmaps (Figure 3).

A comparative analysis with Gaia was made
with the aim to compare the similarities and
differences in the microbiome composition of
controls and PD patients. The program shows us a
PCA for each taxonomic level. In general, in all
PCA’s made by the program, samples from both
conditions overlap, thus not  showing any significant

differences between the microbiome composition
from PD and controls. Having the control group as a
reference, results show Lactococcus as the genus
more over-represented among others followed by the
genus Staphylococcus and Acidiphillum in control
subjects. Regarding species, Aeromonas veronii was
found to be under-represented in control subjects
compared to PD patients and Subdoligranulum sp.,
Lactobacillus plantarum over expressed in controls
(Supplementary Figure 4).

Figure 2: Stacked bar plot depicting relative abundances of all microbiota per sample. Species abundances were computed, removing the ones that
were below 1% for plotting purposes. Each vertical bar depicts the relative abundance for the PD or control condition for a given sample with a legend

corresponding to its species classification. Label “Other” from the legend represents all those species removed from plotting purposes, having an
abundance below 1%.
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Figure 3: Gene family (top) and pathway abundance (bottom) heatmap. Columns colored as blue represent the control condition, and columns
colored in red represent Parkinson’s condition. Results did neither show PD samples nor control samples clustered together.
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Figure 5: PCoA on taxonomic profiles. Each point represents a single
sample, and the distance between points represents how compositionally
different the samples are from one another. The points are colored by
health state, not showing a clear difference in the microbial community
composition between diseased (blue) and healthy (red).

PCoA was used as a method to explore and to
visualize similarities or dissimilarities of our data.
Ordination techniques, such as PCoA, reduce the
dimensionality of microbiome data sets so that a
summary of the beta diversity relationships can be
visualized in two- or three-dimensional
scatterplots.27 A phyloseq object with the species and
the metadata was created to perform the task with the
package Phyloseq (v.1.26.1). PCoA data showed
that individuals of the two groups partially
overlapped but they still have their own trend to
aggregate separately (Figure 5). A PERMANOVA
test was made together with PCoA, having a
p-value>0.05, thus, accepting the null hypothesis
that there were no significant differences in
community composition between both conditions.

Furthermore, a differential abundance analysis with
the R package DESeq (v.12.3) was made having
bacteriophages as the organisms more represented in
our result (Supplementary Table 2).

3.2 Selection of the best ML algorithm

As we show in the description of the microbiome,
there are no big differences between both
experimental groups (control and PD) as they share
similar taxonomic profiles. In this context, we aimed
to identify subtle differences that could discriminate
between both groups by means of Machine Learning
(ML) algorithms. For this purpose, we used
taxonomic and functional (gene families and
pathways) information, separately.

First of all, the five machine learning
algorithms were trained with all the variables we
had. Supplementary Table 3 shows the resulting
metrics after applying Leave-One-Out
Cross-Validation (LOOCV) for each matrix. The best
parameters selected by the method are presented in
the gray column for each algorithm. In general the
predictive power was very poor being decision trees
the best classification algorithm for our dataset.
However, regarding pathway and gene family the
best algorithm with an AUC-ROC of 0.560 was the
Naive Bayes. Even so, having those metrics we
could not rely on decision trees or Naive Bayes to
become our model of preference to perform the
classification task. To overcome that, we extracted
the most important variables for each feature we
have (taxa/genes/pathways) by making use of the
Boruta algorithm. Important differences in
abundances were shown regarding phages, specially
the phage Lactococcus 50101, Escherichia phage
PBECO.4 and Escherichia phage vB_EcoM_Alf5
(Figure 6); regarding pathways we found an
important difference in abundance for Myo-chiro
and scyllo-inositol degradation and RUMP
formaldehyde oxidation I (Supplementary Figure 7).
Subsequently, we again trained the ML algorithms
with the extracted features, with their metrics shown
in the Supplementary Table 4, which showed better

https://www.zotero.org/google-docs/?Uv9Ygo


9

results. Random Forest seems to perform well in all
3 matrices, having a Kappa value of 0.80 and a
AUC-ROC of 0.970. In addition, Support Vector
Machine (SVM) has a great Kappa and AUC-ROC
(0.80 and 0.910, respectively).

3.3 Machine Learning with Python:
Classification script

With the aim to automate the prediction of a sample
within the framework of personalized medicine, we
aimed to create a Python script whose objective was
to get the classification probability for a number of
taxonomic samples from the gut microbiome
classifying either for PD or controls together with
the metrics of the trained algorithms, also showing
the best one for our classification (Figure 8).

Out of the 3 matrices presented in our work,
we selected the taxonomic to become our
discrimination matrix for the classification task as it
was shown to have more important variables selected
and better accuracy metrics.

Figure 8: Python script workflow. Workflow of Machine
Learning Classifier in Python, splitted in two main paths: (a)
having as input a taxonomic matrix, (a1) extracting rows
containing the important features selected by Boruta algorithm.
(a2) A preprocessing step taking as input the matrix with the
extracted features and the metadata. (a3) Finally making the
prediction step with Random Forest (RF) and Support Vector
Machine (SVM) taking as input the taxonomic matrix
preprocessed and (b1) the model in pickle format generated for
RF and SVM. If we wanted to classify one sample, we would skip
(b) path and perform only (a) path without inputting metadata as
we will already have our model saved in Pickle format.

Figure 6: Boxplot diagram of the relative abundance of species
selected by Boruta algorithm. Ten species were selected as
important by Boruta when doing the feature selection step,
showing phages as the organisms more abundant.

4. Discussion

The human gastrointestinal tract (GIT) harbors a
complex and dynamic population of
microorganisms, the gut microbiota, which exert a
marked influence on the host during homeostasis and
disease. The effects of species and pathways
involved may promote intestinal bacterial
overgrowth and disturb the gut homeostasis which is
detrimental to the host. Dysbiosis in the gut
microbiome may cause the systemic and/or central
nervous system inflammation.28 In addition, bacterial
proteins could cross-react with human antigens and
induce an adaptive immune response. Gut microbes
may send signals to the brain via the vagus nerve by

https://www.zotero.org/google-docs/?PQ4vhk
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the direct stimulation of afferent neurons of the
enteric nervous system.29 Gut microbiota could
promote α-synuclein aggregation and induce
misfolding in both the central nervous system and
the enteric nervous system in PD.30

In the present study we have compared the
composition of the whole fecal microbiome between
PD patients and control subjects. We have analyzed
the metagenomic data generated in the study
submitted by the National Taiwan University, which
included 20 patients with Parkinson and 20 healthy
controls. Our aim was to compare species, pathways
and gene families for both conditions to reveal
possible biomarkers that could initiate the
progression of PD.

4.1 Parkinson’s disease and Gut Microbiota

Taxonomic analysis composition of gut microbiota
from patients with PD and control groups showed
differences at phylum and species level. Firstly, we
found that members of the genus Bacteroides were
the ones who account for a major fraction in our
samples. Congruent with previous studies the family
Bifidobacteriaceae was reported with a higher
abundance in PD.31 On the contrary, a study reported
a significantly reduced abundance of Prevotellaceae
of 77.6% in patients with PD in comparison with
controls, but in our case Prevotella with species P.
intermedia and P. enoeca showed minor levels in
controls.32 What is more, a high difference in
abundance of Scherichia coli was found to be low in
PD patients.

The main findings of our study were the
comparative evaluation of the microbiome
composition that was made with artificial
intelligence techniques, which reveals major
differences in abundances regarding bacteriophages,
also agreeing with the differential abundance
analysis done. One of the biomarkers identified,
Lactococcus phage 50101, in the current literature it
is also supported by a study carried out by
(GeorgeTetz, et al. 2018)12, in which they described
significant alterations in the representation of certain
bacteriophages in the phagobiota of PD patients.

These bacteria are considered as an important source
of microbiota-derived neurochemicals, including
dopamine which they produce in appreciable
physiological amounts.33 This loss of
dopamine-producing Lactococcus may be, on the
one hand, associated with early gastrointestinal
symptoms of PD and, on the other, involved in
triggering the neurodegenerative cascade of the
disease.34 In addition to be Lactococcus phage one of
the possible biomarkers for the disease, Escherichia
phage PBECO.4 and Escherichia phage
vB_EcoM_Alf5 was found to be increased in PD
patients; it may be related to the the decrease levels
of Escherichia coli found in PD, however Boruta
algorithm did not select Escherichia Coli as one of
the most important features. In addition, GAIA
analysis seems to match our results, being
Lactococcus an important variable increased in
healthy patients. Moreover a new variable was found
significant in PD patients, which was Aeromonas
veronii; considered to be pathogenic in humans,
causing both gastrointestinal and extraintestinal
infectious diseases.35 Despite other species found to
be significant in one condition or the other, results
did not show any information regarding phages.

4.2 Myo-chiro and scyllo-inositol degradation

β-amyloid(Aβ) and α-synuclein(α-syn) are
aggregation-prone proteins typically associated with
two distinct neurodegenerative disorders:
Alzheimer’s disease (AD) and Parkinson’s disease
(PD). Basic research has begun to show that Aβ and
α-syn may act synergically to promote the
accumulation of each other.36 While the exact
mechanism by which these proteins interact remain
unclear, growing evidence suggests that Aβ may
drive α-syn by impairing protein clearance,
activating inflammation, enhancing phosphorylation
or directly promoting aggregation.37 Myo-chiro and
scyllo-Inositol degradation was one of the important
pathways selected by our algorithm, shown to be
increased in PD patients. Inositol
(1,2,3,4,5,6-cyclohexanehexol) has nine possible
stereoisomers which myo-Inositol is more abundant

https://www.zotero.org/google-docs/?PMC941
https://www.zotero.org/google-docs/?zks6LO
https://www.zotero.org/google-docs/?d8VAAL
https://www.zotero.org/google-docs/?0Fy8i7
https://www.zotero.org/google-docs/?DDVyVK
https://www.zotero.org/google-docs/?DGFV5a
https://www.zotero.org/google-docs/?TTgZRk
https://www.zotero.org/google-docs/?qjX1hS
https://www.zotero.org/google-docs/?AMMpCN
https://www.zotero.org/google-docs/?B0OtJN
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in nature than scyllo-Inositol. Accumulating
evidence suggests scyllo-Inositol as a promising
therapeutic agent for Alzheimer’s disease, as it
prevents the accumulation of beta-amyloid deposits,
which is a hallmark of AD and PD. Scyllo-Inositol
interacts with the beta-amyloid peptide and blocks
the development of fivers, alleviating memory
deficits and other symptoms associated with
beta-amyloid accumulation.38 Therefore, the
hypothesis regarding that the starting point of PD
could be in the gut, may be true as the degradation of
the scyllo-Inositol could provoke the accumulation
of beta-amyloid deposits, perhaps originated by
dysbiosis in the gut microbiome.

4.3 RUMP formaldehyde oxidation I

Susceptibility for PD is modulated by various
environmental factors, genetic predisposition or risk
factors. Exposure to pesticides and industrial agents
has been associated with an increased risk for PD,
but to date none of these agents have been
consistently identified as a causal factor for PD.39

RUMP formaldehyde oxidation I was increased in
PD patients, maybe suggesting a high abundance of
the toxin formaldehyde by the environmental
exposure to this pollutant, which an excess of this
compound could induce alterations in brain
metabolism and oxidative stress may contribute to
the pathological progression of neurodegenerative
disorders.5,40,41

5. Conclusions

Our findings shed a new light on previous reports
regarding the gut microbiome involvement in PD, as
a result of using artificial intelligence techniques in
our analysis. Investigating whether the abundances
of microbes and pathways implicated may be
involved in the onset of the disease due to dysbiosis
in the gut microbiome. Based on our analysis, low
fecal abundance of Lactococcus phage and
Escherichia coli phage could be a useful biomarker
to exclude PD. Moreover, some important pathways
could bring us some light about the starting point of
the disease, which due to dysbiosis or external

factors could overactivate the already mentioned
pathways. The addition of more samples to the
analysis may increase accuracy, and further
exploring the potential of fecal microbiome analysis
as a biomarker for PD seems worthwhile.
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The supplementary material generated in this project
is available at the following link:
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3SULyKPtJ7PCEi0Zou/view?usp=sharing
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