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Summary/Abstract 
 

Over 300 million people around the world, mainly women, suffer from Osteoarthritis 

(OA), a multifactorial disease affecting joints. It occurs most frequently in hands, hips, 

and knees. The most common solution is having a total knee replacement (TKR) placing 

a prosthesis on the patient. In the majority of these cases the decision of placing the 

prosthesis is based not only on objective radiographic measures but also on the pain felt 

by the patient and its perception, making this decision subjective. 

 

Nowadays, studies of human motion dynamics have been frequently applied with 

biomechanical and computational models that use kinematic and kinetic parameters in 

order to help clinicians in treatment decision. Some dynamic approaches to gait analysis 

were also presented, but they were never performed over OA subjects. 

 

Nonlinear time series analysis forms a group of algorithms and measures used to extract 

dynamical features underlying measured signals. It allows to describe dynamical systems 

where nonlinearities lead to complex time evolution. Unlike deterministic models that 

produce the same results for a particular set of inputs, stochastic models predict outcomes 

that account for certain levels of unpredictability or randomness. Using the nonlinear 

prediction error and a simple irregularity analysis measures we study how predictable the 

gait will be in the next steps. 

 

In this study, human gait recordings of 13 women between 60 to 67 years old that suffer 

from OA will be analysed from which 6 subjects were referred to take a TKR while the 

others take a conservative treatment. The aim is to analyse differences in the predictability 

of the underlying dynamics and its irregularity between TKR and conservative patients. 

Our results show patients with TKR are more resilient and maintain more coherence 

compared to conservative patients who seem to present a more stochastic behaviour. 

Doing so, a quantitative analysis can help clinicians in the treatment decision. 
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1. INTRODUCTION 

1.1. Osteoarthritis  
 

Osteoarthritis (OA), a multifactorial disease affecting joints, which involves degeneration 

of the articular cartilage, affects over 300 million people over the world [1]. It is the most 

common joint disease worldwide that affects to 10% men and 18% women over 60 years 

old and, 85% of all people between 55-65 have OA in one or more joints [2], [3]. With 

this disease, the cartilage within a joint begins to break down and the underlying bone 

begins to change, which develop slowly and get worse over time. OA most common 

effects are pain, stiffness, and swelling and, in some cases, it reduces functionality and 

disability decreasing their range of motion. Several factors like age and gender interact in 

a non-linear way [1], [4]. The general increase in life expectancy makes OA one of the 

leading causes of disability, being the hip and knee one of the most common joints 

affected by OA [2], [5] 

 

The risk of developing OA increases with age and gender, especially after age 50 [2], [4]. 

Body mass index (BMI) is what determines if you suffer from obesity or not. People who 

weight more put more stress on joints, in particular on hips and knees and are more likely 

to develop OA. Moreover, genetics play an important role. Those people who have 

relatives that suffers from OA are more likely to develop it. Although not fully 

understood, its etiology is thought to be related to genetic, physical, and environmental 

factors [2], [5] 

 

A way of defining the radiological progression of knee osteoarthritic is using the variation 

of the Kellgren-Lawrence (KL) [6], [7]. The KL grade proposed a five-grade 

classification scheme and examined plain radiographs of eight joints, including among 

them, hips, and knees [8]. Although, the KL classification is the most widely used clinical 

tool for the radiographic diagnosis of OA, the most suitable treatment for each patient it 

is still very unclear [6]. This grade seems not to be directly related to the pain felt by the 

patient so, it is still unclear whether KL grade or the functionality of the patients, in terms 

of pain, discomfort, or capability to perform daily activities should guide the treatment 

decision, the total knee replacement (TKR) or the conservative treatment [4]. 

 

There are two main treatments available to treat OA, one surgical and the other 

nonsurgical. Any nonsurgical procedure involves pharmacological treatment, exercise, 

weight loss or electrostimulation while the surgical implies a total knee replacement 

(TKR) surgery [1], [4]. Clinicians often have difficulties in which treatment they will 

choose for an OA patient. The most common solution is placing a prosthesis on the 

patient. In the majority of these cases the decision of placing the prosthesis is based not 

only on objective radiographic measures but also on the pain felt by the patient and its 

perception, making this decision subjective without any objective clue [7].  

1.2. State of the art  

 

Lower extremities, responsible for supporting the body, are subject to various loads 

during gait motion. Contact forces at the knee joint during gait can be estimated by using 

a rigid body model and inverse dynamics. In most cases, the contact pressure distribution 
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for static poses can be obtained quantitatively by using finite element (FE) analysis 

considering the muscle force and ground reaction force (GRF) during gait [9]. 

 

Studies using dynamic simulation software such as OpenSim [10], LifeMod [11] and 

AnyBody [12] are often used only to obtain contact and muscle forces. Liu et al. [13] 

studied muscle activation according to a range of walking speeds to confirm the muscle 

contribution obtained from OpenSim. Kia et al. [14] evaluated contact forces at the knee 

joint and GRF with a musculoskeletal model using LifeMode's gait test. Wang et al. [15] 

analysed knee contact forces to study the effect of gait speed using Anybody. A study 

without the use of dynamic simulation software was also carried out. Simic et al. [16] and 

Taniguchi et al. [17] analysed joint torque or power through dynamic analysis based on 

changes in gait patterns or shoes. However, these studies are limited to the study of kinetic 

or kinematic effects and cannot obtain accurate contact pressure distributions at the knee 

joint. A method combining finite element (FE) analysis with rigid body Dynamics 

analysis was developed to obtain the contact pressure distribution of the knee and ankle 

joints during gait in Park et al. [9]. 

 

Another important study to consider is Vimieiro et al. [18] that proposes a computational 

model to analyse the dynamics of lower limb motion using a kinematic chain to represent 

the body segments and rotational joints linked to viscoelastic elements. This model 

analysed gait movement in different speeds (walking and running), but this model needs 

to be adapted if we want to analyse other movements like jump or squats. It is interesting 

because it could reproduce gait movement on the computer and be capable of identifying 

pathologies related to gait. 

 

One of the most important studies to have a look in is Perc et al. [19]. They analyse human 

gait motion with a simple nonlinear time series. Using a short continuous recordings of 

human gait allows them to have a deeper look into the dynamics of the locomotory 

system. The conclusion extracted from this study was that the state of research of human 

gait is very similar as for human electrocardiography. Their study combined with the 

result of different studies, lead they to the conclusion that several vital functions of the 

human body are deterministic on short time scales whereas over long times, stochastic 

environmental influences affect the functioning, making it indistinguishable from 

randomness. 

 

A study in which OA subjects were analysed, Simone et al. [4], consists of doing a 

multifactorial analysis of variance (MANOVA) in order to find relationship between 

clinical treatment options, gait function, and dynamics in patients with knee osteoarthritis. 

They found that the differences in gait between the two groups, TKR-referred and 

conservative treated, was moderated by a number of factors, like being female, older, and 

obese. These factors can reduce the variability in gait compression load.  

 

1.3 . Univariate signal analysis techniques 

1.3.1. Deterministic nonlinear analysis 

 

Nonlinear time series analysis form a group of algorithms and measures used to extract 

features from dynamical systems based on chaos theory. It allows one to describe 

dynamical systems where nonlinearities lead to complex time evolution. Importantly, this 

concept allows the extraction of information that cannot be resolved using classical linear 
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techniques. The extraction of dynamics, entropy or predictability from a single signal 

could be done using univariate nonlinear measures [20], [21]. This kind of measures leads 

us to make predictions of what will happen in future steps taking present or past reference 

points.  

 

Unlike deterministic models that produce the same exact results for a particular set of 

inputs, stochastic models are the opposite; the model presents data and predicts outcomes 

that account for certain levels of unpredictability or randomness. Using nonlinear 

prediction measures we can distinguish between purely stochastic, purely deterministic, 

and deterministic dynamics superimposed with noise [20], [22]. These methods were used 

in neurology, in a electroencephalographic recordings from epilepsy patients to help to 

understand the brain functions and malfunctions [21]. 

 

In this study the nonlinear prediction error (NPE) will be implemented. This measure 

shows the prediction error between the present state and the future state using information 

based on their neighbours [20]. Doing so, we wonder if we could quantify the 

predictability in gait dynamics. 

 

1.3.2 Irregularity of phase velocity 

 

Other univariate techniques allow us to analyse the irregularity in a single signal. Periodic 

signals tend to have less irregularity than noisy signals, so this type of measure it is useful 

to quantify the irregularity of a signal. Previous studies show that irregularity measures 

are useful in other fields such as in electroencephalographic recordings [23] or in fluid 

dynamics [24]. Both of them used these measures in order to finds the irregularity of their 

signals. In this study, the irregular analysis of the data is done to see how irregular is the 

signal extracted from gait motion. The sense of using this measure of predictability and 

irregularity in gait it will be good in terms that noise affects gait making the signal more 

irregular. Being irregular makes probably more difficult to make predictions, making it 

as an example of stochastic signal. Otherwise, deterministic signal varies less as they 

repeat periodically. 

1.4 Objective 
 

Up to now, we have seen that human motion dynamics have been frequently applied with 

biomechanical and computational models that use kinematic and kinetic parameters. 

Although there are lots and different studies done about analysis of gait motion, none of 

them does consider osteoarthritic subjects. Following the work done by Tassani et al. in 

Ref. [4] functionality might discriminate better than loads between subjects requiring 

TKR and the other. So, in order to study the way in which the subjects move in a more 

comprehensive manner we try to implement nonlinear techniques to perform a dynamic 

analysis to complement their findings using the same database. 

 

The main objective of this study is to analyse human gait dynamics in order to find if 

there is any irregularity in the different steps of the gait of osteoarthritis patients.  This 

analysis would be performed in women that suffer from osteoarthritis to investigate the 

relationship between the choice of clinical treatment, gait functionality, and kinetics using 

dynamics techniques. 
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Taking 3D angle data about gait recordings of women that suffer from OA we will apply 

the nonlinear prediction error and a simple-analysis measure. Another point we want to 

investigate is the irregularity of this data analysing the irregularity in each point during 

gait. We expect to see significance differences between those who planned a TKR versus 

those who followed a conservative treatment. Differences between the two groups will 

help in treatment decision in OA patients. Applying easy to understand and compute 

signal analysis techniques we can contribute to the clinical decision of OA patients.  

2. MATERIALS AND METHODS 

2.1 Data collection 
 

Data of this work comes from the HOLOA project, in which patients with knee OA were 

recruited to take gait recordings. This was done in collaboration with Hospital del Mar 

and UPF. In this thesis we will analyse gait recordings of thirteen women who suffer from 

OA. Six of them were planned TKR while the others followed a conservative treatment. 

Other influencing factors like age and BMI were fixed in 60-67 years old and non-obese, 

BMI <30. Gait recordings were performed using eight cameras BTS Smart-DX 700, 1.5 

Mpixels 250 fps and two force plates BTS P-60000 500 Hz sampling (BTS S.p.A., Milan 

Italy). Helen Hayes marker protocol with medial markers was used [25] and each 

volunteer was asked to perform five valid gaits sequences which consisted of a series of 

heel-strike, toe-off and heel strike for each leg. The first heel strike of each leg was 

recorded in the moment in which the foot was touching the force plates [4]. One gait cycle 

starts when the heel strikes the ground and ends when the same heel touches the ground 

again. Fig. 1 and Fig. 2 shows the angles of hip during gait. Table 1 shows the 

characteristics of the patients, showing also, which leg did they have affected. 
 

Table 1. Demographic information of patient’s characteristics. 

 

Num. Patient Sex Age BMI Treatment Affected 

Side 

1 Female 60-67 Non-obese (<30) Conservative Right 

2 Female 60-67 Non-obese (<30) Conservative Left 

3 Female 60-67 Non-obese (<30) TKR-referred Left 

4 Female 60-67 Non-obese (<30) Conservative Right 

5 Female 60-67 Non-obese (<30) Conservative Left 

6 Female 60-67 Non-obese (<30) TKR-referred Left 

7 Female 60-67 Non-obese (<30) Conservative Right 

8 Female 60-67 Non-obese (<30) TKR-referred Left 

9 Female 60-67 Non-obese (<30) Conservative Right 

10 Female 60-67 Non-obese (<30) Conservative Left 

11 Female 60-67 Non-obese (<30) TKR-referred Right 

12 Female 60-67 Non-obese (<30) TKR-referred Right 

13 Female 60-67 Non-obese (<30) TKR-referred Right 

 

Angles of the different joints of the body such as pelvis, hip, knee, or ankle were extracted 

during gait motion. In this project, only hip will be analysed. Preliminary results are 

suggesting that knee kinematics does not present significative differences between TKR 

and conservative patient when a MANOVA was done. Regarding the analysis of angles, 
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it suggests exploring the hip angle track motion, more specifically, the hip abduction-

abduction and hip flexion-extension. The analysis was performed using a MANOVA for 

repeated measures implemented over 3 time points of gait cycle, as described in [4]. 

 

This project focuses on the hip abduction-adduction and flexion-extension movements. 

In Fig.1 and Fig.2 we can see exemplary signals from a patient who is going to follow a 

conservative treatment and from a patient with a TKR, respectively. Figures shows that 

the signal recorded from the movement from left and right sides are similar, however, 

there are some slight differences. The different analysis strategies presented here have the 

aim to find some numerical differences between them. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Fig.1. Signal of hip’s angle of conservative patient 2 during gait. a)-c) angles from the affected 

or lateral side, a) intra-extra rotation, b) abduction-adduction and c) flexion-extension of the hip 

corresponding to x, y and z axis respectively of the affected side of the patient. d)-e) the same 

from a)-c) but for the contralateral or non-affected side which here corresponds to the left leg.  
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Fig.2.  Same as Fig. 1 but for the TKR-referred patient 13. The affected side is the right leg. 

2.2 Embedding theorem 

 

The first step to apply the nonlinear prediction error is to apply the embedding theorem. 

This method enables the reconstruction of the phase space from a single observed signal.  

The signal vectors need to be delayed in order to apply this theorem. In order to do so, 

we use the method of delay coordinates to obtain an estimate of the underlying dynamics.  

 

𝑥(𝑡)𝑖 = (𝑥𝑖, 𝑥(𝑖−𝜏), … , 𝑥𝑖−(𝑚−1)𝜏)    (1) 

 

Being 𝑥𝑖 our vector of the signal delayed, with embedding dimension m and delay τ for 

i=1+(m-1)τ,…,N being N = n…N the number of samples and n = 1+(m-1)τ the 

embedding window. Before the implementation of this, it is needed to determine proper 

values for the embedding parameters m and τ. A suitable τ must fulfil two criteria. First, 

it has to be large enough to be relevant and significantly different from the information 

we already have, and second, it should not be larger than the typical time in which the 

system loses memory of its initial state. Being τ too large, the embedding space would 

look more like a random signal. Fulfilling these two criteria, it will be possible to gather 

enough information about the system to reconstruct the whole phase space with a 

reasonable choice of m. In order to accomplish these criteria, we used m = 3 and different 

values of τ (τ = 5 and τ = 10) that can be seen in Fig.3. 

 

The orientation of adjacent trajectory systems can be used as a criterion to distinguish 

deterministic and stochastic dynamics. When adjacent trajectories are aligned, similar 

current states lead to similar recent states. Conversely, when trajectories intersect and 

adjacent segments are misaligned, similar current states generally do not lead to similar 

future states, meaning this will be a stochastic dynamic [19], [20]. 
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Fig.3. Two delay coordinates with the original signal from patient 1. 

 

With all these parameters the embedding theorem was applied in data in order to see the 

attractors and find out if these signals follow more deterministic or stochastic structures.   

2.3 Nonlinear Prediction Error (NPE) 

 

Nonlinear prediction error is a measure to quantify the degree of alignment mentioned in 

the previous section. High values of NPE means that the trajectories are less aligned, and 

the prediction of the next step is low while low values mean that trajectories are more 

aligned, and the next step is more predictable. Measure NPE it is neither normalized to 

one or bounded from above. 

 

Firs of all, the normalization of time series data was done. Then, we applied delay 

coordinates to 𝑥𝑖 as explained in Section 2.2. To calculate the nonlinear prediction error 

with h horizon, the distance we want to look at or predict, we take  𝑥𝑖0 as a reference point 

and look up to the time indices of the k nearest neighbours of the reference point (𝑥𝑖𝑔). 

The neighbours are those points that have smaller distances to our point in the 

reconstructed phase space. The Theiler correction W is needed to avoid basing the 

prediction in the previous or forward section of the trajectory of the reference point and 

basing it in the neighbour’s trajectory. So, with this method we use the future states of the 

neighbours to predict the future state of our reference point and quantify the error made 

[20]. 

 

𝜀𝑖0 =  𝑥𝑖0 + ℎ −
1

𝑘
 ∑ 𝑥𝑖𝑔 + ℎ𝑘

𝑔=1    (2) 

 

𝑁𝑃𝐸 = √
1

𝑁−ℎ−𝑛+1
∑ 𝜀𝑖0

2𝑖0=𝑁−ℎ
𝑖0=𝑛     (3) 
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2.3.1. Parameter selection 

 

Parameters depending on nonlinear prediction error (NPE) need to be fixed previously. 

In order to find them we used the same NPE to find where these values vary less and are 

more constant. Since most of the data was normalized, in some cases we were looking at 

that values that are around to zero. 

 

First, we want to fix the number of neighbours k in our data. To do so, we fix the rest of 

the parameters. In literature it has been found that h, the horizon, was fixed in h = 5 and 

Theiler correction in W = 30 [19], [20]. These values were used in NPE to see how k 

behave, starting from 1 to 20 in steps of 1. The NPE goes to very high values for more 

than 20 neighbours, since predicting the future state of a reference point with a high 

number of points is not appropriate for the algorithm. Fig. 4 shows the dependence of 

NPE against the number of neighbours k. 

 

The NPE was performed in every patient, TKR-referred and conservative. Taking the 

mean of all the values that were around to 0 we conclude that k = 8. Once, neighbours 

were fixed, the next parameter to find was h, the horizon wanted to base the prediction. 

In order to do so, the same procedure mentioned above was done. Taking k = 8 and W = 

30, we analysed h from 1 to 30 in steps of 1. Fig. 5 shows the dependence of NPE against 

the horizon h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4. NPE in dependence of nearest neighbours k from the TKR patient 11. 

 

From Fig. 5 we can see that with increasing values of horizon h we get higher values of 

the prediction error. This is clear since the error will increase as we are far away from the 

reference point. To select the parameter h, we need a sufficient low number to avoid a lot 

of error, so following the literature, h = 5 [20]. 
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Fig.5. NPE in dependence of horizon h from the conservative patient 8. 

 

The last parameter to be fixed is the Theiler correction, W. This correction was necessary 

to avoid predicting the trajectory based on the previous or forward part of the reference 

point. The last step was to create the Theiler vector to see which value fits most to data. 

Fig. 6 shows the dependence of NPE against the Theler correction W. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6. NPE in dependence of Theiler correction W from the conservative patient 4. 

 

Looking at Fig. 6 it can be seen that when the error stays more constant is around 20. 

Although it seems to take higher values, we should not forget that this data was 
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normalized, and the non-normalized values were low values of NPE. So, for Theiler 

correction we took W = 20.  

 

Eventually, the parameters of NPE were the following: embedding dimension was fixed 

in m=3, the number of neighbours were k = 8, the horizon h = 5 samples, and Theiler 

correction in W = 20. The delay used was equal to the previous section, embedding 

theorem, τ = 5 (Table 2). The selection of patients in Fig 4, 5 and 6 was done arbitrary 

but rest of the patients follow the same tendency. The selection was done to show some 

examples only. 

 
Table 2. Selected parameters of NPE after the study of parameter selection using gait dynamics. 

 

Embedding 

dimension (m) 

Neighbours 

(k) 

Horizon (h) Theiler 

correction (W) 

Embedding 

delay (τ) 

3 8 5 20 5 

 

2.4 Irregularity measure (S) 

 

The last measure applied in this study is the phase velocity standard deviation S, which 

calculates how our data varies [23]. To determine numerically the measure S, we consider 

our data as a discrete time series of N samples. The discrete times i for i = 0,...,N-1. In 

order to compute this measure, the standard deviation of the derivative computed as the 

difference between two subsequent points. 

 

𝑥̇(𝑡)𝑡𝑖
=  

𝑥(𝑡𝑖+1)− 𝑥(𝑡𝑖) 

∆𝑡
    (4) 

 

𝑆 =  𝜎(𝑥̇(𝑡))𝑖=0,…,𝑁−1     (5) 

 
In the equation above, the standard deviation (σ) of the derivative of the signal x(t) is 

calculated. Doing so, we will be able to see how much our data changes during all the 

recordings to determine if gait recordings has more or less irregularity. Measure S, it is 

neither normalized to one nor bounded from above. Since measure is a standard deviation, 

it cannot be negative. For higher values of S, the irregularity of the data is more while for 

low values of S, the irregularity is less.  

 

Statistical analysis describes the comparison in the affected leg and in the contralateral or 

non-affected. Performing a t-test was needed to analyse significant differences. This kind 

of statistical analysis shows if the result has a statistically significant difference between 

the groups. Because of repeated measure a correction was implemented, and p-value 

given by the t-test was deemed significant for a value p<0.025. The lower the p-value is, 

the more reliable the result will be.   
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3. RESULTS 

3.1 Embedding theorem 

 

In this study we use the embedding analysis to see the predictability from the pattern of 

the gait motions from OA patients. In this kind of analysis, from a purely periodic signal 

without noise we expect to have a pure deterministic signal. When noise is added this 

results in a stochastic signal. In Fig. 7 we represent a pure periodic signal and the same 

signal adding Gaussian white noise. Fig. 8 shows how these signals were delayed using 

delay coordinates. Fig. 9 shows the attractor from the purely periodic signal all the 

trajectories aligned, in contrast, in the attractor from noisy signal we have that those 

trajectories are crossing each other. If trajectories do not cross each other mean that 

similar present states will have similar future states (deterministic). In contrast, when 

trajectories are not aligned from a similar present state, we can observe different future 

states (stochastic). Other examples used in literature are those analysing dynamical 

systems as the Lorenz dynamics, used as a deterministic system, and the autoregressive 

process, used as a stochastic system [20].  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7. Simulated signals to explain the embedding theorem, a) sinusoid signal with frequency 10 

Hz and b) the same sinusoid signal with noise added. In a) we can see that this signal is purely 

periodic and b) that it is like a random or stochastic signal. 
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Fig.8. Sinusoid signals in Fig. 7 with delay coordinates using different τ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.9. Attractors of the sinusoid signals in Fig. 7 to show the embedding theorem. In a) the 

sinusoid free-noise signal and in b) the noisy sinusoid signal. The x axis shows the original 

signal, the y axis delayed with τ = 5 and the z axis with τ = 10. The values of τ used here are the 

same as the ones used in the OA data for the embedding theorem analysis.  

 

The results of an exemplary TKR patient and one treated with a conservative treatment 

are shown in Fig. 10 and Fig. 11, respectively. Parallel lines presented in the embedding 

diagram identify region of the gait characterized by mainly deterministic behaviour. 

When parallel trajectories are lost the behaviour tends to be more stochastic. In general, 

in our results seem that patients with TKR are more resilient and maintain more coherence 
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when embedding increases compared to conservative patients which seems to present a 

more stochastic behaviour. However, this occurs in most cases but not in all patients. And 

also, it can be seen that there are some slightly differences between the affected side in 

comparison with the non-affected or contralateral. But, the most important difference is 

between the two groups of study, between TKR and conservative ones. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.10. Embedding theorem diagram of the hip abduction-adduction of a TKR-referred patient 

12 being a) the right leg and the affected one and b) the left one being the non-affected or 

contralateral.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig.11. Embedding theorem diagram of the hip abduction-adduction of a conservative patient 1 

being a) the right leg and the affected one and b) the left one being the non-affected or 

contralateral. 
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3.2 Nonlinear Prediction Error (NPE) 

 
With NPE we could quantify the predictability of the data shown graphically with 

attractors in Section 3.1. In this section, we show the results of NPE from the left and 

right hip of flexion extension movement in Fig. 12 and Fig. 13, respectively. Moreover, 

we show in Fig. 14 and Fig. 15 the same but for a hip abduction adduction. Table 2 shows 

the results of the NPE differentiating between affected and contralateral sides in the two 

main groups. Every point is the result of a gait recording, every patient has five recordings 

except from patient 1 who only have four.  

 

In Table 3 and Table 4 it can be seen that the TKR patients have a lower value of the 

standard deviation, this means that the conservative patients have more variability in its 

gait. Regarding as the mean we can see that although having the same values for the two 

groups, TKR-referred have, in general, lower values than conservative patients. Since it 

is known which is the affected leg with OA, in the statistics analysis (t-test) of the results 

we separate the results between affected and contra-lateral knee in order to find more 

significant differences (Table 5 and Table 6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.12. NPE results of the left hip flexion extension of each patient.  
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Fig.13. Same as Fig. 12 but for the right hip flexion extension. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.14. Same as Fig. 13 but for the left hip abduction adduction. 
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Fig.15. Same as Fig. 14 but for the right hip abduction adduction. 

 

 

Table 3. NPE results between conservative and TKR patients of hip abduction-

adduction. 

 

NPE Results TKR Conservative 

Affected Contralateral Affected Contralateral 

Mean 0,1424 0,1419 0,1342 0,1467 

Standard Deviation (STD) 0,0295 0,0334 0,0215 0,0207 

 

 

Table 4. NPE results between conservative and TKR patients of hip flexion-extension.  

 

NPE Results TKR Conservative 

Affected Contralateral Affected Contralateral 

Mean 0,0456 0,0499 0,0528 0,0509 

Standard Deviation (STD) 0,0132 0,0110 0,0103 0,0075 

 

 

Table 5. T-test results (p-value) of the NPE between affected and contra-lateral legs of 

hip abduction-adduction. 

 

NPE Results Affected Contra-lateral 

Mean 0,669 0,837 

Standard Deviation (STD) 0,224 0,274 
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Table 6. T-test results (p-value) of the NPE between affected and contra-lateral legs of 

hip flexion-extension. 

 

NPE Results Affected Contra-lateral 

Mean 0,313 0,854 

Standard Deviation (STD) 0,498 0,345 

 

As it can be seen in Table 5 and Table 6 the results have no significance difference in this 

analysis measure between the affected leg with OA and the contra-lateral using NPE. 

Although in Table 4 it can be observed that the standard deviation of conservative patients 

seems to be a little bit lower, meaning that this data has less variability with regard the 

results of the different recordings.  

3.3 Irregularity measure 
 

As it is mentioned before, this measure shows the irregularity of the data, in this study the 

gait recordings about hip abduction-adduction and flexion-extension of the hip were 

analysed. In Table 7 and 8, show the results of the S measure. Table 9 and Table 10 shows 

the statistical analysis. 

 

Table 7. S (irregularity) results between conservative and TKR patients of hip 

abduction-adduction. 

 
S Results Conservative TKR 

Affected Contralateral Affected Contralateral 

Mean 0,1654 0,1595 0,1186 0,1247 

Standard Deviation (STD) 0,0090 0,0113 0,0076 0,0096 

 

Table 8. S (irregularity) results between conservative and TKR patients of hip flexion-

extension. 

 
S Results Conservative TKR 

Affected Contralateral Affected Contralateral 

Mean 0,4127 0,4130 0,3370 0,3523 

Standard Deviation (STD) 0,0124 0,0150 0,0155 0,0141 

 

Table 9. T-test results (p-value) of the NPE between affected and contra-lateral legs of 

hip abduction-adduction. Where (*) means that there is significance difference. 

 
S Results Affected Contra-lateral 

Mean 0,025* 0,051 

Standard Deviation (STD) 0,669 0,792 
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Table 10. T-test results (p-value) of the NPE between affected and contra-lateral legs of 

hip flexion-extension. 

 
S Results Affected Contra-lateral 

Mean 0,079 0,160 

Standard Deviation (STD) 0,467 0,785 

 

 

Table 9 shows that we have a statistically significance difference in the affected side 

versus the contralateral, which was close to be significative but is was not, when the T-

test was done. The higher is the value of S, the higher is the irregularity of the data, 

meaning that if it has more variability, the patient is not charging the same point every 

step he takes.  

4. DISCUSSION 

 

This study shows a method to analyse data extracted from OA patients in order to find 

differences between the two main groups, those who will have a total knee replacement 

(TKR) and the ones that will follow a conservative treatment. Following the literature, 

when MANOVA was done in order to find relationship between clinical treatment 

options, gait function, and dynamics in patients with knee osteoarthritis the knee had not 

significant differences between the two main groups [4]. In order to extend this study, it 

was suggested to study the hip abduction-adduction and flexion-extension in order to find 

more significance differences between the two main groups of the study since knee 

kinematics was not identified as significantly different by the preliminary analysis.  

 

The analysis techniques applied were from two different points of view. One of them 

which looks more to the topological part trying to differentiate if the dynamics from 

measured signals resembles a more stochastic or deterministic behaviour. The other 

technique was focused more on the phase velocity of our angles in hip to see the 

irregularity of the data.  

 

First of all, we applied the embedding theorem in order to graphically observe if the 

signals of hip abduction-adduction follow a deterministic or stochastic behaviour. In the 

analysis, TKR-referred and conservative treatment patients were divided into two groups. 

This kind of analysis shows graphically the behaviour of a signal, being parallel lines 

characterized by a deterministic behaviour and when these parallel lines are lost, the 

behaviour tends to be more stochastic. See in Fig. 9a one purely deterministic signal and 

in Fig. 9b a stochastic one. Fig. 10 and Fig. 11 show that, in general, patients with TKR-

referred are more resilient and maintain more coherence when embedding increases 

compared to conservative patients which seem to present a more stochastic behaviour. 

Also, it can be seen that there some slightly differences between the affected side in 

comparison with the non-affected or contralateral side. Although, the most important 

difference is between the two groups of study, between TKR and conservative ones. 

However, this occurs in most cases but not in all patients. 

 

In the next part of the analysis, the nonlinear prediction error was computed. This 

technique allows to quantify the degree of alignment of the trajectories seen in the 
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embedding theorem. First, we compute the NPE to see which parameters fits best to our 

signals. Once the parameters were found (Table 2), we computed the NPE from the 

wanted signal. Table 3 shows that the standard deviation of TKR-referred of hip 

abduction-adduction is lower in the affected side versus the contralateral side. This make 

sense in a way that if it has less variability with regard to NPE, the patient is charging all 

the time the same points, if a charge is load in the same points, it is more likely to take a 

TKR. Charging more different points is better to give time to the other points to recover. 

In conservative patients it seems to be more or less the same variability. We could find 

some relationship in this way but looking at Table 5 we cannot significantly see 

differences between the two main groups.  

 

The last measure applied was the irregularity of phase velocity S, the irregularity of the 

data. This measure shows numerically how irregular is the input signal. Remember that 

variability is what is given by the standard deviation from the result of S, and S is the 

measure of irregularity. In our context, more irregularity means more variability, and 

more variability, as it is mentioned before, means less charge in the same point. Looking 

at Table 7 and Table 8 we can see that in general the affected side of each group of patients 

have less standard deviation, meaning that is less variable in time. This corroborate what 

it has been said with the results of NPE. And if we take a look at Table 9, which shows 

the results of the T-test, we can find some statistically significant differences between the 

affected side versus the contralateral side in the hip abduction adduction meaning that this 

analysis could be clinically significative. However, this does not occur in the flexion-

extension movement.  

 

This study has some limitations since the group studied is based only in thirteen women 

suffering OA and only two kinds of movements were analysed. These techniques need to 

be applied in more than one joint and in the three axes in order to lead to a truthful 

conclusion. For future work, the group need to be extended with the oldest group from 

67-75 and with the obese (BMI > 30) or performing the analysis of the knee and pelvis as 

it they were suggested joints to study in literature [4] . Also, it can be extended including 

men to increase the analysis group of study and have more resilient results.  

5. CONCLUSIONS 

 

Nonlinear prediction error (NPE) and irregularity of phase velocity (S) measures are 

useful to find differences in patterns from data. Previous work suggested that hip was 

needed to investigate and that is what is done in this study. Making a dynamic analysis 

using the nonlinear technique and the irregularity measure, we corroborate that the TKR-

referred patient has less variability in their steps during gait than those who followed a 

conservative treatment. Also, TKR patients seemed to have more predictable data in the 

performed analyses, meaning that it could be easier to predict how the future steps during 

gait will look like. All these statements suggest that having less variability means 

charging load in the same point more often without having time to be totally recovered.  
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