
MEMÒRIA DEL TREBALL DE FI DE GRAU DEL GRAU
(ESCI-UPF)

Optimization of alignment preprocessing used as input
on a residual neural network for substitution model

selection

AUTOR/A: 
Antón Vega Méndez

NIA: 
104530

GRAU: 
Bachelor’s Degree in Bioinformatics
CURS ACADÈMIC: 
2021-2022
DATA: 
21-6-2022
TUTOR/S:
Sebastian Burgstaller-Muehlbacher



Optimization of alignment preprocessing used
as input on a residual neural network for
substitution model selection
Antón Vega Méndez
Academic tutor: Sebastian Burgstaller-Muehlbacher1,2

1Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna
2Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria

W hen performing phylogenetic tree reconstruction, we often see that the use of an incorrect model
of sequence evolution can lead to a wrongly modeled tree. However, even though choosing the right
model of sequence evolution is the first step for phylogenetic tree reconstruction, using established

methods can be computationally expensive and prone to errors.
ModelRevelator[3] uses deep learning to decide which phylogenetic model to use for a certain multiple sequence
alignment analysis. In this project, we tried to improve the performance of one of ModelRevelator’s networks
by using a different approach to preprocessing the information contained in multiple sequence alignment:
By randomly selecting subsets of the alignments we computed a set of summary statistics to summarize the
information contained in each of those alignments. The end goal was to see whether this approach yielded better
results than the previously ones used by ModelRevelator.

1 Introduction

With the increasing number of biological data available
nowadays, one of the best ways for phylogeneticists to
study evolution and to study the relationship between
organisms is to do so through their genetic sequences.

One key step for carrying out this analysis, and
when trying to reconstruct an evolutionary tree, is
computing the genetic distance, which is a measure of the
divergence between two sequences that come from the
same common ancestor.

This is a highly challenging task, since many evolu-
tionary forces are applied to the sequences making them
vary, which exponentially increases the complexity of
comparing them[16]. There are several of these forces
and reasons for mutations in the sequences occurring,
and we must understand as many as we can to carry our
analysis. For example, Transitions and transversions are
the two types of these nucleotide mutations. Transitions
account for the substitution between two purines or two
pyrimidines (A to G or C to G interchangeably), while

transversions are the substitution between a pyrimidine
and a purine (G to C, A to T...). We distinguish between
these two types of substitutions because, although there
are many more probabilities of having a transversion,
there are higher possibilities of having a transition, due to
the chemical structure of the nucleotides as seen in figure
1.

Figure 1: Diagram showcasing the difference between transitions and
transversions



One of the main requirements for computing the genetic
distance is estimating a model of sequence evolution. They
use continuous-time Markov-Chains to model the previ-
ously mentioned evolutionary forces, and to help describe
the different probabilities of change in the sequences
across time by making assumptions of the substitutions.
One of these assumptions is, for example, the homo-
geneous frequency of nucleotides that the Jukes and
Cantor[9] model takes: This model assumes that there
is the same probability for each nucleotide to be on the
sequence, as opposed to the GTR[24] model where the
frequency of each nucleotide can be different across the
sequence.

1.1 Models of sequence evolution

There are hundreds of models to choose from, but we will
only account for 6 of them in this project which are widely
used and range in complexity; the project can easily be
expanded to more in the future:

• Jukes and Cantor (JC[9]): This is the simplest substi-
tution model, because as mentioned before it assumes
same frequency of nucleotides in the sequence at ¼,
and each of those is equally likely to be replaced by
any other nucleotide.

• Kimura 2-parameter (K2P[12]): Introduces transi-
tion and transversion substitution rates to the already
mentioned JC parameters.

• Felsenstein-81 (F81[4]): Has the same parameters
as JC, but it allows the possibility of having different
base frequencies than the ¼ used in JC and K2P.

• Hasegawa, Kishino and Yano (HKY[7]): Introduces
transition and transversion substitution rates whilst
allowing different base frequencies.

• Tamura and Nei (TN93[22]): It distinguishes be-
tween two different types of transition (AG and CT)
but only one type of transversions. It also assumes
different base frequencies.

• Generalized time-reversible model (GTR[24]): Has
each of the base frequencies of the nucleotides as
parameters, as well as each of the 6 transition rates
(A to C is the same as C to A).

Although the concept of a model of sequence evolution
is relatively straightforward, finding the correct model
of sequence evolution within a certain multiple sequence
alignment is a challenging task.

1.2 Choosing the model

Choosing a wrong model for our data can severely harm
the results of a phylogenetic analysis. However, choosing
the model that better fits our data is far from trivial.
Since the cost of sequencing is consistently decreasing
every year[21], the number of alignments to analyze is
getting substantially larger. This fact coupled with the
existence of hundreds of different models of evolution
makes the process of choosing one a very time consuming

and computationally expensive procedure.

There are several statistical techniques that have
been developed for choosing the best fitting model,
one of which using likelihood ratio tests: The log
likelihoods of two models we want to compare the fit
of are computed, and usually these two models are
nested, meaning that there is only one parameter that is
assumed to be different in both models[16]. Usually the
comparison is made between all of the models and its
parameters, arriving at the best fitting one. This approach,
however, has some limitations, for instance it assumes
that one of the models being compared has to be correct,
which might not be the case. Another method is Bayes
factor, which works similarly to the log likelihood but
using reversible jump MCMC[6] for the computations.
The most common approach to which we will be compar-
ing the results is Maximum Likelihood[10], which uses
either the Bayesian Information Criterium (BIC) or the
Akaike Information Criterium[17].

In any case, it is safe to assume that these procedures
are computationally very intensive.

1.3 Machine learning

Machine learning uses data to create models that help
recognize patterns, to classify and predict. There are
several ways that machine learning does this, but in
this project we will focus on neural networks and deep
learning.

A neural network is a set of linear algebra opera-
tions that uses certain mathematical operations to the
input data so as to retrieve a desired output. It has three
parts: The input layer to which the data is given, the
hidden layers on which the operations are performed, and
the output layer that yields the result of the operations.
For this network to “learn” and improve, we follow two
different steps: forward and backward propagation.

We shall now explain how a neural network works
with all of these concepts together: first, we randomly
initialize weights. These weights are values which we
multiply our data with, and will be updated using an
optimization algorithm in the backward propagation
step. Then for each hidden layer we apply an activation
function after the input data has been multiplied by
the weight, which induces non-linearity to differentiate
between the relevant and non-relevant weights.

If there are additional hidden layers following the
first one, a similar procedure is carried out eventually
resulting in the output for the output layer. This would
be the forward propagation step. Following that, the
expected output from our network would be compared to
the ground truth we were expecting to get, which is called
the error. To compute this error, we use a loss function

Antón Vega Méndez Page 2 of 11



(in our case we use categorical cross entropy, which is
used for multi-class classification). Once this error is
computed, we use it for a gradient descent method to
minimize it, and to be able to update the weights. This is
back propagation[19].

All these steps are part of one iteration the network
does, called epoch. We also have hyperparameters, that
are fixed parameters defined before training, like the
batch size (number of training examples shown to the
network at the same time in order to have a smoother
gradient descent) and the learning rate (step size of how
much gradient should be modified towards a minimum).

Usually, for a complex set of data more than one
hidden layer is needed for a successful neural network
architecture; and in most cases the more of these layers
there are, the higher accuracy the network can achieve.
The term used for describing a network that uses many
of these layers is a deep neural network, which is called
Deep learning[14].

There are several applications of machine learning and
deep learning in biology that have proven to be a successful
strategy to solve biological problems[15][23][11][20].

1.4 ModelRevelator

ModelRevelator[3] uses two multi-layered neural net-
works. The first one, NNmodelfind, selects the best
model of sequence evolution based on multiple sequence
alignments. The second one, NNalphafind, computes
the alpha parameter if the multiple sequence alignment
benefits from incorporating a gamma distribution to
account for the rate heterogeneity across sites[26].

Phylogeneticists can input their multiple sequence
alignments and get a recommendation of the model
of sequence evolution to use for their analysis, as well
as which alpha parameter to use (if any) in case of
rate heterogeneity: We know that the position of each
nucleotide in a sequence can have a different impact on
the rate of substitution because of different evolutionary
forces. To account for this, we use rate heterogeneity
which is modeled with a gamma distribution. Changing
the α parameter from this distribution we can increase or
decrease the rate of heterogeneity. Otherwise, assuming
same probability of substitution on each nucleotide means
having rate homogeneity.

Results show that ModelRevelator performs on par with
maximum likelihood with Bayesian information criterion,
being able to generalize to alignments quite different from
the ones that were trained on, as well as being more com-
putationally inexpensive for certain alignment sizes and
even outperforming in some tested data sets.

2 Objectives

The objective and goal of this project is to improve the
preprocessing of multiple sequence alignments given to
NNmodelfind by computing summary statistics on subsets
of the multiple sequence alignments, trying to maximize
the information extracted from them, and therefore the
performance of NNmodelfind.

3 Methods

3.1 Data simulation

ModelRevelator was trained using alignments that were
simulated using model parameters that were extracted
from empirical data, collected from the scientific literature
by Rob Lanfear from the Lanfear group of the Australian
National University, with the objective of using empirical
data for the simulation. The trees for alignment simulation
were random, with internal and external branch lengths
recovered from trees reconstructed on the empirical
Lanfear data under the GTR model. The branch lengths
were then used to generate the trees with 8, 16, 64 or
128 taxa.

In this project, we created two training datasets
following the above steps, one with 86020 alignments
and the other with 240000 alignments per file for each of
the five preprocessing strategies that will be explained
next. For each training dataset we created a respective
validation dataset, of 3000 alignments and 12000 each.

To create the test dataset, we followed the same strategy
as for the training dataset, but used different sequence
lengths to see if the models could generalize to other
sequence lengths. We created alignments with 100, 1000,
10000 and 100000 base pairs.

3.2 Preprocessing strategies

We used the Seq-Gen[18] tool to use these created trees
in combination with some parameters (rate frequency,
sequence length and alpha) for each model of substitution
to simulate a multiple sequence alignment, using the 12
different models of sequence evolution in equal parts: half
with rate homogeneity and half with rate heterogeneity
across sites. The rate heterogeneity was set to alphas of
0.001, 0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 1, 2, 3, 4, 5, 6, 7, 8,
9 and 10. All the sequences from the multiple sequence
alignment in the training dataset are 1000bp long.

The first step for improving the preprocessing of the
multiple sequence alignments was to choose the different
approaches to use. ModelRevelator uses a pairwise strat-
egy (as explained below) on the preprocessing strategy
since it yielded the best results, but several other meth-
ods were tested (also explained below). However, these
strategies might be further optimized since extracting the

Antón Vega Méndez Page 3 of 11



necessary information can probably be done without the
need of looking at each sequence entirely, or even only
looking at certain sequences of interest. Since we don’t
know how the information will be best extracted from
the alignments, we need to look at the already existing
methods that were proven to work in ModelRevelator:

• Column-wise: For each column of the multiple
sequence alignment the following features were
counted: πA, πC, πG, πT, AC, AG, AT, CT, CG, GT,
AA, CC, GG, TT.

• Pair-wise: For two randomly selected sequences of
the multiple sequence alignments the following fea-
tures were computed: AA, CC, GG, TT, first strand
base count A first, strand base count C, first strand
base count G, first strand, base count T, second strand
base count A, second strand, base count C, second
strand base count G, second strand, base count T,
transversion count, transition count, AC, AG, AT, CT,
CG, GT, CA, GA, TA, TC, GC, TG.

The next step was to apply these strategies to each
individual subset and think of the best ways to do so.
All of this resulted in 5 different strategies used to try
to extract the maximum amount of information from the
alignments to give to the neural network:

I Column-wise subsets: The first strategy consists of
using the column-wise strategy explained before to
each of the subsets and computing the previously men-
tioned summary statistics for all of the columns. Then
all of the summary statistics computed get concate-
nated and reshaped using Numpy to get the 200 by
200 by 16 tensor that we will use as input for the
neural network. We can see a representation of this
strategy in figure 2

II Pairwise subsets: Implementation of the pairwise
strategy to each subset and concatenating the sum-
mary statistics to get a 200 by 200 by 26 tensor as
done in I. We can see a representation on this strategy
in figure 3

III Column-wise random sized subsets: In this strategy
we are doing the same as the first strategy of column-
wise subsets, but we are randomly selecting the size of
each subset from a range of 80 to 160, and then only
computing and storing the first 20 summary statistics
to the tensor, which has size 100 by 100 by 16.

IV Pairwise random sized subsets: Same as in 3, but
applied to the pairwise strategy. We end up with a
tensor of 100 by 100 by 26.

V Choosing the more complex sequences: We the-
orized that the best way for the neural network to
extract information and patterns from the summary
statistics computed is to use the more complex se-
quences, meaning the ones that have the most differ-
ences from the rest. Therefore, after using the same

strategy as the previous pairwise random sized sub-
sets, we computed the summary statistics for all the
random-sized subset, and picked the 20 most complex
sequences to be stored on the 100 by 100 by 26 tensor.
We can see a representation on this strategy in figure 4

Figure 2: Column wise strategy. In orange we have the subset, and in
green the selected column

Figure 3: Pairwise strategy. In orange we have the subset, and in green
the selected rows

Figure 4: Complex sequences. In orange we have the subset, in green the
possible columns and in yellow the chosen more complex column

In all methods the summary statistics are normalized by
the sequence length of the multiple sequence alignment,
in this case 1000bp. Each subset has size of 80 by 80 by
default, and considering we are only using four sizes of
taxa (8, 16, 64, 128) and 12 possible models of evolution,
we reshaped the tensor accordingly. For example the
first strategy has a 200 by 200 by 16 tensor because
we are computing 80 summary statistics, and 16 is the
number of features we are computing. But then for the
column-wise with random size subsets we have 100 by
100 by 16 because instead of 80 summary statistics we
are only using the first 20 in the tensor.

To apply this methods to the subsets we started
implementing the column wise approach to the subsets:
For a random position of the multiple sequence alignment

Antón Vega Méndez Page 4 of 11



the subset of size 80 was created, and the summary
statistics from the column wise method was applied to
this subset in addition to transition and transversion
count and position of the subset. This was done 500
times, and at the end a Numpy reshape function was
applied to end up with a 200 by 200 by 16 (number of
features computed) tensor, stored in tfrecord format, the
TensorFlow[5] binary data storage format.

The first strategy returns a 200 by 200 by 16 tensor
because we are computing 80 summary statistics for each
of the 500 subsets (80 * 500 = 200 * 200), and 16 is the
number of features we are computing. But then for the
column-wise with random sized subsets we have 100 by
100 by 16 because instead of 80 summary statistics we
are only using the first 20 in the tensor and we have fewer
features.

3.3 Neural network architecture

This section will aim to describe the neural network archi-
tecture of NNmodelfind which was used for this project.
To do so, we first need to describe what convolutional and
residual neural networks are.

3.3.1 Convolutional neural networks

There is a specialized type of NN called convolutional neu-
ral networks (CNN) that works best for two-dimensional
dependency of the data points, like the pixels in an im-
age. These networks are given this name because they use
convolution (a mathematical linear operation in which a
function is modified by another) in at least one layer.
In this type of network (Fig6), each layer is responsible for
finding different patterns in increasing complexity on the
inputs. There are three steps happening on each of these
convolutional layers: In the first one we perform some
convolutions in parallel, using something called a filter,
which is usually a matrix learned during training used,

for example, to detect edges of a picture. They are also
frequently referred to as channels. We use the result of this
convolution to produce a non linear activation function
like a rectified linear unit[25]. In the second step, the re-
sults are then given to a nonlinear activation function such
as the rectified linear function (which is the one we use,
and only takes the positive part of the data). The last step
is pooling, which consists of summarizing the information
given to the next layer to reduce the computational time
without losing much information.

Figure 6: Diagram of two layers of a normal CNN and two layers of a
residual block, highlighting the skip connection.

a = activation function, w = weight layer.

3.3.2 Residual neural networks

One of the issues with CNNs is that for very deep neural
networks there is a saturation in the accuracy of these
deeper layers (vanishing gradient error[2]), as well as a
higher training error.
To solve this issue, we will be using a residual neural
network or ResNet[8], which also aims to improve the
training of deep neural networks by reducing the problem
of vanishing gradient, in which the gradient is so small
that the weight barely changes, hindering future training
improvement.
ResNets do this by implementing residual blocks (Fig6),
which have the same structure as a convolutional layer,
but the output for an activation function on one layer will
be later added before the nonlinear activation function n
layers down, skipping n layers in the middle.

Figure 5: NNmodelfind architecture

Antón Vega Méndez Page 5 of 11



This is called “skip connection” when at least one
layer is skipped. NNmodelfind uses a 1×1 convolutional
shortcut as seen in [8].

ModelRevelator uses a ResNet-18 (Fig5), starting with
a tensor input of varying size depending on the strategy
used. This input is passed to four 2D convolution layers
with a 2x1 kernel that have 32, 64, 92 and 92 channels
each instead of the original ResNet-18 7x7 convolution.
After pooling, the output is then passed to the 4 ResNet-18
blocks that use 3x3 convolutions and 96, 192, 384 and
768 channels respectively. From that we get a 6x1 layer
of the output, out of the 6 possible models of sequence
evolution (notice that we use 6 and not 12 because we
separate the alpha estimation and the model selection
into two different neural networks). The network uses
categorical cross-entropy as the loss-function, and Adam
optimizer[13] for the gradient descent.

3.4 Training and testing

After creating the first training dataset of 86020 align-
ments and the validation dataset of 3000 we trained
with a validation dataset 2 of the 5 different proposed
strategies: Column wise summary statistics and pair-
wise summary statistics both with random subsets
sizes. The training was done using TensorFlow 2.8
version on the following GPUs: Nvidia Tesla V100-PCIE
with 32Gb of memory or Nvidia GeForce RTX2080Ti
with 11Gb of memory. Both trainings took around 10 days.

For all the training we used the following hyperparam-
eters: learning rate of 10−5 and batch size of 40. We
performed early stopping on both trainings to aim for
convergence (finding the minimum for the loss function).
This happened on epoch 100 for the pairwise strategy
and epoch 60 on the column wise strategy as we can see
in Figures 7 and 8, on which TensorBoard[5] showcases
both trainings.

Figure 7: Representation of the pairwise strategy training using Tensor-
board. In orange we have the training accuracy and in blue the
validation accuracy. x-axis = epochs, y-axis = accuracy

To test the models, we used the simulated test dataset
for each individual alignment length and tested each of
the two best performing models.

Figure 8: Representation of the column wise strategy training using Ten-
sorboard.

4 Results

Table 1: Training results. T = Training V = Validation,
A = accuracy, L = loss.

Strategy Epoch TA TL VA VL

Pairwise 106 80.42 1.448 80.92 1.438
Column wise 67 78.07 1.53 77.44 1.556

The results from training the two different strategies
can be seen in Table 1 and in Figure 8. For the column
wise strategy, we can see some overfitting after 60 epochs
with an accuracy of around 75% for both the validation
dataset and the training dataset, while the pairwise
approach took around 100 epochs for convergence and
had an accuracy of 80% on the training and validation
datasets. As we can see the pairwise strategy took longer
to converge (40 more epochs) and yielded better results
(5%) than the column wise strategy, which is expected as
will be discussed in the next section.

To check the test results, we will compare both
previously mentioned trained strategies to the results
from ModelRevelator as well as the traditional method
of Maximum Likelihood. Figures 11 and 9 show
the accuracy of the pairwise summary statistics data
with random subset sizes compared to the column
wise summary statistics with random subset sizes for
the 1000bp lengths in the test dataset and for each of
the 6models of evolution in increasing order of complexity.

Figures 9 and 11 show the results from the training
in this project, and figures 10 and 12 show original data
from ModelRevelator, comparing the training that was
done to Maximum Likelihood in the same fashion. Figures
13 and 15 shows the pairwise and column wise results
for the 100000bp test dataset and figures 14 and 16 the
same thing for ModelRevelator and Maximum Likelihood.
Finally figures 17 and 19 show the training on the 100bp
test dataset, while 18 and 20 show the original data tested
on the 100bp test dataset on ModelRevelator.

Antón Vega Méndez Page 6 of 11



Figure 9: Model selection performance on 1000bp rate homogeneus test
dataset for pairwise and column wise approaches, using taxas
colored respectively in decreasing color intensity for each of the
6 models in increasing order of complexity

Figure 10: Model selection performance on 1000bp rate homogeneous test
dataset from the original data of ModelRevelator andMaximum
Likelihood.

As we can see, the results from the preprocessing of
the subsets are at most 7% lower than the ones used
in ModelRevelator and Maximum Likelihood on all the
models but 20% lower for GTR (the most complex model)
on the 1000bp test dataset. This pattern is also seen on
the largest sequences in the test datasets: The models are
able to extract more information for longer sequences in
100000bp test datasets, while they struggle with more
complex models.

For shorter sequences as seen for 100bp, the models
cannot extract enough information, so the results are
quite different: The accuracy is lower than 50% on all
models except for HKY and GTR, which are more complex.

This phenomenon was also observed in ModelRevelator,
and it is the opposite of what we see with Maximum
Likelihood, and with our approach on longer sequences,
where the more complex (parameter-rich) the model of
sequence evolution is, the lower the accuracy is achieved.
We can also see that the column wise approach works
substantially better than the pairwise strategy, having
10 to 20 percent higher accuracy in all models and taxa
except for GTR, where they perform more similarly.

Figure 11: Model selection performance on 1000bp rate heterogeneous
test dataset for pairwise and column wise approaches.

Figure 12: Model selection performance on 1000bp rate heterogeneous test
dataset from the original data of ModelRevelator andMaximum
Likelihood.

Figure 13: Model selection performance on 100000bp rate homogeneous
test dataset for pairwise and column wise approaches.

Figure 14: Model selection performance on 100000bp rate homogeneous
test dataset from the original data of ModelRevelator and Max-
imum Likelihood.

Antón Vega Méndez Page 7 of 11



Figure 15: Model selection performance on 100000bp rate heterogeneous
test dataset for pairwise and column wise approaches.

Figure 16: Model selection performance on 100000bp rate heterogeneous
test dataset from the original data of ModelRevelator and Max-
imum Likelihood.

Figure 17: Model selection performance on 100bp rate homogeneous test
dataset for pairwise and column wise approaches.

Figure 18: Model selection performance on 100bp rate homogeneous test
dataset from the original data of ModelRevelator andMaximum
Likelihood.

Figure 19: Model selection performance on 100bp rate homogeneous test
dataset for pairwise and column wise approaches.

Figure 20: Model selection performance on 100bp rate heterogeneous test
dataset for pairwise and column wise approaches.

When comparing the performance of the models on
alignments with or without rate heterogeneity, we can see
that the accuracy of the models when tested on data with
rate homogeneous is around 4% better on all the models
for the 1000bp test dataset, especially for TN93 and GTR
on larger taxa, where it increases to 11% on average for
taxa 16 64 and 128. It is interesting to point out that
in all the results except for the 100bp test dataset, the
performance of both strategies is quite similar, except for
TN93, where the column wise approach outperforms the
pairwise by at least 10 to 20% for 16, 64 and 128 taxa.

5 Discussion

The performance of the new strategies is similar to the
ones previous obtained in ModelRevelator. Looking at the
results we can say that it is almost on par with the results
obtained by the previous methods in NNmodelfind on the
simpler models. However, the performance is not as good
on the more complex models, probably because more
complex parameters are harder to summarize for the
neural network to learn. From that we can hypothesize
that only using the information contained in a subset
might not be enough for the neural network to learn all
the patterns with the strategies trained so far. Thus, it
seems as if computing the summary statistics from subsets
makes it easier to estimate those models of sequence
evolution that have fewer parameters, but this type of
input seems to be less efficient for the neural network
when looking at more parameter-rich models, like GTR.

Antón Vega Méndez Page 8 of 11



To solve this issue, the next step for increasing the
accuracy is to test the other strategies mentioned in the
methods section that will be used downstream on the
project, and see if the performance on the more complex
models improves.

When looking at the two strategies of column wise
and pairwise summary statistics on random sized subsets
that were trained, we see that, even though the pairwise
strategy had more features and showed higher accuracy
on the training and validation datasets, the results do
not indicate whether one is better than the other. This is
surprising, since the pairwise strategy performed better
than the column wise on ModelRevelator when looking at
the whole sequence, although shorter pairwise summary
statistics certainly contain less information than the
whole sequence, so retrieving information from the align-
ment might be strongly dependent on the sequence length.

For some reason, the column wise approach gives
higher accuracy on TN93, probably because column-wise
summary statistics inputs always provide information of
both transition types in each summary statistic of each
position of the alignment. This is not the case for the
pairwise input, as the information is collected over the
whole alignment, not just for each position, making it
harder for the neural network to differentiate between
the two transitions types that TN93 has as parameters.

However, looking at the 100bp test dataset we can see
that the pairwise strategy performs around 20% better in
all models except GTR than the column wise approach,
which might mean that the pairwise strategy generalizes
slightly better, at least for shorter sequences.

Another thing we can observe from the results, is that
the performance of both models is not as substantially
high as we would expect on the 100000 base pairs test
dataset as compared to the length of 1000 base pairs with
which we trained. This is probably explained by the fact
that for both strategies the same number of subsets were
looked at, independently of the test dataset sequences
length.

Overall, the results are very similar to the ones obtained
with the previous preprocessing strategies in ModelRev-
elator. However, the neural network has a harder time
selecting the correct model if this is quite a complex one.
It would be very interesting to compare these results with
other known machine learning methods for model of sub-
stitution estimation, but the closest thing published is
ModellTeller[1], which uses a random forest algorithm to
predict models of substitution for branch-length estima-
tion. This process requires tree estimation, making the
process different enough so that the comparison is beyond
the scope of the results obtained now. Nevertheless, it
might be interesting to do so in the future.

6 Conclusion

In this project, we tried to create a new preprocessing
strategy for multiple sequence alignments to be used
by a neural network for estimating the model of se-
quence evolution. We wanted this strategy to improve
in both performance and time savings, compared to
established methods and the preprocessing approach
used in ModelRevelator. The results obtained show
that, even though the new strategies’ performance is
quite similar to those of ModelRevelator and Maximum
Likelihood for the simpler models, the created strategies
struggle to accurately select the more complex models.
Further work on the project will be needed to test the
aforementioned strategies and see if the results improve.

To conclude this project, we hope that the results
achieved showcase how powerful a tool machine learn-
ing can be in the bioinformatics field. Further resources
should be applied to use these tools on phylogeny and
other relevant health science fields to solve or optimizing
the solution to pressing biological problem.

7 Data availability

All the codes and programs used to carry out this
project can be found in github: https://github.com/
antonvegam/ModelRevelator_subsets

8 Acknowledgements

I would like to express my sincerest gratitude to all of
the CIBIV group for having me, to Arndt von Haeseler
for giving me the opportunity to work there, and spe-
cially to Sebastian Burgstaller-Muehlbacher for guiding
me through this project and teaching me all I needed to
know and more.

Bibliography

[1] Shiran Abadi et al. “Modelteller: Model selection for
optimal phylogenetic reconstruction using machine
learning”. In:Molecular Biology and Evolution 37.11
(2020), pp. 3338–3352. issn: 15371719. doi: 10.
1093/molbev/msaa154. url: https://academic.
oup.com/mbe/article/37/11/3338/5862639.

[2] Yoshua Bengio, Patrice Simard, and Paolo Fras-
coni. “Learning Long-Term Dependencies with Gra-
dient Descent is Difficult”. In: IEEE Transactions on
Neural Networks 5.2 (1994), pp. 157–166. issn:
19410093. doi: 10.1109/72.279181.

[3] Sebastian Burgstaller-Muehlbacher et al. “Model-
Revelator: Fast phylogenetic model estimation via
deep learning”. In: bioRxiv (2021).

Antón Vega Méndez Page 9 of 11

https://github.com/antonvegam/ModelRevelator_subsets
https://github.com/antonvegam/ModelRevelator_subsets
https://doi.org/10.1093/molbev/msaa154
https://doi.org/10.1093/molbev/msaa154
https://academic.oup.com/mbe/article/37/11/3338/5862639
https://academic.oup.com/mbe/article/37/11/3338/5862639
https://doi.org/10.1109/72.279181


[4] Joseph Felsenstein. “Evolutionary trees from DNA
sequences: A maximum likelihood approach”. In:
Journal of Molecular Evolution 1981 17:6 17.6
(1981), pp. 368–376. issn: 1432-1432. doi:
10 . 1007 / BF01734359. url: https : / / link .
springer.com/article/10.1007/BF01734359.

[5] Google Brain. TensorFlow: A System for Large-
Scale Machine Learning | USENIX. url: https :
/ / www . usenix . org / conference / osdi16 /
technical-sessions/presentation/abadi (vis-
ited on 03/22/2022).

[6] Peter J. Green. “Reversible jump Markov chain
Monte Carlo computation and Bayesian model de-
termination”. In: Biometrika 82.4 (1995), pp. 711–
732. issn: 0006-3444. doi: 10 . 1093 / BIOMET /
82.4.711. url: https://academic.oup.com/
biomet/article/82/4/711/252058.

[7] Masami Hasegawa, Hirohisa Kishino, and Taka
aki Yano. “Dating of the human-ape splitting by
a molecular clock of mitochondrial DNA”. In: Jour-
nal of molecular evolution 22.2 (1985), pp. 160–174.
issn: 0022-2844. doi: 10.1007/BF02101694. url:
https://pubmed.ncbi.nlm.nih.gov/3934395/.

[8] Kaiming He et al. “Identity Mappings in Deep Resid-
ual Networks”. In: (). arXiv: 1603.05027v2. url:
https://github.com/KaimingHe/.

[9] THOMAS H JUKES and CHARLES R CANTOR.
“CHAPTER 24 - Evolution of Protein Molecules”.
In: Mammalian Protein Metabolism. Ed. by H N
MUNRO. Academic Press, 1969, pp. 21–132. isbn:
978-1-4832-3211-9. doi: https://doi.org/10.
1016 / B978 - 1 - 4832 - 3211 - 9 . 50009 - 7. url:
https : / / www . sciencedirect . com / science /
article/pii/B9781483232119500097.

[10] Subha Kalyaanamoorthy et al. “ModelFinder: fast
model selection for accurate phylogenetic esti-
mates”. In: Nature Methods 14.6 (2017), pp. 587–
589. issn: 1548-7105. doi: 10.1038/nmeth.4285.
url: https://doi.org/10.1038/nmeth.4285.

[11] Gaurav Kandoi, Marcio L. Acencio, and Ney Lemke.
“Prediction of druggable proteins using machine
learning and systems biology: A mini-review”. In:
Frontiers in Physiology 6.DEC (2015), p. 366. issn:
1664042X. doi: 10.3389/FPHYS.2015.00366/
BIBTEX.

[12] Motoo Kimura. “A simple method for estimating
evolutionary rates of base substitutions through
comparative studies of nucleotide sequences”. In:
Journal of molecular evolution 16.2 (1980), pp. 111–
120. issn: 0022-2844. doi: 10.1007/BF01731581.
url: https : / / pubmed . ncbi . nlm . nih . gov /
7463489/.

[13] Diederik P. Kingma and Jimmy Lei Ba. “Adam: A
Method for Stochastic Optimization”. In: 3rd In-
ternational Conference on Learning Representations,
ICLR 2015 - Conference Track Proceedings (2014).
doi: 10.48550/arxiv.1412.6980. arXiv: 1412.
6980. url: https : / / arxiv . org / abs / 1412 .
6980v9.

[14] Yann Lecun, Yoshua Bengio, and Geoffrey Hin-
ton. “Deep learning”. In: Nature 2015 521:7553
521.7553 (2015), pp. 436–444. issn: 1476-4687.
doi: 10.1038/nature14539. url: https://www.
nature.com/articles/nature14539.

[15] Agnieszka Mikołajczyk and Michał Grochowski.
“Data augmentation for improving deep learning
in image classification problem”. In: 2018 Interna-
tional Interdisciplinary PhDWorkshop, IIPhDW 2018
(2018), pp. 117–122. doi: 10.1109/IIPHDW.2018.
8388338.

[16] Marco Salemi Philippe Lemey and Anne-Mieke Van-
damme. The Phylogenetic Handbook. Cambridge.
isbn: 9780521877107.

[17] David Posada and Thomas R. Buckley. “Model Selec-
tion and Model Averaging in Phylogenetics: Advan-
tages of Akaike Information Criterion and Bayesian
Approaches Over Likelihood Ratio Tests”. In: Sys-
tematic Biology 53.5 (2004), pp. 793–808. issn:
1063-5157. doi: 10.1080/10635150490522304.
url: https : / / academic . oup . com / sysbio /
article/53/5/793/2842928.

[18] Andrew Rambaut and Nicholas C Grassly. “Seq-
Gen: an application for the Monte Carlo simula-
tion of DNA sequence evolution along phylogenetic
trees”. In: Bioinformatics 13.3 (1997), pp. 235–238.

[19] David E. Rumelhart, Geoffrey E. Hinton, and Ronald
J. Williams. “Learning representations by back-
propagating errors”. In: Nature 1986 323:6088
323.6088 (1986), pp. 533–536. issn: 1476-4687.
doi: 10 . 1038 / 323533a0. url: https : / / www .
nature.com/articles/323533a0.

[20] Charumathi Sabanayagam et al. “A deep learning
algorithm to detect chronic kidney disease from
retinal photographs in community-based popula-
tions”. In: The Lancet Digital Health 2.6 (2020),
e295–e302. issn: 25897500. doi: 10.1016/S2589-
7500(20 ) 30063 - 7 / ATTACHMENT / 5DD9F8AF -
9E3D - 4DCC - 9CE8 - EBDA8B19764A / MMC1 . PDF.
url: http : / / www . thelancet . com / article /
S2589750020300637 / fulltexthttp : / / www .
thelancet.com/article/S2589750020300637/
abstracthttps : / / www . thelancet . com /
journals/landig/article/PIIS2589-7500(20)
30063-7/abstract.

Antón Vega Méndez Page 10 of 11

https://doi.org/10.1007/BF01734359
https://link.springer.com/article/10.1007/BF01734359
https://link.springer.com/article/10.1007/BF01734359
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1093/BIOMET/82.4.711
https://doi.org/10.1093/BIOMET/82.4.711
https://academic.oup.com/biomet/article/82/4/711/252058
https://academic.oup.com/biomet/article/82/4/711/252058
https://doi.org/10.1007/BF02101694
https://pubmed.ncbi.nlm.nih.gov/3934395/
https://arxiv.org/abs/1603.05027v2
https://github.com/KaimingHe/
https://doi.org/https://doi.org/10.1016/B978-1-4832-3211-9.50009-7
https://doi.org/https://doi.org/10.1016/B978-1-4832-3211-9.50009-7
https://www.sciencedirect.com/science/article/pii/B9781483232119500097
https://www.sciencedirect.com/science/article/pii/B9781483232119500097
https://doi.org/10.1038/nmeth.4285
https://doi.org/10.1038/nmeth.4285
https://doi.org/10.3389/FPHYS.2015.00366/BIBTEX
https://doi.org/10.3389/FPHYS.2015.00366/BIBTEX
https://doi.org/10.1007/BF01731581
https://pubmed.ncbi.nlm.nih.gov/7463489/
https://pubmed.ncbi.nlm.nih.gov/7463489/
https://doi.org/10.48550/arxiv.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980v9
https://arxiv.org/abs/1412.6980v9
https://doi.org/10.1038/nature14539
https://www.nature.com/articles/nature14539
https://www.nature.com/articles/nature14539
https://doi.org/10.1109/IIPHDW.2018.8388338
https://doi.org/10.1109/IIPHDW.2018.8388338
https://doi.org/10.1080/10635150490522304
https://academic.oup.com/sysbio/article/53/5/793/2842928
https://academic.oup.com/sysbio/article/53/5/793/2842928
https://doi.org/10.1038/323533a0
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0
https://doi.org/10.1016/S2589-7500(20)30063-7/ATTACHMENT/5DD9F8AF-9E3D-4DCC-9CE8-EBDA8B19764A/MMC1.PDF
https://doi.org/10.1016/S2589-7500(20)30063-7/ATTACHMENT/5DD9F8AF-9E3D-4DCC-9CE8-EBDA8B19764A/MMC1.PDF
https://doi.org/10.1016/S2589-7500(20)30063-7/ATTACHMENT/5DD9F8AF-9E3D-4DCC-9CE8-EBDA8B19764A/MMC1.PDF
http://www.thelancet.com/article/S2589750020300637/fulltext http://www.thelancet.com/article/S2589750020300637/abstract https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30063-7/abstract
http://www.thelancet.com/article/S2589750020300637/fulltext http://www.thelancet.com/article/S2589750020300637/abstract https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30063-7/abstract
http://www.thelancet.com/article/S2589750020300637/fulltext http://www.thelancet.com/article/S2589750020300637/abstract https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30063-7/abstract
http://www.thelancet.com/article/S2589750020300637/fulltext http://www.thelancet.com/article/S2589750020300637/abstract https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30063-7/abstract
http://www.thelancet.com/article/S2589750020300637/fulltext http://www.thelancet.com/article/S2589750020300637/abstract https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30063-7/abstract
http://www.thelancet.com/article/S2589750020300637/fulltext http://www.thelancet.com/article/S2589750020300637/abstract https://www.thelancet.com/journals/landig/article/PIIS2589-7500(20)30063-7/abstract


[21] Katharina Schwarze et al. “The complete costs of
genome sequencing: a microcosting study in can-
cer and rare diseases from a single center in the
United Kingdom”. In: Genetics in Medicine 2019
22:1 22.1 (2019), pp. 85–94. issn: 1530-0366.
doi: 10.1038/s41436-019-0618-7. url: https:
/ / www . nature . com / articles / s41436 - 019 -
0618-7.

[22] K. Tamura and M. Nei. “Estimation of the number
of nucleotide substitutions in the control region of
mitochondrial DNA in humans and chimpanzees”.
In: Molecular biology and evolution 10.3 (1993),
pp. 512–526. issn: 0737-4038. doi: 10 . 1093 /
OXFORDJOURNALS.MOLBEV.A040023. url: https:
//pubmed.ncbi.nlm.nih.gov/8336541/.

[23] Adi L. Tarca et al. “Machine Learning and Its Ap-
plications to Biology”. In: PLOS Computational Bi-
ology 3.6 (2007), e116. issn: 1553-7358. doi: 10.
1371/JOURNAL.PCBI.0030116. url: https://
journals.plos.org/ploscompbiol/article?
id=10.1371/journal.pcbi.0030116.

[24] S Tavaré. “Some probabilistic and statistical prob-
lems on the analysis of DNA sequences”. In: Lec-
tures on Mathematics in the Life Sciences 17 (1986),
pp. 57–86.

[25] Geoffrey E. Hinton Vinod Nair. Rectified Linear Units
Improve Restricted Boltzmann Machines | OpenRe-
view. url: https://openreview.net/forum?id=
rkb15iZdZB (visited on 06/20/2022).

[26] Ziheng Yang. “Maximum likelihood phylogenetic
estimation from DNA sequences with variable rates
over sites: Approximate methods”. In: Journal of
Molecular Evolution 39.3 (1994), pp. 306–314.
issn: 14321432. doi: 10.1007/BF00160154.

Antón Vega Méndez Page 11 of 11

https://doi.org/10.1038/s41436-019-0618-7
https://www.nature.com/articles/s41436-019-0618-7
https://www.nature.com/articles/s41436-019-0618-7
https://www.nature.com/articles/s41436-019-0618-7
https://doi.org/10.1093/OXFORDJOURNALS.MOLBEV.A040023
https://doi.org/10.1093/OXFORDJOURNALS.MOLBEV.A040023
https://pubmed.ncbi.nlm.nih.gov/8336541/
https://pubmed.ncbi.nlm.nih.gov/8336541/
https://doi.org/10.1371/JOURNAL.PCBI.0030116
https://doi.org/10.1371/JOURNAL.PCBI.0030116
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030116
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030116
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0030116
https://openreview.net/forum?id=rkb15iZdZB
https://openreview.net/forum?id=rkb15iZdZB
https://doi.org/10.1007/BF00160154

	Introduction
	Models of sequence evolution
	Choosing the model
	Machine learning
	ModelRevelator

	Objectives
	Methods
	Data simulation
	Preprocessing strategies
	Neural network architecture
	Convolutional neural networks
	Residual neural networks

	Training and testing

	Results
	Discussion
	Conclusion
	Data availability
	Acknowledgements

