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Abstract

Motivation: Pharmaceutical research and development (R&D) is now a high-risk investment that is prone to unexpected,
even disastrous, failures at various phases of drug development. Efficacy and safety issues linked to absorption,
distribution, metabolism, excretion (ADME) qualities, and different toxicities (T), are significant causes of drug development
failures. Therefore, conducting an ADMET analysis on time is critical. The ability to predict these features quickly and
accurately allows researchers to rule out compounds that may present problems with ADMET and prioritize which
compounds to produce and test. Given the current R&D model’s tremendous complexity, molecular modeling
methodologies to find patterns in ADMET data and convert them into knowledge have been pursued. In this project, we
have generated and validated models to predict ADMET properties and determine the realm of applicability domain and
explainability of such models.

Results: This paper reported a dataset of 8997 compounds for 21 ADMET points. For classification models, to
differentiate between the two types of classes, 180 descriptor- and fingerprint-based models were developed. The
statistical results showed that the model based on substructure key fingerprints, MACCS (Molecular ACCess System) keys
outperformed the others, obtaining an overall Matthew's correlation coefficient (MCC) of 0.8716 and Area Under the
Curve (AUC) of 0.9219 for the test set. In addition, nine regression models based on descriptors and fingerprints were
generated. With an R2 = 0.9146 for the test set, the MACCS-based model again outperformed the others. However, the
applicability domain analysis showed that MACCS-based model prediction might be unreliable. Property-based models,
on the other hand, were more reliable. Furthermore, 20 GNN-based classification and regression models were created.
These models performed admirably, with an average ACC = 0.9297 for the classification models and R2 = 0.8874 for the
regression model's test set. Furthermore, the attribution score methods and the GNNExplainer were used to identify
important structural fragments related to the Blood-Brain-Barrier (BBB) and the cytochrome enzyme, CYP2C9 inhibitor.

1 Introduction

Drug discovery and development is a time-consuming
and costly process. With the development of in silico
methods, the number of new chemical entities (NCEs) has
increased in recent years. [1] However, many drug
candidates still do not become drugs. This is mainly
attributed to pharmacodynamic (PD) issues such as
selectivity or efflux and pharmacokinetic (PK) problems

such as poor metabolic properties and toxicity of drug
candidates. [2]

Traditionally, a drug candidate's ADMET (absorption,
distribution, metabolism, excretion, and toxicity)
properties were measured after its potency against a
specific target was determined. [3] Unfortunately,
undesirable adverse effects were frequently detected at
this stage, necessitating a new round of molecular design
and syntheses or even the complete termination of the
project. It was estimated that 40-60% of NCE failures are
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due to poor ADMET profiles [4], emphasizing the
importance of early ADMET evaluation in the drug
development process. Currently, the potency and ADMET
profiles of molecules are typically tested at the same
stage, allowing undesirable compounds to be removed
earlier in the drug discovery and development process.
[5,6] A fine balance between drug candidates and their
ADMET, profiling during the drug molecule’s synthesis can
help avoid late-stage drug failure in the drug discovery
process. Thus, early detection of PK/PD properties, drug
similarity, and ADMET analysis can save money and time
while ensuring the safety and stability of the candidate
drug. [7,8]

ADMET data is considered an essential component of
new drug discovery and development. Both in vitro and in
vivo models provide parameters related to drug ADMET
properties, which can be used to predict drugs’ behavior
after administration. The idea about ADMET parameters
for any compound is to have a significant impact before
entering preclinical trials to reduce drug withdrawals from
specific stages of pre-clinical and clinical trials. Therefore,
most pharmaceutical industries rely heavily on earlier
evaluation through in silico prediction tools, including
regression and classification-based approaches, for
machine learning (ML) and deep learning (DL) methods. [9]
These computational prediction tools have provided
enough information over the last two decades to
demonstrate that well-established predictive models can
predict ADMET profiles and drug similarities well before
drug synthesis. [7,10]

Currently, there are several free and commercial
computational tools for predicting ADMET properties. [11]
However, these tools are limited in application and are not
yet sufficiently reliable. [12] Among the popular tools,
ADMETLab [13] offers 53 prediction models based on
graph-structured data generated using a multi-task graph
attention network. The method can generate customized
fingerprints for a specific activity using general attributes.
SwissADME [14], another web tool, evaluates the
pharmacokinetics and drug-likeness of small molecules.
The predictions are based on fragmental approaches and
ML-based binary classification methods for additional
ADMET properties. Drug discovery and environmental risk
assessment models are constructed using MACCS
(Molecular ACCess System) keys and Morgan fingerprints
in ADMETSar. [15] The toxicity models employed in
ProTox [16] are based on chemical similarities between
compounds with known toxic effects and the presence of
toxic fragments. Other models for hepatotoxicity,

cytotoxicity, mutagenicity, and carcinogenicity rely on
fingerprints (MACCS/Morgan). In the vNN server [17],
extended-connectivity fingerprints predict 15 ADMET
properties, with models trained using the variable nearest
neighbor method. pkCSM [18], on the other hand,
develops predictive models of central ADMET properties
using graph-based signatures. Other software such as
MDCKPred [19], CarcinoPred-EL [20], and CapsCarcino
[21] focuses on a single property such as the prediction of
permeability coefficient and carcinogenic compounds.
The models’ molecular representations include a variety of
molecular and physicochemical descriptors such as
fingerprints, graph signatures, and other 2D/3D indices.
[22,23] Fingerprint representations, used as an alternative
to descriptors in Quantitative structure-property
relationships (QSPR) studies, have gained popularity due
to their ease of computation and predictive value.

Historically, the majority of effort in developing in silico
prediction tools has been focused on providing high
accuracy, with a good model that can predict the correct
value most of the time. Such a viewpoint is acceptable
when performing a large number of predictions with a
return on investment proportional to the number of correct
outcomes, for instance, with virtual screening. However, a
model's overall performance is ineffective when
estimating the confidence in a specific individual
prediction in contexts such as human safety assessment,
regardless of how generalized it appears after validation.
[24]

Model predictions on new compounds with descriptor
values outside the training data's descriptor (feature)
space may be unreliable. As a result, knowing the limit
beyond which the model can reliably extrapolate is
essential. [25] The Applicability Domain (AD) concept
overcomes this issue by defining the domain in which the
model can provide correct predictions. Predictions of
compounds’ biological activity outside this domain are
rejected because they are likely incorrect. [26] Most
proposals used to measure the AD are based on
distance-based methods. Distance-based methods
calculate the distance between a new compound and its
k-nearest neighbors (or the centroid of the training set)
using distance measures (e.g., Tanimoto or Euclidean). A
distance-based threshold is used to determine whether or
not the new compound is within the AD. Predictions of
any compound above the threshold are regarded as
unreliable. The downside of this method is that the
threshold value is often arbitrary. [27]
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Deep Learning (DL) is emerging as a critical technology for
performing various tasks in cheminformatics. [28-30] With
the recent development of artificial intelligence (AI) and
DL, the application of DL approaches for various
predictions such as virtual screening, [31] quantitative
structure-activity relationship (QSAR) studies, [32] and
ADMET prediction has been practically demonstrated. [33]

The models developed by DL regarding ADMET prediction
can be roughly classified into two categories:
descriptor-based and graph-based. [34] In the case of
descriptor-based DL models, molecular descriptors or
fingerprints similar to those used in traditional QSAR
models are used as input. Then a specific DL architecture
is used to train a model. [32] In the case of graph-based
DL models, basic chemical info encoded by molecular
graphs is used as input, and a graph-based DL algorithm,
such as graph neural networks (GNNs), is then used to
train a model. GNNs use a graph-structured
representation of the original molecule as input data, with
atoms as nodes and bonds as graph edges. [35] The key
feature of GNN is its ability to learn task-specific
representations automatically using graph convolutions
without using traditional handcrafted descriptors or
fingerprints.

GNNs have been shown to perform well in predictions
based on molecular structures [35,36], and numerous
studies have shown that GNNs can outperform traditional
descriptor-based methods. [34,37-42] In particular, graph
convolutional networks (GCNs), a type of GNN, performed
admirably in various applications. [43]

Despite their promise, GNNs remain of limited acceptance
in drug discovery partly due to their lack of interpretability.
[44] The development of explainable artificial intelligence
(XAI) techniques has overcome this limitation. The goal of
XAI techniques is to help understand how the model
arrived at a particular answer and why the answer
provided by the model is acceptable. [45] XAI methods
could aid in developing GNNs in drug discovery
applications, particularly for property prediction tasks, by
quantifying the molecular substructures that are critical for
a given prediction and explaining how reliable a prediction
is. [44]

An example of the XAI technique is Integrated Gradients
(IG). [44] IG aims to explain the relationship between a
model's predictions and features. It has numerous
applications, such as understanding feature importance,
detecting data skew, and debugging model performance.

Because of its broad applicability to any differentiable
model, ease of implementation, theoretical justifications,
and computational efficiency relative to alternative
approaches, IG has become a popular interpretability
technique. Another common gradient explainer is saliency
maps. This explanation highlights the most reactive
features and is likely to change the output quickly.

In this project, the data set of 8997 compounds for 21
ADMET endpoints from a public database was used for
modeling using classic ML methods, including a DL
method: GNN. In addition, the model performance was
validated by the internal and external validations.
Afterward, the applicability domain was determined for the
models' reliable application in predicting new chemicals.
Finally, the important structural fragments related to the
blood-brain barrier (BBB) and the CYP2C9 inhibitor were
recognized by GNNExplainer [46] and by the following
attributions methods: IG and saliency maps.

1.1  Objectives

The primary goal of the project is to develop and
implement a machine learning algorithm for predicting
ADMET properties, as well as to define the predictive
model's applicability domain and provide an explanation
of the model's explainability.

2 Methods

2.1  Data Collection and Preparation

The development of a successful ADMET prediction
model requires an accurate and relevant dataset suitable
for the model. In general, there exists a relatively small
number of ADMET data, especially public datasets, with a
desirable quality of data, diversity of the investigated
structures, and which are large enough to permit sufficient
validation of the derived model. To obtain as much data
as possible for model training, a comprehensive data
retrieval was conducted by crossing the following
database: ChEMBL [47], BindingDB [48], Comptox [49],
IMPPAT [50], PubChem [51], and DrugBank. [52] The
molecules from the mentioned databases were integrated
into a single database, and the duplicated molecules were
removed.

2.2  Descriptors Calculation

Molecular descriptors and fingerprints play a crucial role
in the development of successful prediction models. The
accumulated experience in bioinformatics studies
demonstrates that ML predictions rely heavily on effective
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molecular representations. [53] Thus, molecular
descriptors and fingerprints were computed to further
model building. RDKit [54] – an open-source
cheminformatics software - and Scopy [55] – a python
package - were used to calculate the 2D descriptors
(physicochemical properties) for the molecules.

Molecular fingerprints are a particularly complex type of
descriptor, with each bit representing a feature's presence
(1) or absence (0), alone or in conjunction with other bits in
the bit string. [56] There are several types of molecular
fingerprints depending on how the molecular
representation is transformed into a bit string. Most
methods use only the 2D molecular graph and are thus
referred to as 2D fingerprints; however, some techniques
can also store 3D information. The three main approaches
are structure keys-based fingerprints, circular fingerprints,
and topological or path-based fingerprints. We will focus
on the first two in this study.

Substructure key-based fingerprints set the bits of the bit
string based on the presence of specific substructures or
features from a given list of structural keys in the
compound. This usually means that these fingerprints are
most valuable when applied to molecules that are likely to
be primarily covered by the given structural keys, but not
so much when applied to molecules that are unlikely to
contain the structural keys because their features would
not be represented. The number of structural keys
determines their number of bits, and each bit relates to
the presence or absence of a single given feature in the
molecule. KRFP (Klekota-Roth Fingerprint) and MACCS
keys are fingerprints based on substructure keys used in
this project. MACCS keys are 166-bit 2D structure
fingerprints commonly used to measure molecular
similarity. Moreover, KRFP is 4086-bit fingerprints.

Circular fingerprints are created by exhaustively
enumerating all circular fragments grown radially from
each heavy atom of the molecule up to the specified
radius and hashing these fragments into a fixed-length
bit-vector. In this project, two types of circular fingerprints
were used; ECFP (Extended-Connectivity Fingerprint) and
FCFP (Functional-Class Fingerprint), with diameters of 2,
4, and 6. ECFP is based on the Morgan algorithm [57] and
was developed specifically for use in structure-activity
modeling. It represents circular atom neighborhoods and
generates variable-length fingerprints. It is most
commonly used with a diameter of 4 inches (ECFP4).
Although some benchmarks have shown minor
performance differences between the two [58], a diameter

of 6 (ECFP6) is also commonly used. FCFP is a variant of
ECFP that indexes the role of an atom in the environment
rather than the atom itself. Hence, the fingerprint cannot
distinguish between atoms or groups that perform similar
functions. This enables them to be used as
pharmacophoric fingerprints.

RDKit and PyFingerprint [59] were used to calculate the
following fingerprints: MACCS keys, ECFP2, ECFP4,
ECFP6, FCFP2, FCFP4, FCFP6, and KRFP.

2.3  Model Development and Validation

This study implemented a total of 189 prediction models,
including 180 classification and nine regression models.
Based on the different sets of fingerprints and descriptors
mentioned earlier, nine models were trained for each
AMDET endpoint.

For modeling, PyCaret was used. Pycaret is an
open-source, low-code Python library aiming to automate
ML model development. The library contains over 70
automated open-source algorithms and over 25
pre-processing techniques that can help build
high-performing ML models. It supports supervised
learning (classification and regression), clustering,
anomaly detection, and natural language processing.

Validation of in silico models is a crucial step in
understanding models' reliability when making predictions
for new molecules that are not present in the training data
set. Model validation could be either internal (using the
training set) or external (using separate unseen data).
Internal validation methods include cross-validation. [60]
The external method requires evaluating model
performance on a separate test dataset using statistical
assessments. Thus, the dataset was divided into training
and test sets for this purpose, with 90% of compounds
serving as the training set and 10% serving as the
external validation test set. The same training and test set
were used for all prediction models. Both data sets for
each property are evenly distributed, as shown by the
histograms (Supplementary File 1).

PyCaret's workflow is demonstrated in Figure 1. Data
must be cleaned and formatted before being used in ML
models; raw data cannot be used directly. Nevertheless,
we do not have to clean the data manually because
PyCaret does it for us. Therefore, PyCaret's first step
(setup()) is in charge of initializing the environment and
preprocessing the data. It also takes care of the internal
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validation by performing cross-validation (10-fold by
default). The train-test split for internal validation is also
specified in this step. PyCaret's default split is 70:30. The
default ratio was used in this project. As a result, the
training set contained 5667 compounds, and the test set
included 2430.

Figure 1. Workflow Diagram of PyCaret. This diagram
summarizes the main step of PyCaret.

Once the setup is complete, the recommended starting
point for modeling is to compare all models to evaluate
performance (unless you know exactly what model you
need, which is not the case here)—this function trains and
scores all models in the model library using stratified
ten-fold cross-validation for metric evaluation. As a result,
a table is generated with the average Accuracy (ACC), the
area under the ROC curve (AUC), Recall, Precision, F1,
Kappa, and Matthews correlation coefficient (MCC) for the
classification models, and R-square (R2), mean absolute
error (MAE), mean square error (MSE), root mean square
error (RMSE), root mean squared log error (RMSLE), and
mean absolute percentage error (MAPE) for both
classification and regression models, across the 10-folds.
Furthermore, the best-performing model is highlighted.
The difference between test and cross-validation was
checked to ensure the selected model was not overfitted.
A model is considered overfitted if there is a significant
difference between the test and cross-validation.

Following that, we can finalize the model; this function
applies the model to the entire dataset used for the
training, including the test sample (30 percent in this
case). Finally, we can predict the finalized model for
external validation on previously unseen data (the 10% we
separated at the start and did not include in model
training).

The test set's AUC, MCC (Eq. 1), overall ACC (Eq. 2), and
10-fold cross-validation of the entire dataset were used to
evaluate all classification models. AUC is a single scalar
value that measures the overall performance of a binary
classifier. MCC is a model quality measure that returns a
value between -1 and 1. MCC value 0 represents the
average or random prediction, -1 represents the worst
prediction, and +1 represents perfect prediction. ACC
denotes the proportion of correct predictive positive and
negative classes. However, this only applies to models
trained on datasets with relatively balanced samples
across classes.

(1)𝑀𝐶𝐶 =  (𝑇𝑃 𝑥 𝑇𝑁) − (𝐹𝑃 𝑥 𝐹𝑁)
(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)

(2)𝐴𝐶𝐶 =  (𝑇𝑃+𝑇𝑁)
𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁

where, TP: true positive, TN: true negative, FP: false positive, FN:
false negative.

The regression models, on the other hand, were evaluated
using R2 (Eq. 3), RMSE (Eq. 4), and MAE (Eq. 5). The MAE
gives simple information about the average magnitude of
errors that can be expected from a model. However,
because all errors are weighted equally, differences in
error magnitudes are averaged out; thus, the MAE alone
does not provide insight into the uniformity or variability of
prediction errors. Metrics based on squared errors, such
as the RMSE, magnify more significant errors and thus are
more sensitive to outliers. When MAE and RMSE are
considered together, they can provide information on the
homogeneity or heterogeneity of errors: if the MAE and
RMSE values are similar, this indicates prediction errors of
relatively consistent magnitude; if the RMSE is
significantly larger than the MAE, this indicates large
fluctuations in the magnitudes of the errors.

(3)𝑅2 =  1 −
Σ(𝑦

𝑖
−𝑦

𝑖
)

2

Σ(𝑦
𝑖
−𝑦)

2

(4)𝑅𝑀𝑆𝐸 =  1
𝑁

𝑖=1

𝑁

∑ (𝑦
𝑖

− 𝑦
𝑖
)

2

(5)𝑀𝐴𝐸 =  1
𝑁

𝑖=1

𝑁

∑ (𝑦
𝑖

− 𝑦
𝑖
)

where and are the predicted and experimental values of the𝑦
𝑖
 𝑦

𝑖

ith sample in the dataset; is the mean value of all the𝑦
experimental values in the training set.
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2.4  Applicability Domain Evaluation

The applicability domain (AD) is another way to validate
the model. The AD evaluation ensures that the model can
reasonably and accurately predict certain compounds.[61]

An ideal AD approach estimates interpolation regions in
multivariate space. Principal components analysis (PCA)
can be used to develop multivariate models. PCA aims to
reduce dimensionality and noise in large amounts of data
while extracting important features. Additionally, it can be
used as an outlier detection method. The Distance to
model X (DModX) [62] and Hotelling's T2 statistics, in
particular, are useful in detecting outliers.

DmodX with PCA and Logistic PCA was used in this
project to investigate the presence of outliers in the
dataset. DmodX, also known as residual standard
deviation, indicates the distance between data in variable
X space and the principal component model, measures
data changes outside the model, and represents changes
in samples that the model does not explain.

Additionally, DBSCAN [63] was also used to define AD.
The DBSCAN algorithm is a well-known density-based
data clustering algorithm. To cluster data points, this
algorithm divides the data into high-density and
low-density areas. Unlike other clustering algorithms, we
do not need to provide the number of clusters required in
advance with this algorithm. The DBSCAN algorithm
groups the points based on distance measurement. An
essential property of this algorithm is that it helps us track
the outliers as the points in low-density regions; thus, it is
not sensitive to outliers.

Before we can apply the DBSCAN model, we should first
reduce the dimensionality of our data. In order to do that,
PaCMAP (Pairwise Controlled Manifold Approximation)
[64] was used. This dimensionality reduction method was
chosen because it preserves the data's local and global
structure in the original space.

Next, ​​we need to obtain the following parameters: epsilon
(Eps) and MinPoints. An epsilon value is the shortest
distance between two points to be considered neighbors.
To compute Eps, the Nearest Neighbours function was
used to calculate the distance between each data point
and its nearest neighbor. After that, the distances were
sorted and plotted (Supplementary Figure 1). Initially, the
highest value in the plot, 0.7, was used as the Eps value.
Furthermore, we wanted to use DBSCAN for different Eps

values. As a result, two values less than the Eps value (0,5
and 0.6) and two values greater than the Eps value (0,8
and 0.9) were used. However, the same outliers were
obtained using the mentioned Eps values. After further
investigation, we noticed that the number of outliers does
not change between epsilon values of 0 and 2. So we end
up using DBSCAN for Eps values of 2, 2.5, 3, 3.5, 4, 4.5,
and 5. Moreover, MinPoints is the smallest number of
points required to build a cluster. A cluster is only
recognized if the total number of points exceeds or equals
the MinPoints.

Following the completion of the DBSCAN clustering, we
have three data points: a core point for which both
parameters are fully defined, i.e., a point with at least
Minpoints within the Eps distance from itself, and any
data point that is not a core point but has at least one
core point within Eps distance from it is considered a
border point. The last type of data point is the noise point,
defined as a point with less than Minpoints within Eps of
itself.

DBSCAN clustering algorithmic steps are illustrated in
Figure 2. The algorithms initiate by randomly selecting a
point (x) from the data set and finding all the neighbor
points within Eps from it. We consider x a core point if the
number of Eps-neighbors is greater than or equal to
MinPoints. x then forms the first cluster with its Eps
neighbors. After forming the first cluster, we examine its
points to determine their Eps -neighbors. If a point has at
least MinPoints Eps-neighbors, we expand the initial
cluster by incorporating those Eps-neighbors. This
process is repeated until there are no more points to add
to this cluster. This procedure is repeated until all core
points have been assigned to a cluster. Finally, it iterates
through all unattended points in the dataset, assigning
them to the cluster nearest to them at Eps distance. A
point is considered a noise point if it does not fit into any
available clusters.

This alternative methodology for computing outliers and
thus, providing insight into the AD for a given model aims
to treat better highly dimensional binary data such as
fingerprints and serve as a tailored AD evaluation tool
through the epsilon parameter.

After calculating the outliers, the model was trained using
PyCaret, with the outliers serving as the test set and the
remaining data serving as the training set. The goal was to
see how the model performed on a test set outside AD.
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Figure 2. Workflow Diagram of DBSCAN. This diagram
summarizes the main step performed by the DBSCAN
algorithm.

Another method for validating the model is to use an
external set and compare the similarity between our
dataset and the external set using similarity metrics such
as the Tanimoto index T (also known as the Jaccard
coefficient) (Eq. 6). The Tanimoto index compares two
compounds based on the number of common molecular
fragments. Tanimoto similarity is determined by counting
all unique fragments of a given length in two compounds.
Tanimoto similarity between compounds A and B is
defined as follows):

(6)𝑇(𝐴, 𝐵) =  𝑁

𝑖=1

∑ (𝑥
𝐴,𝑖

* 𝑥
𝐵,𝑖

)

𝑁

𝑖=1

∑ (𝑥
𝐴,𝑖

* 𝑥
𝐴,𝑖

)+
𝑁

𝑖=1

∑ (𝑥
𝐵,𝑖

* 𝑥
𝐵,𝑖

)−
𝑁

𝑖=1

∑ (𝑥
𝐴,𝑖

* 𝑥
𝐵,𝑖

)

where N is the number of unique fragments in both compounds,
and are the counts of the -th fragments in the compounds𝑥

𝐴,𝑖
𝑥

𝐵,𝑖
𝑖

A and B.

It is expected that the molecules with a higher Tanimoto
index will be inside the AD. We used an external set of
76145 compounds from ChEMBL for further analysis,
selecting the 10% most similar to our data and the 10%
most dissimilar, as determined by the Tanimoto index.

Then PCA was performed on both sets, and DmodX was
used to detect outliers. Finally, DBSCAN was performed
with the following epsilon values: 1, 1.5, 2, 2.5, 3, 3.5, 4,
4.5, 5, 5.5.

2.5  Graph Neural Networks (GNNs)

GNN is a unique neural network architecture with the
same basic principles as convolutional neural networks.
However, it is primarily used to process and learn irregular
and unstructured graph data. [65] GNNs aim to learn the
representation of each node in the graph and then extract
features of the nodes or graphs hierarchically before using
the final features for application modeling by a sub-model,
such as a multi-layer perceptron (MLP). GNNs use the
graph structure to iteratively update the node
representation from the node neighborhoods in a
convolutional or equivalent fashion to obtain the final
feature representation of the nodes or the graph. [65]
Multiple graphical convolution (or equivalent) layers are
typically stacked together to update the node
representation to explore the deeper and more extensive
information of the node's receiving domain.

Before the data were inputted into the GNN model, each
molecule was transformed into an undirected graph 𝐺(𝑉,
𝐸), where 𝑉 = {𝑥1, 𝑥2, …, 𝑥𝑛} is the node-set representing
atoms, and 𝐸 is the edge set representing chemical
bonds. Supplementary Table 1 lists the RDKit-generated
atom and bond descriptors used as input node and edge
features.

The data for each ADMET endpoint was randomly split to
separate the training, internal, and external validation sets
by an 8:1:1 ratio. For modeling, the PyTorch Geometric
[66] library was used. PyTorch Geometric is an extension
library to the popular DL framework Pytorch [67] and
consists of various methods and utilities to ease the
implementation of GNNs. The model was defined using a
five-layer GCN, with each GCN layer enhanced by the
activation function, Rectified Linear Unit (ReLU). Following
that, two linear transformations were applied as a
classifier to map the nodes to one of the two classes.
After the first linear layer, a dropout layer with p=0.5 was
used. The model was trained for a maximum of 500
epochs (training iterations) with optimizer Adam [68] at a
learning rate of 0.001 and early stopping at a window size
of 20, i.e., the training was terminated if the validation loss
did not decrease for 20 consecutive epochs. Moreover,
10-fold cross-validation was applied to tune parameters.
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The accuracy and the negative log-likelihood were used to
evaluate the classification models. The regression model,
on the other hand, was evaluated using R2 (Eq. 3) and
MSE. To further validate the models, we obtained
experimentally validated data for the ADMET properties.
The idea is to use this data to train GNN models; if they
perform well, our models are reliable. Because it is difficult
to obtain experimentally validated data for each property,
we only obtained data to validate the following models:
BBB, Caco-2, Carcinogenicity, Ames Test, human
intestinal absorption (HIA), and hERG inhibitor. If the
models predict these properties well, we can assume they
will also predict the other properties well.

2.6  Explicability of the GNN Model

An attribution method, given a trained model and an input,
assigns scores to each input feature that reflects the
feature's contribution to the model prediction. Attribution
scores reveal which features, in this case, atoms and
atom pairs, were most important to the model's decision.
In this study, the attribution scores were calculated and
represented using Integrated Gradients (IG) [69] and

Saliency. Consider the function of a deep𝐹: 𝑅𝑛 → [0, 1]
neural network to demonstrate how IG works briefly.
Given an input feature x (in our case, x is a molecule that
has been divided into atoms and atoms pairs) and some
baseline feature x′, the IG of x along the -th dimension of𝑖
x was defined as follows (Eq. 7):

(7)𝑎
𝑖
 =  (𝑥

𝑖
− 𝑥

𝑖
`) 𝑥

𝑖=0

1

∫ ∂𝐹(𝑥)
∂𝑥

𝑖 𝑥 = 𝑥' +𝑡𝑥(𝑥−𝑥')
𝑑𝑡

where is the gradient of F along the -th dimension of x.∂𝐹(𝑥)
∂𝑥

𝑖
𝑖

Furthermore, the Saliency computes attributions by taking
the absolute value of the partial derivative of the target
output with respect to the input. Additionally,
GNNExplainer [70] was used to provide interpretable
explanations for the predictions of the GNN-based model.
GNNExplainer recognizes a compact subgraph structure
and a small subset of node features that play an important
role in GNN prediction.

2.7  Code and Data Availability

The data and the scripts used for this project are available
on GitHub.

3 Results and Discussion

3.1  Data Collection

The assembled database contains 51,352,643.
compounds with canonical SMILES, InChIKey, 37
experimental physicochemical properties, and 21 ADMET
properties. The physicochemical and ADMET properties
are listed in Supplementary Tables 2 and 3, respectively.

Once the database was assembled, we retrieved
compounds for which we had available any experimental
ADMET data. We obtained 8997 compounds with
explicitly annotated ADMET data. These compounds
come from DrugBank. [52]

3.2  Descriptors Calculation

It was not possible to calculate all the physicochemical
properties (listed in Supplementary Table 2 from the
python packages mentioned in Methods section 2.2.
Hence, only 14 physicochemical properties (listed in
Supplementary Table 4) were considered for further
analysis as we could calculate them for each molecule.

3.3  Model Development and Validation

As stated in Methods section 2.3, nine models were
created for each ADMET property. One of those models
was obtained for 2D descriptors, while the others were
created using different molecular fingerprints calculated.

To ensure that the predictive model had good
generalization, a test set, ten-fold cross-validation, and an
external validation set were used for model validation. The
best and worst-performing models for each property will
be discussed in this section. The complete performance
summary of the all the models can be found in
Supplementary Table 5.

Table 1 summarizes the relevant performance metrics
associated with the best-performing classification models.
Light Gradient Boosting Machine (LGBM) was the best ML
approach for most classification models. The remaining
models performed best with Random Forest (RF) and
Logistic Regression (LR).

All the classification models performed best with MACCS
key fingerprints. All classification models achieved an
AUC of 0.85 or higher, except for the Ames Test.
Moreover, these models produced acceptable prediction
accuracy, with 19 models achieving ACC values greater
than 0.93. The average MCC value of these models is
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Table 1. Performance metrics for the best-performing classification models.

0.87, and 57% of models have an MCC greater than 0.85.
Generally, these models can predict the ADMET-related
properties of molecules pretty accurately. However, we
can see that the model for CYP2C9 substrate did not
perform as expected (see Supplementary Table 5), most
likely due to the unbalanced data. As shown in
Supplementary Table 1, the data for this cytochrome
enzyme includes 8994 non-substrates and only three
substrates. Hence, this property was discarded for further
analysis. The regression model also achieved the best
performance with MACCS key fingerprints.

The model achieved an R2 of 0.9146, an MAE of 0.1128,
and an RMSE of 0.187 with Random Forest (RF). The
external validation, internal validation, and cross-validation
demonstrated that the constructed models could
accurately predict the property values to some extent.

Table 2 summarizes the worst-performing models and
performance measures for the classification models. We
can observe that the worst-performing model for each
property was one of the circular fingerprints (ECFP or
FCFP). Nonetheless, these models still give good
predictions. For classification models, forty-four percent
of the models had an AUC of 0.85 or higher. Furthermore,
18 models achieved ACC values greater than 0.89. The
average MCC value of these models is 0.72, with 44%
having an MCC greater than 0.75.

However, we can see that the model for hERG inhibitor I
did not perform as expected with any of the remaining
fingerprints (see Supplementary Table 5). In addition, the
MCC (0.3767) and AUC (0.5714) values for the
descriptor-based models were low, most likely due to
unbalanced data. The training data for this toxicity
property includes 8032 weak and only 56 strong
inhibitors, as shown in Supplementary Table 1.
Furthermore, the test set contains 893 weak and only
seven strong inhibitors. Although we obtained good
statistical results using MACCS keys, it is most likely
overfitted. Thus, we cannot rely on the predictive ability of
this model. In addition, the regression model performed
the worst with a circular fingerprint-based model, ECFP6,
with an R2 of 0.7555 and 0.3164 and 0.2391 MSE and
RMSE, respectively.

In general, all obtained models correctly predicted most of
the test set properties, with an overall prediction accuracy
of more than 68 percent (for the classification models) and
an R2 greater than 0.75 (for the regression model).
However, MACCS key models outperformed the others,
while circular fingerprints performed the worst.
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Table 2. Performance metrics for the worst-performing classification models.

On the other hand, unbalanced data was the cause of the
models' failure to make good predictions. Therefore, we
can conclude that the accuracy of ADMET profiling
prediction is determined by the datasets and modeling
tools used to create the models. Thus, the dataset used
for in silico ADMET prediction should be highly diverse
and large enough to be considered a global dataset.

3.4  Applicability Domain Evaluation

Different approaches were applied to define the AD. To
begin, PCA was performed not only on the MACCS keys
fingerprints data but also on the rest of the fingerprints
and molecular descriptors data to determine why the
model performed best with the MACCS keys fingerprints
and poorly with the other fingerprints or descriptors. Then,
DmodX was used to detect the outliers.

As outlined in the scores plot of data using MACCS keys
fingerprints (Figure 3), both train and test data sets are
evenly distributed in the chemical space. Furthermore, the
data using physicochemical properties (Supplementary
Figure 2) and KRFP (Supplementary Figure 3) are equally
distributed. On the other hand, the data using circular
fingerprints (Supplementary Figures 4-9) are not evenly
distributed. This could be one of the reasons we had poor
results with the circular fingerprint-based models.

Figure 3. Scoring plot of the first two principal
components in the training and test set for MACCS
keys fingerprints data. The training set is represented by
the red circle points, while the gray circle points represent
the test set. Outliers are shown as gray rhombus points.

Table 3 summarizes the distribution of the training and
test data inside and outside the AD determined by
DmodX. Six hundred forty-four compounds are outside
the AD for the data fingerprints using MACCS keys; more
than 900 compounds are outside the AD for the remaining
fingerprints. However, regarding AD coverage, MACCS
keys have the lowest coverage (34%) for the test, while
the rest have AD coverage above 84%. The
descriptor-based data has achieved the highest AD
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coverage (96.80%) for the test set. This suggests that the
predictions for the best-performing model in the test set
may not be completely reliable.

Table 3. The number of compounds inside and outside
the AD determined by DmodX in the training and test sets.

Following that, models were trained using MACCS outliers
as the test set (644 compounds) and the remaining data
as the train test (8353 compounds) to further investigate
the best-performing model reliability. The models were
trained using the best-performing models from the
previous section (Table 1). Supplementary Table 6
summarizes the classification and regression models'
statistical results. In addition to hERG inhibitor I and
CYP2C9 substrate, four more cytochrome enzymes failed
to predict the model. This was due to the unbalanced
data, as we used less than 8% of the data as the test set,
and the data split was not done using a train-test split
method, so the data was not well distributed. When
compared to the best-performing models, the remaining
classification models performed poorly. The average MCC
of these models fell from 0.86 to 0.65, while the average
AUC decreased from 0.92 to 0.8. The average ACC was
not significantly affected, dropping from 0.96 to 0.94. For
the regression model, the R2 was dropped from 0.9146 to
0.6236. This suggests that we can trust the AD space
defined by this method.

Secondly, logistic PCA was applied to the MACCS data
because it is a useful tool for exploring relationships
within a multivariate binary data set. DmodX was used
once more to detect outliers. Outside the AD defined are
1335 outliers: 1230 from the training set and 135 from the
test set. The AD coverage for the training and test sets is
84,81 and 85%, respectively. Then, for each endpoint,
models were trained using the outliers as the test set and
the remaining data as the training set (7662 compounds).
Supplementary Table 7 summarizes the classification and
regression models' statistical results. Compared with the

best-performing model, the ACC, AUC, and MCC have
increased for the classification model. Nevertheless, the
R2 for the regression model has decreased significantly,
from 0.9146 to 0.7470. The performance of these models
was expected to be poor, but this did not occur. Thus, we
can conclude that this method is untrustworthy for
defining the AD.

The DBSCAN algorithm was then applied to MACCS data
with different epsilon values. Table 4 shows that the Eps
value increases so does the AD coverage for the train and
test sets. Furthermore, the DBSCAN outliers were used as
the test sets for modeling. Supplementary Table 8
summarizes the classification and regression models'
statistical results.

For eps=2, 80 percent of the classification models
performed worse than the best-performing models. The
average MCC of these models fell from 0.87 to 0.80, while
the average AUC decreased from 0.96 to 0.88. The
average ACC was not significantly affected, dropping from
0.97 to 0.96. For the regression model, the R2 was
dropped from 0.9146 to 0.741. For eps=2.5, 63 percent of
the classification models performed worse than the
best-performing models. The average MCC of these
models fell from 0.86 to 0.78, while the average AUC
decreased from 0.91 to 0.87. The average ACC was not
significantly affected, dropping from 0.97 to 0.96. For the
regression model, the R2 was dropped from 0.9146 to
0.7425.

Table 4. The number of compounds inside and outside
the AD determined by DBSCAN for the different values of
Eps.

For eps=3, 68 percent of the classification models
performed worse than the best-performing models. The
average MCC of these models fell from 0.86 to 0.75, while
the average AUC decreased from 0.91 to 0.86. Moreover,
the average ACC decreased from 0.97 to 0.88. For the
regression model, the R2 was dropped from 0.9146 to
0.8632. For eps=3.5, 63 percent of the classification
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models performed worse than the best-performing
models. The average MCC of these models fell from 0.85
to 0.76, while the average AUC decreased from 0.91 to
0.86. Moreover, the average ACC decreased from 0.97 to
0.88. For the regression model, the R2 was dropped from
0.9146 to 0.8443.

For eps=4, 78 percent of the classification models
performed worse than the best-performing models. The
average MCC of these models fell from 0.87 to 0.79, while
the average AUC decreased from 0.92 to 0.88.
Furthermore, the average ACC decreased from 0.97 to
0.93. For the regression model, the R2 was dropped from
0.9146 to 0.8309. For eps=4.5, 61 percent of the
classification models performed worse than the
best-performing models. The average MCC of these
models fell from 0.88 to 0.8, while the average AUC
decreased from 0.92 to 0.88. The average ACC was not
significantly affected, dropping from 0.974 to 0.966. For
the regression model, the R2 was dropped from 0.9146 to
0.7869.

For eps=5, 67 percent of the classification models
performed worse than the best-performing models. The
average MCC of these models fell from 0.88 to 0.78, while
the average AUC and ACC did not change significantly,
dropping from 0.874 to 0.869 and from 0.974 to 0.967,
respectively. For the regression model, the R2 was
dropped from 0.9146 to 0.5186.

To summarize, most classification models performed
poorly with different epsilon values, with a significant
difference in AUC and MCC compared to the
best-performing models. Furthermore, as the value of
epsilon increased, so did the AD coverage for the test set.
This makes sense because the higher the epsilon, the
more outlier data points were included in the training set,
increasing the AD for this particular set. This implies that,
depending on the value of epsilon.

To further determine how reliable these AD techniques
(DmodX with PCA and DBSCAN) are, they were tested on
two external sets: one similar to our data and one that
was not. Figures 4 and 5 show the score plot for the
similar and the dissimilar set, respectively.

The data for a similar set is evenly distributed. However,
the external set is mainly on the right side of the score plot
for the dissimilar set. Although the score plots appear to
show that the dissimilar set has more compounds outside

the AD than the similar set, both sets yielded a similar
number of compounds outside the AD, 1083 for the
similar set and 956 for the dissimilar set. However, the
similar set had an AD coverage of 81.76 % (165
compounds), while the dissimilar set had a coverage of
37.44 % (563 compounds). Hence, we can rely on the
domain of applicability given by DmodX as more
compounds from a similar set are inside the AD, and more
compounds from a dissimilar set are outside the AD.

Figure 4. Scoring plot of the first two principal
components in the dataset and the similar set. The
dataset is represented by the red circle points, while the
gray circle points represent the compounds of the similar
set. Outliers are shown as gray rhombus points.

Figure 5. Scoring plot of the first two principal
components in the dataset and the dissimilar set. The
dataset is represented by the red circle points, while the
gray circle points represent the compounds of the
dissimilar set. Outliers are shown as gray rhombus points.

Furthermore, DBSCAN was performed on both sets.
Supplementary Table 9 (for the similar set) and
Supplementary Table 10 (for the dissimilar set) summarize
the distribution of the training and test data inside and
outside the AD determined by the different values of
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Table 7. Statistical results of classification models for ten-fold cross-validated training and validation and test sets for
different ADMET endpoints.

epsilons of DBSCAN. For the similar set, after epsilon = 3,
the AD coverage for the test set remains constant, with
maximum coverage of 17.89%. For the dissimilar set,
however, the AD coverage for the test set increases with
the epsilon value, reaching a maximum coverage of
80.56%. This is the opposite of what was expected.

To perform DBSCAN, we first project with PaCMAP. In this
case, we used the PaCMAP to project both the training
and the external sets. As a result, the projection for the
similar set is very similar, and the PaCMap preserves the
structure similar to the training set. However, with the
dissimilar set, PaCMAP forces the external set to be in the
same projection, which could explain why the majority of
the compounds are within the AD for this set.

A solution to avoid this is to preserve the projection of the
training set and project the external set on it.

3.5  Graph Neural Networks (GNNs)

In this study, 21 GNNs models were implemented, one for
each ADMET property. Ten-fold cross-validation and
external validation were performed for model validation to
ensure that the predictive model had good generalization.
In addition, the early stopping function was used to

prevent overfitting. This function considers the number of
iterations after which the training process will stop if the
validation loss does not decrease.

Table 7 summarizes the average training and validation
accuracy and loss across the ten-fold cross-validation.
Although descriptor- and fingerprint-based models did not
perform well for CYP2C9 substrate and hERG inhibitor I,
these properties were also included. As expected, the
cytochrome enzyme failed to predict; meanwhile, the
hERG inhibitor I achieved a test set accuracy of 99.78 and
an average validation loss of 0.052. This model, however,
is most likely overfitted. The rest of the classification
models performed impressively, with an average ACC of
0.93.

In addition, the GNN models for BBB, Caco-2,
Carcinogenicity, Ames Test, HIA, and hERG inhibitors
(predictor I and II) were validated using an external set.
Except for Caco-2 permeable and hERG inhibitor II
(ACC=0.49 for both), the models performed admirably. An
ACC greater than 0.97 was obtained for the BBB and
carcinogenicity. Additionally, 0.9217 and 0.8766 ACC
were obtained for the HIA and Ames Test, respectively.
Besides giving the model validation, this step also
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confirmed that the hERG inhibitor I model was overfitted.
The data with approved hERG compounds were predicted
using both hERG models (predictor I and II). The ACC
obtained for hERG inhibitor II was 0.49, whereas the ACC
obtained for hERG inhibitor I was 0. This suggests that
balanced data is needed for reliable predictive models.

The model validation was not performed for all the models
since obtaining approved molecules for each of the
properties is difficult. However, if the validated models
gave overall good results, we can assume that the
remaining models, with the exception of hERG inhibitor I,
give accurate predictions.

3.6  Explicability of the GNN Model

The following attribution methods, IG and Saliency, were
used to interpret the predictions of the GNN models for
BBB and CYP2C9 inhibitor. The GNNExplainer was then
used, and the attribution methods were compared.

As a proof-of-concept and to gain a better understanding
of how GNN determines whether a molecule is toxic or
not, the important properties’ features of ten random
CYP2C9 inhibitors and ten non-inhibitors molecules were
thoroughly examined. As a result, we see that the
highlighted regions for inhibitors correspond to Catechol
for almost all of the molecules. One example is shown in
Figure 5; we can see that two highlighted regions belong
to Catechol, a toxic organic compound that acts as a
highly reactive radical group.

Figure 5. Visualizations of attribution scores,
calculated using Integrated Gradients. Both highlighted
regions correspond to Catechol groups.

Furthermore, the important features of BBB were
analyzed. The ability of a molecule to cross the
blood-brain barrier is determined by factors other than its
functional group. Therefore, we cannot draw any
conclusions based solely on the highlighted region for
BBB. After exploring both importance attribution methods,
we can conclude that GNN explicability mapping to the
compound topology is more useful for providing further
insight on toxicity endpoints.

4   Conclusion

Predicting ADMET properties is critical in drug
development because it reduces risks during clinical
development. Thus, developing high reliability and
computational robustness models to predict these
properties is becoming increasingly important. This study
reported an extensive ADMET dataset, including 8997
compounds for 21 ADMET points. In order to train the
models, the physicochemical properties, as well as
various molecular fingerprints, were calculated. Then,
several accurate classification and regression models
were developed using molecular descriptors and
molecular fingerprints with PyCaret. According to the
statistical results, the MACCS-based methods
outperformed the other ML methods, with remarkable
MCC and AUC results for the test set. Furthermore, the
applicability domain of the ML models was defined,
ensuring the models' predictive ability. After that,
GNN-based models were developed and validated, giving
good prediction accuracy. Finally, the essential features
identified by attribution methods and GNNExplainer for
BBB and CYP450 2C9 inhibitor were analyzed to explain
the GNN-based models' explicability.

In conclusion, we believe that the models developed in
this study can be regarded as simple, accurate,
trustworthy, and transparent tools for predicting ADMET
properties in drug design and discovery pipelines.

Future Work

Future work will include further refinement of models
suspected of having overfitting or unbalancing issues, as
well as labeling additional data (from the database
assembled in this project) that our models will predict. In
addition, we will validate PaCMAP and DBSCAN using a
variety of similarity metrics and developing transformation
methods around the training set initially projected.
Furthermore, additional information about GNNs nodes
and edges, such as torsion angles, atom information,
chirality, and type, will be included, likely leading to more
insight into explainability.
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File 1. This file contains histograms for the training and test set.

Figure 1. This figure shows the plot for the nearest neighbor
function to determine the epsilon value for DBSCAN. Figure 2.
Scoring plot of the first two principal components in the training
and test set for physicochemical property data. Figure 3. Scoring
plot of the first two principal components in the training and test
set for KRFP data. Figure 4. Scoring plot of the first two principal
components in the training and test set for ECFP2 data. Figure 5.
Scoring plot of the first two principal components in the training
and test set for ECFP4 data. Figure 6. Scoring plot of the first
two principal components in the training and test set for ECFP6
data. Figure 7. Scoring plot of the first two principal components
in the training and test set for FCFP2 data. Figure 8. Scoring plot
of the first two principal components in the training and test set
for FCFP4 data. Figure 9. Scoring plot of the first two principal
components in the training and test set for FCFP6 data.

Table 1. In this table, RDKit-generated atom and bond
descriptors used as features for GGN are listed. Table 2. The
complete list of physicochemical properties obtained. Table 3.
List of ADMET properties. Table 4. List of physicochemical
properties used in this study. Table 5. The complete performance
summary of 189 models. Table 6. This table contains the
summary of statistical results of the classification and regression
model using PCA outliers for MACCS as the test set. Table 7.
This table contains the summary of statistical results of the
classification and regression model using logistic PCA outliers for
MACCS as the test set. Table 8. This table contains the summary
of statistical results of the classification and regression model
using DBSCAN outliers for MACCS as the test set. Table 9. This
table contains the summary of statistical results of the
classification and regression model using DBSCAN for the similar
set as the test set. Table 10. This table contains the summary of
statistical results of the classification and regression model using
DBSCAN for the dissimilar set as the test set.
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