
 

 

 

Electrophysiological model of the left 

ventricle: prediction of reentry circuits with 

fast simulations based on cellular automata 

applying clinical stimulation protocols 

Paula Franco Ocaña 

B
A

C
H

EL
O

R
'S

 T
H

ES
IS

   
 /

   
  B

IO
M

ED
IC

A
L 

EN
G

IN
EE

R
IN

G
 2

0
2

2
 



Electrophysiological model of the left
ventricle: prediction of reentry circuits
with fast simulations based on cellular
automata applying clinical stimulation

protocols

Paula Franco Ocaña

Bachelor’s Thesis UPF 2021/2022

Thesis Supervisor(s):

Pr. Oscar Camara , (Department of Information and Communication
Technologies (DTIC))





Acknowledgments
Behind this Bachelor Thesis there are many people who have helped and supported
me throughout the journey. Foremost, I would like to express my gratitude to
my supervisor, Oscar Camara, for all his professional guidance and constructive
recommendations. I would also want to express my sincere gratitude towards the
CoMMLab research group, specially to Dolors and Pau, for their help, assistance
and contributions in the project. I also need to thank the people who are part
of Dr. Antonio Berruezo’s team in the arrhythmia unit at Centro Médico Teknon.
Thanks to the doctors, engineers and nurses I have been working with over the last
year, I have learned a lot from all of you. Concretely, thanks to David and Dani for
their help and guidance. I also have to thank my friends for their support and wise
advice, not only in the project, but throughout the last five years. Finally, I owe
my profound gratitude to my family, Jose, Merche, Claudia and Samuel, for their
unconditional love, support and constant encouragement during these years.

Thank you.





Summary/Abstract
Myocardial infarction (MI) is a common cardiovascular disease that causes irre-
versible damage to the left ventricle (LV) myocardium, resulting in the formation of
scar tissue. When this phenomenon occurs, reentry circuits appear, generating alter-
native conduction channels. This is associated with an increased risk of developing
ventricular arrhythmias and consequently, sudden cardiac death. Patient-specific 3D
computational modelling and simulations can be used to predict non-invasively the
reentry circuits causing ventricular tachycardia (VT). Cellular automata (CA) elec-
trophysiological models allow to reproduce VT while performing simulations near
real-time, overcoming the computational burden limitations of biophysical models.
The aim of the present study was to create computational cardiac models capable of
stratifying VT inducibility in infarcted patients by virtually applying the real pacing
protocol followed in the clinic using a novel CA-based solver developed at Universi-
tat de València, in which no real clinical data has been tested yet. 3D computational
LV and biventricular models were obtained from cardiac magnetic resonance images
provided by Centro Médico Teknon, allowing to identify the scar configuration and
arrhythmogenic substrate of each patient. The models were reconstructed to fit in
the CA, and seven pacing sites were defined to apply the virtual pacing protocol.
The obtained in-silico simulations results were compared with the actual results ob-
tained by patients during an electrophysiological study (EPS). The similarity of the
results between in-silico and EPS demonstrated that the novel CA-based fast elec-
trophysiological simulator together with the implementation of real pacing protocols
were valid for assessing VT risk in infarcted patients.
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infarction; ventricular tachycardia; clinical pacing protocols.





Preface or prologue
During the past year, I have been doing an internship in the arrhythmia and electro-
physiology unit at Centro Médico Teknon. Initially, my intention was to apply the
knowledge acquired in the different subjects of the Biomedical Engineering degree
and to learn how engineers worked in the clinical environment. However, during
the course of the internship, my interest in electrophysiology arose. By seeing how
important the role of engineers was during the interventions, and by taking part in
different research projects, I knew that I wanted my Bachelor Thesis to be related
to electrophysiology and computational modelling. Thanks to my stay in the elec-
trophysiology unit, I have been able to have a more clinical and engineering vision of
the concepts that I wanted to develop, being able to combine the knowledge from the
clinical point of view and from the computational one, as there is not always a close
link between the two. This Bachelor Thesis allowed me to deepen my knowledge in
computational cardiac models and to develop a work that, if followed, could have
an impact in the future. Hence, this work aims to contribute to the development of
computational ventricular arrhythmia predictive models by making them clinically
specialized, to eventually be as reliable as the procedures performed in the clinical
practice.





Index
1 Introduction 1

1.1 Clinical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 State of the art of computational heart models in post-myocardial

infarction patients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Electrophysiological models . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Methods 8
2.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Image pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Patient-specific model reconstruction in the cellular automata . . . . 12

2.3.1 Left ventricle geometrical model . . . . . . . . . . . . . . . . . 12
2.3.2 Electrophysiological model . . . . . . . . . . . . . . . . . . . . 14

2.4 Clinical pacing protocol . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Validation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Results 19
3.1 Clinical data and scar characterization . . . . . . . . . . . . . . . . . 19
3.2 Ventricular tachycardia induction . . . . . . . . . . . . . . . . . . . . 20

4 Discussion 26
4.1 Simulations results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Limitations and further work . . . . . . . . . . . . . . . . . . . . . . 28

5 Conclusions 29

Bibliography 30





List of Figures
1 Electrical conduction system of the heart. Image obtained from: Uni-

versity of Nottingham. . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Left image: Transversal plane of an infarcted left ventricle. Enhanced

white region corresponds to scar tissue. Right image: Representation
of a reentry circuit. Pink region: Border zone, Gray region: Core
zone, Yellow arrows: reentry pathway, Green arrows: slow conduction
channel. Image obtained from: Melbourne Heart Rhythm. . . . . . . . 3

3 Integration of LGE-CMR information into the CARTO3 navigation
system. Inferior view of the left and right ventricles. Left image: En-
docardial bipolar voltage EAM. Black dots: alternative CC entrance;
Blue dots: inner CC; Red dots: RFA points. Right image: Signal
intensity map obtained from LGE-CMR registered in the EAM. Red
area: Core zone; Blue-Green-Yellow area: Border one; Purple area:
Healthy tissue. LGE-CMR: Late-gadolinium-enhanced cardiac mag-
netic resonance; EAM: Electro-anatomical mapping. CC: conduction
channel. RF: Radiofrequency ablation. Image obtained from: Andreu
et al. (2017) [27]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Pipeline followed to perform patient-specific fast simulations to de-
termine the inducibility of VT in each patient. LGE-CMR: Late-
gadolinium-enhanced cardiac magnetic resonance. . . . . . . . . . . . 8

5 Division of patients based on whether they had induced or not VT
episodes during an EPS. Subdivision of patients based on whether
they had also clinical VT episodes. . . . . . . . . . . . . . . . . . . . 9

6 Left ventricle endocardial and epicardial delimitation of patient 2
in Adas3D. Left image: Sagittal plane. Middle image: Transversal
plane. Right image: Coronal plane. . . . . . . . . . . . . . . . . . . . 10

7 Three-dimensional left ventricle segmentation of patient 2 in Adas3D.
Septal-anterior view of the infarct scar in endo-, mid- and epicardial
layers. A threshold of 55% for core zone and 40% of healthy tissue
was used. Red area: Core zone; Blue-Green-Yellow area: Border one;
Purple area: Healthy tissue. . . . . . . . . . . . . . . . . . . . . . . . 11

8 Three-dimensional right and left ventricles segmentations of the fif-
teen patients in Adas3D. Left ventricle: yellow anatomy. Right ven-
tricle: blue anatomy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

9 3D meshes of patient 2 obtained from Adas3D. The first row corre-
sponds to the left ventricle geometrical mesh with the border zone
and core zone, represented in blue and red, respectively. The second
row represents the endocardium mesh (left) and the epicardium mesh
(right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

10 Voxelized left ventricle (left) and biventricular model (right) of pa-
tient 2, after pre-processing tool in Arritmic3D performs the dis-
cretization of the model obtained in Adas3D. . . . . . . . . . . . . . . 13

11 Pacing sites determined for LV. Left image: epicardial pacing sites.
Right image: endocardial pacing sites. . . . . . . . . . . . . . . . . . 15

https://www.nottingham.ac.uk/nursing/practice/resources/cardiology/function/conduction.php
https://www.nottingham.ac.uk/nursing/practice/resources/cardiology/function/conduction.php
https://www.melbourneheartrhythm.com.au/learn/procedures/49-ventricular-tachycardia-heart-disease


12 Pacing sites determined for RV. . . . . . . . . . . . . . . . . . . . . . 16
13 Diagram of the pacing protocol applied based on the one implemented

in Centro Médico Teknon. . . . . . . . . . . . . . . . . . . . . . . . . 17
14 Scar mass heterogeneity. Patients with (*) had in-silico induced SVT

in at least one pacing site. SVT: Sustained ventricular tachycardia. . 22
15 BZC mass. Patients with (*) had in-silico induced SVT in at least

one pacing site. SVT: Sustained ventricular tachycardia, BZC: Border
zone channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

16 Simulation snapshots of patient 2 after applying a S1-S4 protocol (S1:
430 ms | S2: 300 ms, S3: 280 ms, S4: 270 ms) at the right ventricle
apex (black dot). Colors correspond to the time to resting state.
Purple tubes correspond to BZCs detected in Adas3D. . . . . . . . . 24

17 Simulation snapshots of patient 4 after applying a S1-S3 protocol
(S1: 430 ms | S2: 290 ms, S3: 260 ms) at the right ventricle api-
cal zone. Colors correspond to the time to resting state. Purple
tubes correspond to BZCs detected in Adas3D. Left images show the
epicardial-septal BZ wall of the left ventricle. Right images show the
endocardial-septal BZ wall of the left ventricle. BZ: Border zone. . . . 25



List of Tables
1 Mean ± standard deviation of the clinical and scar characteristics of

the fifteen patients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2 Results of in-silico pacing sites of patients with induced VT during

EPS compared to real clinical outcomes. Bold results correspond to
correct outcomes matching with EPS. SVT: Sustained Ventricular
Tachycardia, NSVT: Non-Sustained Ventricular Tachycardia. . . . . . 20

3 Patients’ probability of having induced VTs based on in-silico results.
Selected patients had a positive outcome during the EPS. . . . . . . . 20

4 Results of in-silico pacing sites of patients with not induced VT during
EPS compared to real clinical outcomes. Bold results correspond to
correct outcomes matching with EPS. SVT: Sustained Ventricular
Tachycardia, NSVT: Non-Sustained Ventricular Tachycardia. . . . . . 21

5 Results of in-silico pacing sites of patients without EPS. SVT: Sus-
tained Ventricular Tachycardia, NSVT: Non-Sustained Ventricular
Tachycardia, NP: Not Performed. . . . . . . . . . . . . . . . . . . . . 21

6 Patients’ probability of having induced VTs based on in-silico results.
Patients 7, 9 and 11-13 had a negative outcome during the EPS, while
patients 8 and 10 did not undergo an EPS. . . . . . . . . . . . . . . . 21

7 Accuracy of pacing sites. . . . . . . . . . . . . . . . . . . . . . . . . . 22
8 Clinical and scar characteristics of each patient. . . . . . . . . . . . . 34



1 Introduction

1.1 Clinical background

Sudden cardiac death (SCD) is one of the major causes of worldwide mortality
and it is responsible for nearly half of all deaths from cardiovascular diseases [1,
2]. Nevertheless, in the past 20 years, cardiovascular mortality has decreased in
high-income countries in response to the adoption of preventive measures to reduce
the burden of heart failure [3]. However, the prediction of SCD is one of the most
challenging fields in arrhythmology and the attempts to provide reliable indicators
of SCD have driven one of the most active areas of research in arrhythmology over
the past decades [4].

SCD causes approximately 4,000,000 deaths per year [5], and a large proportion
of these result from ventricular arrhythmias (VA), being patients who have suffered
a myocardial infarction (MI) at a higher risk of developing them [3, 5]. VA are a
type of arrhythmias that originate in the ventricles. They can be divided mainly
in two types: ventricular tachycardia (VT) and ventricular fibrillation (VF). VT
is characterized by a rapid and regular heartbeat (<100 beats/minute) that pre-
vents the ventricles from fully contracting, causing less blood to be pumped to the
body. On the other hand, VF is a severely abnormal rapid heartbeat that causes
the ventricles to quiver, provoking collapse and cardiac arrest [6]. As previously
mentioned, the probability of suffering from VA increases in post-MI patients. MI
causes irreversible damage to the myocardium, resulting in the formation of scar
tissue in the left ventricle (LV). This scar tissue is characterized by a reduction of
blood flow in that specific area, leading to myocardial cell death and thus affecting
the contractile function of the LV [7, 8]. Since this tissue is no longer excitable,
electrical propagation is also altered, preventing proper propagation of the electrical
impulse.

Figure 1 represents the normal electrical activity of the heart, where the sinoatrial
node (SAN) is the primary pacemaker, responsible for generating the impulse. Then,
the impulse is conducted via the atrial myocardium towards the atrioventricular
node (AVN). From the AVN the electrical impulse is rapidly transmitted toward
the His bundle (HB) that divides in left and right branches. Finally, the electrical
impulse reaches the ventricular myocardium through the Purkinje fibers to ensure
a coordinated activation of the ventricular myocardium [9]. However, when scar
tissue is present in the LV, as it acts as an anatomical barrier for electrical impulse
to propagate, reentry circuits may appear, leading to VA [10].
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Figure 1: Electrical conduction system of the heart. Image obtained from: University of Notting-
ham.

A reentry arrhythmia is a cardiac rhythm abnormality in which the action po-
tential (AP) propagates similar to a closed-loop circuit [10, 11]. Under normal
conditions, the electrical impulse finishes when all fibers have depolarized and are
completely refractory. Nevertheless, if an isolated group of fibers has not been ac-
tivated during the initial depolarization wave, these fibers may be excited before
the impulse is extinguished, because they still have time to depolarize. They can
act then as a link to re-excite previously depolarized areas that have been recovered
from the initial depolarization [12, 13].

The post-infarct LV scar has a heterogeneous geometry, and is characterized
by three distinct regions: the healthy myocardial tissue, the core zone (CZ) and
the border zone (BZ). The CZ corresponds to the diseased tissue that has lost its
electrical properties, and the BZ to the area of viable myocardium adjacent to the
core zone. This region presents altered electrical activation properties, as fibrotic
zones intersect with myocytes [14], thus provoking alternative conduction channels
(CC), as represented in Figure 2. The structural and electrical remodeling in the
infarct BZ can result in slow conduction, increasing the probability of reentry circuits
appearance. Alternative CCs within the scar act as VT isthmuses and correlate with
the slow conduction channels, constituting the arrhythmogenic substrate [15, 16].
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Figure 2: Left image: Transversal plane of an infarcted left ventricle. Enhanced white region
corresponds to scar tissue. Right image: Representation of a reentry circuit. Pink region: Border
zone, Gray region: Core zone, Yellow arrows: reentry pathway, Green arrows: slow conduction
channel. Image obtained from: Melbourne Heart Rhythm.

Nowadays, the only indicator that has consistently shown a relation with in-
creased risk of SCD in the setting of MI and left ventricular dysfunction is the left
ventricle ejection fraction (LVEF) [17]. This variable has been used for more than
a decade to guide the use of an implantable cardioverter defibrillator (ICD) for pri-
mary prevention of SCD. If the LVEF is below 35%, an ICD will be implanted, even
if patients do not present arrhythmogenic substrate. Nevertheless, LVEF is not an
accurate and highly reproducible clinical parameter [3]. While ICDs can effectively
terminate VT in patients with ischemic or non-ischemic cardiomyopathy, they may
not prevent arrhythmia recurrence [18].

A radiofrequency ablation (RFA) procedure is considered the default surgical
intervention to treat VTs. This intervention consists of applying radiofrequency
energy to specific areas of the diseased myocardium. The local delivery of energy
causes an increase in temperature in the abnormal tissue resulting in tissue injury
and thus, eliminating the source of VA. RFA is a common procedure to isolate
reentry pathways across the infarct scar that are responsible for VT [19].

However, prior to RFA, patients must undergo an electrophysiological study
(EPS). This procedure is performed to detect whether patients have inducible VT.
During the EPS, a catheter is placed in the right ventricle (RV) apex, which is stim-
ulated with a specific pacing protocol to detect whether patients have inducible VT
or not [20]. In addition, patients may also present clinical VTs, which are those that
are registered on a device: a Holter monitor, pacemaker, ICD or cardiac resynchro-
nization therapy device. In the case of inducible or clinical VT, the physician will
proceed to study whether VT ablation is necessary.
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The identification of VT sources of origin during the procedure is difficult. There-
fore, during RFA, characterization of the arrhythmogenic substrate is performed by
a process called electro-anatomical mapping (EAM). The objective of acquiring an
EAM is to obtain an activation map of the cardiac structure in order to identify the
site of abnormal electrical signals [21]. This EAM is usually guided by the CARTO
System (Biosense Webster, Diamond Bar, CA), which is a software used for 3D
mapping in electrophysiology procedures, even though other navigation softwares
are also used such as EnSite NavX (St. Jude Medical, Austin, TX) or LocaLisa
(Medtronic, Minneapolis, MN). The CARTO electro-anatomical system uses an in-
tegrated catheter with a localization sensor embedded in the distal part to enable
automatic and simultaneous acquisition of the electrogram in that position, thus
being able to reconstruct a 3D-electro-anatomical map of the LV [19].

Despite the reconstruction generated during the procedure, EAM only provides
information about endocardial and epicardial surfaces, not providing an accurate
reconstruction of the heart anatomy. Therefore, in advanced electrophysiology
units, they perform image-guided RFA. In these interventions, they make use of
pre-operative imaging to study myocardial tissue properties, such as the scar char-
acteristics, for then being fused with EAM during the RFA in order to better guide
the procedure. For image-guided VT ablation procedure, two main imaging modal-
ities are used: cardiac magnetic resonance imaging (CMR) and computed tomog-
raphy (CT). CMR combined with gadolinium, a contrast agent, allows an accurate
identification and quantification of the infarcted tissue. This sequence is called
late-gadolinium-enhanced CMR (LGE-CMRs) [22, 23, 24]. Contrast-enhanced CT
(CE-CT) also allows for a clear identification of blood and myocardium [25]. Al-
though CE-CT is not the main imaging technique used to treat VTs, it allows to
distinguish the myocardial wall thickness, which has shown correlation with scar
region and electrophysiological abnormalities [26].

Consequently, the use of medical imaging is a fundamental tool to complement
and accelerate these interventions, since the information obtained from the images
is crucial for the detection of scar tissue and arrhythmogenic substrate, and allows
the clinical professionals to know with more precision where to ablate, making the
intervention less tedious. In the work developed by Andreu et al. [27], instead of
characterizing the arrhythmogenic substrate through an EAM, a previous analysis
on the LGE-CMR is performed, whereby the scar tissue is analyzed. The scar char-
acterization can be depicted as color-coded pixel-signal-intensity maps that have a
reasonably high correlation with the EAMs obtained during the ablation procedures.
This previous analysis allows to identify alternative CCs, which have been related to
VT isthmuses in the EAM. Therefore, by knowing in advance the possible alterna-
tive CCs, it is not necessary to perform an EAM, and thus, reduce procedure time,
since the ablation points will be applied where the software has detected. Figure
3 shows the LGE-CMR analysis prior to the procedure integrated in the CARTO
system by which they guided the substrate VT ablation.
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Figure 3: Integration of LGE-CMR information into the CARTO3 navigation system. Inferior
view of the left and right ventricles. Left image: Endocardial bipolar voltage EAM. Black dots:
alternative CC entrance; Blue dots: inner CC; Red dots: RFA points. Right image: Signal
intensity map obtained from LGE-CMR registered in the EAM. Red area: Core zone; Blue-Green-
Yellow area: Border one; Purple area: Healthy tissue. LGE-CMR: Late-gadolinium-enhanced
cardiac magnetic resonance; EAM: Electro-anatomical mapping. CC: conduction channel. RF:
Radiofrequency ablation. Image obtained from: Andreu et al. (2017) [27].

However, although VT-RFA is the main technique of choice when treating infarct-
related VT, it is considered challenging and time-consuming [19], and shows rela-
tively low success, since almost 40% of patients that undergo this intervention have
recurrent VT after the procedure [28]. Therefore, new approaches such as compu-
tational heart models, are being considered in relation to predicting the electrical
behavior of the heart and providing additional insights to guide RFA procedures
[29].

1.2 State of the art of computational heart models in post-
myocardial infarction patients

Computational models in health care are increasing the capacity to diagnose and
be determinant in the detection of certain pathologies. The ‘Digital Twin’ era,
where the clinical data can be integrated in virtual models, is boosting. The main
two pillars of ‘Digital Twin’ are the creation of mechanistic and statistical models.
Mechanistic models provide better clinical interpretability and are able to make
predictions, while statistical models are able to extract parameters and find new
metrics from the data [30]. Computational cardiac models are an example of it,
since they can be used as personalized and non-invasive arrhythmia predictors for
post-infarct patients, while new parameters for analysis can be extracted.

The principal steps when creating virtual heart models for VT applications are:
the acquisition of patient-specific images, the segmentation and labeling of the LV
cardiac tissue (CZ, BZ and healthy tissue), the construction of the 3D geometry,
the incorporation of fiber orientation and the assignment of electrophysiological
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properties in each region (epicardium, endocardium and mid-myocardium) at a cell
and tissue level. Then, pacing protocols are applied to induce VT in the virtual
heart. The outcome of these virtual electrophysiological studies can be used to
predict the arrhythmia risk of a post-MI patient [31].

In the last decade, intensive research in the field of computational cardiac electro-
physiology has demonstrated the ability of three-dimensional cardiac computational
models to perform in-silico electrophysiological studies. Trayanova et al. [29] es-
tablished the Virtual-heart Arrhythmia Risk Predictor (VARP) approach, where
they demonstrated that VARP outperformed clinical metrics (such as the LVEF) in
predicting future arrhythmic events. Moreover, scar characterization by a previous
analysis in LGE-CMR has demonstrated that a significant scar mass (<5%) and
scar characteristics are related with VA, being able to stratify arrhythmogenic risk
[32, 33]. With this non-invasive approaches, SCD could be prevented and avoid
unnecessary ICD implantations in post-infarction patients.

In the study by López-Pérez et al. [28], from computational heart models they
were able to induce clinical VT of a patient with infarct-related VT from different
pacing points, identifying the slow conduction channels originating such VTs. How-
ever, although these models were very accurate, they were highly computationally
expensive, requiring several hours per simulation and thus being difficult to integrate
them in the timings of a clinical workflow.

Novel studies include machine learning (ML) algorithms in virtual heart simu-
lations in order to better understand the disease and improve VA risk stratification
[34]. Furthermore, new studies applying deep learning (DL) are increasingly being
used to improve and optimize treatments such as for atrial fibrillation [35]. Also,
the integration of ECG data to cardiac computational models is becoming more im-
portant, since ECG patterns may indicate if there is underlying abnormal electrical
activity related to the VAs [36]. Although these current studies are not yet fully
related to VTs, the integration of ECG to the heart model could be highly useful
for VT risk prediction in the near future.

1.3 Electrophysiological models

Previous studies [28, 31] have embedded detailed cellular electrophysiological mod-
els of ventricular myocytes in their heart models. Hodgkin-Huxley formulations are
the most typically used [37], but also, some of the most common human ventricu-
lar myocyte models used are the Ten Tusscher-Panfilov [38] and the O’Hara-Rudy
[39]. In these models, membrane dynamics are modeled as an RC circuit where the
resistances represent the ion flux through the membrane channels and the capacitor
represents the cell membrane phospholipid bilayer. Based on this representation,
complex ordinary differential and algebraic equations are defined to explain the be-
havior of myocyte cells as a function of the ionic currents in each element of the
cardiac mesh [40].
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To model electrophysiological cellular dynamics, different electrical propagation
softwares are available. ELVIRA [41] and Alya [42] softwares apply finite element
methods to simulate cardiac electrical propagation, and open source cardiac elec-
trophysiology softwares such as OpenCARP [43], are also able to describe cardiac
behavior at multi-scale level. To simulate the AP propagation, these softwares in-
clude biophysical models, making the simulations realistic and including detailed
information of cellular dynamics. Nevertheless, as mentioned above, having highly-
detailed electrophysiological models also entails a very high computational burden,
making these detailed models unusable for processing a vast amount of cases and
hampering clinical translation of the tools.

In order to overcome this drawback, other techniques such as cellular automata
(CA) seem more appropriate. CA is a rule-based model based on volume discretiza-
tion. It simplifies cardiac tissue by defining a finite number of defined states to each
cell: resting, excited and refractory. Cells evolve in parallel at discrete time steps,
following state update functions or dynamical transition rules, taking into account
the neighbors cell states [44]. CA is a relatively simple and a low computational
model, being useful if rapid simulations are needed. Although they are not as de-
tailed as biophysical models, it has been demonstrated that with the correct input
parameters, CA is able to reproduce reentrant VA from clinical data [45].

A novel CA-based software, Arritmic3D, has been developed by Serra et al.
[46], with the aim of simulating and assessing arrhythmia risk in three-dimensional
ventricular models by performing fast simulations. Compared to a biophysical solver,
a 1200ms simulation took 7h, while with the CA took 76s. However, in Arritmic3D
no real VT data or pacing protocols from specialized electrophysiological units have
been tested yet. Nonetheless, this novel solver is of great interest as with the use
of fast automata-based tools these simulations could finally be performed near real-
time, making it compatible to the clinical setting.

1.4 Objectives

The main aim of this project was to create computational cardiac models capable
of stratifying VT risk in patients with heterogeneous scar due to MI. Hence, the
objectives were divided in the following way:

(i) Create fifteen LV patient-specific models from CMR images.
(ii) Apply the actual clinical pacing protocol used at Centro Médico Teknon.
(iii) Perform simulations with Arritmic3D, a CA-based electrophysiological software.
(iv) Validate results with real data.

The clinical data were provided by the electrophysiology unit of Centro Médico
Teknon in Barcelona, where I have been working as an engineer technician, being in-
volved in the interventions to better understand how computational models can help
clinicians and patient outcomes. Furthermore, this project was also carried out with
Universitat Pompeu Fabra and with the CoMMLab research group at Universitat
de València, since Arritmic3D was developed by them.
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2 Methods

For this project, two different setups were tested: a first one, in which only the
LV was considered for the simulations; and a second one, in which the RV was
also included, creating a biventricular model. The followed pipeline is shown in
Figure 4. First, LGE-CMR images of each patient were acquired. Then, from the
CMR, the LV and RV were segmented by delimitating the endocardial and the
epicardial walls. After the delimitation, the CZ, the BZ and the heathy tissue of
the LV needed to be adjusted in order to obtain the information regarding the
scar’s distribution. For each patient, a three-dimensional model of the LV and the
RV with the corresponding arrhythmogenic substrate was obtained. Then, from the
segmentations, the models were reconstructed in order to fit the CA. To achieve this,
the ventricular models were automatically discretized through a pre-processing tool
with the aim of obtaining nodes that represent different portions of tissue. Fiber
orientation and electrophysiological properties were included in this voxelization
process. Once created the complete ventricular models, the simulation setup was
defined by replicating a real pacing protocol used in the clinic, and determining
different pacing site locations. With that, Arritmic3D was used to virtually simulate
and assess arrhythmia risk. Finally, the obtained in-silico simulations results were
validated with the real data that patients obtained during their EPS. Moreover, scar
metrics were extracted for evaluation of simulation’s accuracy.

Figure 4: Pipeline followed to perform patient-specific fast simulations to determine the inducibility
of VT in each patient. LGE-CMR: Late-gadolinium-enhanced cardiac magnetic resonance.
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2.1 Data acquisition

The data used for the simulations were provided by the electrophysiology unit at
Centro Médico Teknon, led by Dr. Antonio Berruezo. Patient data were extracted
from a specific database of patients who had suffered a MI. The sample for this
project was of 15 patients, each one of them having a heterogeneous scar in the LV
due to a MI. The sample of patients was divided into three main groups, as shown
in Figure 5: patients who had induced VT during an EPS, patients who did not
have induced VT on the EPS, and patients who did not undergo an EPS. From this
distribution, we could also differentiate those who also had clinical VT events and
those who did not yet developed any VT episode.

Figure 5: Division of patients based on whether they had induced or not VT episodes during an
EPS. Subdivision of patients based on whether they had also clinical VT episodes.

The first step to perform the simulations was to obtain the CMR images of each
patient. Image acquisition was performed using a 1.5-Tesla scanner (MAGNETOM
TrioTM, Siemens Healthcare, Erlangen, Germany). Concretely, LGE-CMR images
were needed in order identify the infarcted tissue. They were acquired in 120 slices
with a spacing between slices of 1 mm and an isotropic resolution of 1 mm. LGE-
CMR were 3D-DIXON type, since this sequence ensured adequate image acquisition
and thus, a good characterization of the tissue.

2.2 Image pre-processing

Once acquired the LGE-CMRs, they were imported into Adas3D (Galgo Medical,
Barcelona, Spain), a commercial image processing and 3D visualization software,
which is specifically developed to process CMRs and provides information about
fibrotic tissue. Adas3D was used in order to perform the segmentations of the LV
and RV of each patient.

9
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To obtain the LV segmentation, three steps needed to be carried out. The first
step was to manually place four landmarks in the CMR: at the aortic annulus, at
the mitral annulus, at the apex of the LV and at the tricuspid annulus. The second
step consisted of manually delimitating the LV endocardium and epicardium in
three randomly selected slices in the transversal plane: in the basal, mid and apical
areas, respectively. From this delimitation, the software automatically delimitated
the endocardium and epicardium. Finally, the third step consisted of a manual
adjustment of the endocardial and epicardial walls. Figure 6 shows the endocardial
and epicardial delimitation of the LV. Once these three main steps were performed,
the software reconstructed automatically the 3D model of the LV.

Figure 6: Left ventricle endocardial and epicardial delimitation of patient 2 in Adas3D. Left image:
Sagittal plane. Middle image: Transversal plane. Right image: Coronal plane.

The 3D ventricular model was divided into 10 layers from the endocardium to
the epicardium, each layer representing 10% of the total LV wall thickness, obtaining
a 3D shell for each layer. Then, in order to have a myocardial scar characterization,
a pixel signal intensity-based algorithm is applied in the software. The three tissue
types (BZ, CZ and healthy tissue) were differentiated using thresholds of 60±5% and
40±5% of the maximum pixel intensity signal. The algorithm classifies the tissue
as CZ if pixel values are above 60±5%, as BZ if pixel values are comprised between
40±5% and 60±5%, and as healthy tissue if pixel values are below 40±5%. Depend-
ing on the resolution of the CMRs, these thresholds can be modified. However, for
the 15 cases segmented in this project, the previously mentioned thresholds were
used. Figure 7 shows the final LV segmentation of one of the analyzed cases.

Moreover, Adas3D allows to automatically detect border zone channels (BZC),
which consist on continuous corridors of BZ surrounded by scar tissue or an anatom-
ical barrier connecting two areas of healthy tissue. These BZCs could correspond to
the alternative CCs causing the reentry circuits to appear. Once tissue differentia-
tion and BZC were obtained, quantitative results could be extracted from Adas3D,
with the aim of making a comparison between patients.
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Figure 7: Three-dimensional left ventricle segmentation of patient 2 in Adas3D. Septal-anterior
view of the infarct scar in endo-, mid- and epicardial layers. A threshold of 55% for core zone and
40% of healthy tissue was used. Red area: Core zone; Blue-Green-Yellow area: Border one; Purple
area: Healthy tissue.

After obtaining the necessary information of the LV, the RV was also segmented
in order to further perform the simulations in biventricular models. The pipeline
followed was the same as for the LV, however, in the RV no tissue characterization
was needed. For this purpose, only the RV anatomy was segmented, as shown in
Figure 8, where the 15 biventricular models can be observed.

Figure 8: Three-dimensional right and left ventricles segmentations of the fifteen patients in
Adas3D. Left ventricle: yellow anatomy. Right ventricle: blue anatomy.
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2.3 Patient-specific model reconstruction in the cellular au-
tomata

Once the LV image was obtained and the model was processed and correctly labelled
with Adas3D, a geometrical mesh was obtained. From here, different steps needed
to be carried out in order to build the computational model in the CA.

2.3.1 Left ventricle geometrical model

Since Arritmic3D is an automata-based tool, there was no need to generate a surface
and a volumetric mesh. Instead, the model obtained from Adas3D needed to be
discretized in order to carry out the simulations in the CA. Arritmic3D includes a
pre-processing tool that is able to build automatically the discretized computational
model.

First, from the segmented Adas3D model, 5 meshes were obtained: a CZ, a
BZ, an endocardium, an epicardium and a geometrical mesh of the LV, as can be
observed in Figure 9. Once these 5 meshes were obtained, the first part of this pre-
processing tool consisted of voxelising these files. To do this, all the data was loaded
into a Python file, made apart from the CA simulator. In order to correctly voxelize
the models, it was very important that the resolution of the CMR was within a valid
margin, otherwise the discretization could not be done.

Figure 9: 3D meshes of patient 2 obtained from Adas3D. The first row corresponds to the left
ventricle geometrical mesh with the border zone and core zone, represented in blue and red, re-
spectively. The second row represents the endocardium mesh (left) and the epicardium mesh
(right).
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By means of implicit functions, the limits of the ventricular model were deter-
mined and the number of cells belonging to it was evaluated, obtaining the geometry
of the ventricle. As the information obtained was in scalar values, the data was con-
verted to points, extracting the geometry of the voxelised ventricle. From here,
different arrays were created where different types of information were stored: (i)
3 arrays to define the coordinates of the nodes of each cell (x,y,z); (ii) 3 arrays to
define the fiber orientation in the different directions (x,y,z); (iii) 1 array to store the
intensity values of each cell. Then, different implicit functions evaluated the cells
belonging to each mesh type (CZ, BZ, epicardium, endocardium), and subsequently,
different arrays stored the value of each cell type.

Next, to determine the fiber orientation, the Streeter’s method [47] was used.
First, the vector of the longitudinal axis of the ventricle was calculated, between
the point defined as the apex and the centroid of the base, which would correspond
to the location of the mitral valve. Then, the vector normal to the endocardium
and epicardium was calculated for each node. To define the fiber orientation vector,
two angles are defined: helix angle, which takes into account the distance from
the endocardium to the epicardium, and the transmural angle, which takes into
account the distance from the apex to the base. The obtained fibre orientation
vector must then be converted from global to local coordinates. Once converted
to local coordinates, the direction of the cardiac fibre orientation was defined in
separate coordinates (x,y,z), as these coordinates would later be inputs for when the
simulations were loaded. With the parameters defined, the model was created as a
set of simplified 3D slabs of tissue with regular hexahedral elements of 0.3 mm. As
a result, a file containing the voxelised model with all the case data included was
obtained, as it can be shown in Figure 10.

Figure 10: Voxelized left ventricle (left) and biventricular model (right) of patient 2, after pre-
processing tool in Arritmic3D performs the discretization of the model obtained in Adas3D.
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2.3.2 Electrophysiological model

The CA implemented in Arritmic3D mimics the behaviour of a biophysical model,
with the advantage of performing the simulations with a very low computational
cost. The model was defined as a 4-tuple, an ordered set of objects characterised by
the following components: CA = (L,S,V,θ). First, each cell of the model included
the integer lattice, L, which is defined by four parameters:

(i) The geometrical location.
(ii) The cell type (endocardial, mid-myocardial and epicardial).
(iii) The cell status (healthy tissue, BZ and CZ).
(iv) The cell threshold to move from resting to activated state.

Fiber orientation and tissue connectivity are encoded in the conduction velocity
(CV), which is specific to each CA node. Then, S corresponds to the finite set of
all possible cell states, which are three: inactivated or repolarized, when the cell
remains relaxed and excitable, activated or depolarized, when the cell is able to
activate neighbours, and refractory, when the cell is activated but it is not able to
activate neighbours. V is the finite set of cells that define the neighbourhood for
a cell, and θ is a transition function applied simultaneously to the cells that make
up the lattice. To simulate electrophysiology in the model, each element in the CA
is represented as a node, representing a portion of cardiac tissue, and not a single
cardiac cell. The electrical propagation of cardiac tissue occurs as follows: when a
repolarized node gets excited, it activates itself and the surrounding nodes. This
node remains active during its action potential duration (APD), and does not allow
further activation until its APD has finished. Once it expires, the node repolarizes
again. Besides, when a node is depolarized, the activation of the neighbours does not
occur immediately, it depends on the CV and the distance between the deactivation
and the next activation of the nodes, known as diastolic interval (DI).

Furthermore, to make the electrophysiological model more precise, additional
properties were also included. One was the APD memory, which ensured smooth
changes in the APD in response to large cycle gradients (i.e., when pacing protocols
are applied). Electrotonic coupling effects were also considered, especially in those
regions where different type of cells were in contact. For this project, an APD
memory of 0.05 and an electrotonic coupling effect of 0.6 were applied for all patients.
Furthermore, a cardiac safety factor (CSF) was implemented, which is a measure
that describes the robustness of propagation in cardiac tissue.

2.4 Clinical pacing protocol

In the clinical setting, EPS are decisive in determining whether a patient might
suffer from arrhythmias. Different pacing protocols can be applied, depending of
the type of arrhythmia to be detected. For patients who have suffered a MI, ar-
rhythmia inducibility by ventricular pacing during an EPS is crucial to test the
functionality of scar-related circuits, to find out whether alternative CCs actually
cause VTs. Nonetheless, the pacing protocols defined to induce VTs are slightly
different between hospitals.
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For this project, the actual clinical pacing protocol applied at Centro Médico
Teknon when testing VT inducibility in post-MI patients was followed. For the
pacing to be carried out, a tetrapolar catheter is first introduced through the right
femoral artery and guided to the right atrium. Then, the catheter goes through the
tricuspid valve and enters the RV. Once inside the RV, the catheter is placed at the
apex, and there they try to induce a VT. Therefore, since the RV endocardium is
being excited first, electrical activation will reach the LV through the septal wall,
from the epicardium to the endocardium.

The main objective was to virtually pace from the RV apex, however, in the
case where no RV was considered, as in the first setup, more pacing sites were de-
fined. In order to decide which other pacing locations would be the most optimal,
experienced electrophysiologists at Centro Médico Teknon suggested the the most
common pacing sites: the RV and LV septal walls. For the first setup, in which
only the left ventricular model was considered, pacing was implemented from the
LV apical and mid-epicardium, since it was the closest location to the RV apex. For
this purpose, two pacing locations were defined at the LV epicardium, as shown in
Figure 11:

1) Apical Epicardium (LV Apical-Epi)
2) Mid Epicardium (LV Mid-Epi)

Moreover, in order to analyze more pacing locations, endocardial pacing sites
were also defined. As the electrophysiologists suggested pacing from the septal wall,
three pacing sites at the LV endocardium were defined, as observed in Figure 11:

3) Basal Endocardium (LV Basal-Endo)
4) Mid Endocardium (LV Mid-Endo)
5) Apical Endocardium (LV Apical- Endo)

Figure 11: Pacing sites determined for LV. Left image: epicardial pacing sites. Right image:
endocardial pacing sites.
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As mentioned above, a biventricular model was also generated. The model was
composed of the two ventricles separately, being the septal wall the only region of
union between both. For this biventricular model, two RV pacing sites were defined,
recreating the actual pacing performed in the EPS, as shown in Figure 12. The
pacing sites considered were:

6) Apical Endocardium (RV Apical-Endo)
7) Mid Endocardium (RV Mid-Endo)

Figure 12: Pacing sites determined for RV.

For each patient and for each pacing site, an ID point was selected in Paraview
(Kitware Inc. and LANL, NY, USA) by manually selecting a node located in the
region of interest. Then, the ID of the different pacing sites was introduced into
the corresponding input file to run the Arritmic3D simulations. After deciding
the pacing locations, the clinical pacing protocol showed in Figure 13 was virtually
applied:

(i) A base cycle (S1), which consisted of applying a train of 8 stimuli with a cycle
length (CL) of 430 ms, was defined.
(ii) An extra stimulus (S2) with an initial CL of 300 ms was added. If no VT was
induced, the CL of S2 decreased in steps of 10 ms until the refractory period was
reached or until S2 had a CL of 200 ms.
(iii) S2 was increased 20 ms and a second extra stimulus (S3) with the same CL of
S2 was added. The same protocol as for S2 was followed with S3, and if no VT was
induced, a final extra stimulus (S4) was applied.
(iv) If S4 also failed to induce VT, the CL of S2 and S3 was decreased in steps of
10 ms until all three extra stimuli reached a CL of 200 ms, if they did not reach
refractory period before.
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Figure 13: Diagram of the pacing protocol applied based on the one implemented in Centro Médico
Teknon.

After performing the simulations with the described pacing protocol, the results
obtained could be three: sustained ventricular tachycardia (SVT), non-sustained
ventricular tachycardia (NSVT) or no ventricular tachycardia (No VT).

In a real EPS, if we ended up having the three extra stimuli (S2, S3, S4) with
a minimum coupling of 200 ms and there was no VT induced, the study would
be repeated under infusion of Isoproterenol, a drug that increases the induction of
arrhythmias by increasing the baseline heart rate. If by repeating the EPS under
Isoproterenol effects no VT is induced, that means that the patient is not at risk
of suffering VT episodes. Nevertheless, if during the pacing protocol some VT
was induced, that implies that the patient is at a high risk of developing future
arrhythmic events.

2.5 Simulation setup

Arritmic3D is a novel CA-based software created specifically to simulate the dy-
namic properties of human myocardium in healthy and post-infarct conditions, in
order to efficiently simulate the electrical activity in patients who have suffered a MI
with low computational cost. This simulator has been developed by the CoMMLab
research group led by Pr. Rafael Sebastian at Universitat de València.

Before starting with the simulations, different initial parameters had to be de-
fined. The Arritmic3D software has 2 main folders after installation: "Readers",
which contains the Phython code that generates the voxelized models from the
meshes obtained in the segmentation, and "arritmic3D", where the main files that
generate the simulations are located.
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Within the arritmic3D folder, 3 files are needed as input for the simulations to
work:
- cases: a general folder where sub-folders for each patient have to be created.
Inside each patient’s folder, there will be a folder called "Readers_VTK" with all
the data of the voxelized model and a file named "params.dat", in which all the case
parameters can be modified.
- restitutionCurves: a folder corresponding to the restitution curves of APD and
CV for the different cell types (CZ, BZ, healthy) in the different layers (endo, mid,
epi).
- paramsInit.dat: a file that allows to modify the number case option and the case
folder name the user wants to simulate.

The rest of the files found in the arritmic3D folder are general for all ventricular
geometries. Once the input files are correctly defined, the file arritmic3D.psc is used
to perform the simulations. For the simulations carried out in this work, the average
time taken for a 10,000 ms simulation was of 10 minutes per patient.

2.6 Validation metrics

To validate in-silico simulations, the measurements obtained from patients in the
EPS were acquired to compare whether they matched those obtained in the simu-
lations. In addition, scar characteristics were extracted from Adas3D with the aim
of making a comparison between patients and provide information on the arrhyth-
mogeneity of the scar. The scar values used were the following:

- Scar, BZ, CZ mass with respect to the total LV mass (g).
- Scar percentage with respect to the total LV mass (%).
- BZ and CZ percentage with respect to the total scar mass (%).
- BZC mass (g).

Finally, for visual validation of reentry circuits, BZCs detected in Adas3D were
used, since they could be useful to visualize possible reentry circuits during the LV
activation propagation after pacing.
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3 Results
This section includes the results obtained from the simulations of patient-specific
3D cardiac models. Fifteen patients with previous MI were evaluated with the aim
of predicting whether they would have VTs induced. The results obtained were
compared with the real results each patient obtained during an EPS. A total of 105
simulations were performed to validate with real data.

3.1 Clinical data and scar characterization

The clinical and scar characteristics were analysed in Table 1 as a function on
whether patients had VT induced during an EPS or not. Difference in scar mass
was noticeable between patients with and without induced VT (43.9 ± 31.2 vs. 15.6
± 7.3) and the opposite pattern was observed in LVEF (32.5 ± 4.5 vs. 52.0 ± 8.8).
In general, a high scar mass and a low LVEF was observed in patients with induced
VT during EPS, and the opposite behaviour was observed with non-induced VT
patients; a lower scar mass and a higher LVEF. The two patients without an EPS
presented a higher scar mass than patients with non-induced VT but a lower mass
than those with induced VT.

In addition, the BZ and CZ masses varied according to the scar mass value, being
the BZ mass always higher than the CZ mass. It could also be seen that the mean
age was similar in the three groups of patients, while there was a great disproportion
in terms of the sex of the patients, as only one of the fifteen was female.

Total Induced VT No Induced VT No EPS

N 15 7 6 2

Clinical characteristics

Female sex 1 0 1 0
Male sex 14 7 5 2

Age (years) 65.4 ± 10.6 66.5 ± 13.2 65.8 ± 7.3 60.0 ± 14.1
LVEF (%) 42.8 ± 11.7 32.5 ± 4.5 52.0 ± 8.8 51.0 ± 5.6

Scar characterization

Scar mass (g) 29.5 ± 25.9 43.9 ± 31.2 15.6 ± 7.3 20.8 ± 22.6
BZ mass (g) 20.6 ± 16.5 30.6 ± 8.7 11.2 ± 5.7 13.8 ± 14.7
CZ mass (g) 8.9 ± 10.4 13.3 ± 13.7 4.3 ± 2.9 6.9 ± 7.9

Table 1: Mean ± standard deviation of the clinical and scar characteristics of the fifteen patients.
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3.2 Ventricular tachycardia induction

All fifteen cardiac models were virtually stimulated following the in-silico pacing
protocol described in Section 2.4. The simulations results of the seven patients with
induced VT during EPS can be observed in Table 2. RV and LV main columns
are in-silico results obtained for each of the pacing sites described. Right column
shows the results each patient obtained during the EPS. Focusing on LV pacing,
overall, epicardial pacing had a higher rate of success than endocardial pacing. Both
epicardial pacing sites (mid and apical) obtained similar results, except from patients
6 and 12, which obtained the opposite results. Nevertheless, in comparison with the
actual results obtained during EPS, in epicardial LV pacing, 5 of the 7 patients
achieved the same results. Conversely, endocardial pacing of the LV had a lower
success rate. Only in patients 1, 3, 4 and 5 a SVT event was correctly detected in
at least one of the three different pacing sites, being apical pacing the less robust.

On the other hand, in RV pacing, apical-endocardial pacing achieved better
results than mid-endocardial pacing, being the results obtained in the apical zone
almost equal to the real data. However, for patient 6 no VT event was detected in
any of the two pacing locations.

RV LV EPS

Mid-Endo Apical-Endo Mid-Epi Apical-Epi Basal-Endo Mid-Endo Apical-Endo RV Apical-Endo

P1 NO VT SVT SVT SVT SVT SVT NO VT SVT
P2 NO VT SVT SVT SVT NSVT NO VT NO VT SVT
P3 SVT SVT SVT SVT SVT NO VT NO VT SVT
P4 SVT SVT NO VT NO VT NO VT NO VT SVT SVT
P5 SVT SVT SVT SVT NO VT SVT NO VT SVT
P6 NO VT NO VT SVT NO VT NO VT NO VT NO VT SVT
P12 SVT SVT NO VT SVT NO VT NO VT NO VT NSVT

Table 2: Results of in-silico pacing sites of patients with induced VT during EPS compared to
real clinical outcomes. Bold results correspond to correct outcomes matching with EPS. SVT:
Sustained Ventricular Tachycardia, NSVT: Non-Sustained Ventricular Tachycardia.

Each patients’ probability of having an induced virtual VT was calculated based
on the correct events detected by the different pacing sites, as shown in Table 3. In
patients 1-3 and 5 the probability of having an induced VT event exceeded 50%. On
the contrary, patients 4, 6 and 12 obtained a probability of less than 43%. In patient
4, a SVT was detected only in three of the seven pacing locations (RV-Apical-Endo
and LV-Apical-Endo), as well as in patient 12 (RV-Apical-Endo and LV-Apical-Epi),
whereas only a single SVT event was detected in patient 6 (LV-Mid-Epi). Moreover,
RV and LV pacing sites were unable to detect the NSVT of patient 12.

P1 P2 P3 P4 P5 P6 P12

VT (%) 71.4 50.0 71.4 42.8 71.4 14.2 42.8

Table 3: Patients’ probability of having induced VTs based on in-silico results. Selected patients
had a positive outcome during the EPS.
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Table 4 shows the results for patients who did not have induced VT during EPS.
LV endocardial and epicardial pacing obtained similar results, since for every of the
five pacing sites, at least in one patient a SVT event was detected. For RV pacing, the
apical pacing site obtained the same results as the real data, while in the mid pacing
site only one patient was detected with a SVT. The same results were achieved in
patients 7, 11 and 13, while at least two SVT events were detected in patients 9, 14
and 15. Patients 9 and 15 obtained a SVT in two pacing locations (LV-Basal-Endo
and LV-Apical-Endo in patient 9 and RV-Mid-Endo and LV-Apical-Epi in patient
15). Patient 14 obtained the poorest results, with a SVT event detected in three
pacing locations, all from the LV (Mid and Apical-Epi and Mid-Endo). Nonetheless,
the probability of having a VT induced in these three patients did not exceed 43%,
as shown in Table 6.

RV LV EPS

Mid-Endo Apical-Endo Mid-Epi Apical-Epi Basal-Endo Mid-Endo Apical-Endo RV Apical-Endo

P7 NO VT NO VT NO VT NO VT NO VT NO VT NO VT NO VT
P9 NO VT NO VT NO VT NO VT SVT NO VT SVT NO VT
P11 NO VT NO VT NO VT NO VT NO VT NO VT NO VT NO VT
P13 NO VT NO VT NO VT NO VT NO VT NO VT NO VT NO VT
P14 NO VT NO VT SVT SVT NO VT SVT NO VT NO VT
P15 SVT NO VT NO VT SVT NO VT NO VT NO VT NO VT

Table 4: Results of in-silico pacing sites of patients with not induced VT during EPS compared
to real clinical outcomes. Bold results correspond to correct outcomes matching with EPS. SVT:
Sustained Ventricular Tachycardia, NSVT: Non-Sustained Ventricular Tachycardia.

An analysis was also performed on the two patients who did not undergo an EPS,
although no comparison with real data could be made. In Table 5, and looking at
the results of Table 6, a clear difference between the results of both patients could
be observed. For patient 8 the probability of having an induced virtual VT was of
0%, while for patient 10 it was of 57.1%, with SVT events being detected in four
pacing sites (RV endo and LV epi).

RV LV EPS

Mid-Endo Apical-Endo Mid-Epi Apical-Epi Basal-Endo Mid-Endo Apical-Endo RV Apical-Endo

P8 NO VT NO VT NO VT NO VT NO VT NO VT NO VT NP
P10 SVT SVT SVT SVT NO VT NO VT NO VT NP

Table 5: Results of in-silico pacing sites of patients without EPS. SVT: Sustained Ventricular
Tachycardia, NSVT: Non-Sustained Ventricular Tachycardia, NP: Not Performed.

P7 P8 P9 P10 P11 P13 P14 P15

VT (%) 0 0 28.5 57.1 0 0 42.8 28.5

Table 6: Patients’ probability of having induced VTs based on in-silico results. Patients 7, 9 and
11-13 had a negative outcome during the EPS, while patients 8 and 10 did not undergo an EPS.
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Table 7 shows the percentage accuracy of each pacing location. To calculate
the accuracy values, the two patients who did not undergo EPS were excluded. The
locations with the highest percentage of accuracy were both RV pacing locations and
the two LV epicardial locations, with apical RV pacing having the highest accuracy
(92.3%). On the other hand, LV endocardial pacing presented lower values, being
the apical endocardial location the one with the lowest percentage (46.1%).

Pacing sites Accuracy (%)

RV Mid-Endo 69.2
RV Apical-Endo 92.3

LV Mid-Epi 76.9
LV Apical-Epi 69.2
LV Basal-Endo 53.8
LV Mid-Endo 53.8

LV Apical-Endo 46.1

Table 7: Accuracy of pacing sites.

The percentage of scar mass with respect to the LV mass is shown in Figure
14. Each scar percentage has an associated percentage of BZ and CZ, which varies
in every patient. It can be noticed that patients 1, 3, 4, 10, 12 and 15 had a scar
mass higher than 20%, while patients 8, 9 and 11 presented a scar mass below 10%,
having a smaller scar. In general, patients with SVT induced on EPS presented a
higher percentage of scar than those who did not have VTs induced. It can also be
observed that there were patients with a similar percentage of BZ and CZ, such as
patients 3, 4, 10 and 13, while in the rest of the patients the percentage of BZ was
much higher than the CZ.

Figure 14: Scar mass heterogeneity. Patients with (*) had in-silico induced SVT in at least one
pacing site. SVT: Sustained ventricular tachycardia.
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Figure 15 shows the BZC mass of each patient obtained using Adas3D. Patients
1, 3, 4 and 15 had the highest channel mass, above 15 grams. Patients 2, 5, 6, 10
and 12 presented a channel mass below 15 grams but above 5 grams, while patients
7 and 14 had a mass below 4 grams, being not as significant. Finally, no channel
mass was detected in patients 8, 9, 12 and 13. A noticeable difference in BZC mass
between patients with and with no SVT detected on the EPS can be observed, being
those with SVT the ones presenting a higher mass. Moreover, patients in which a
SVT event was detected in-silico correspond to those that present BZC mass, except
from patient 7.

Figure 15: BZC mass. Patients with (*) had in-silico induced SVT in at least one pacing site.
SVT: Sustained ventricular tachycardia, BZC: Border zone channel.

Regarding the visualization of the reentry circuits, Figure 16 shows the activation
of the BZ region of one of the analyzed cases, where colors correspond to myocytes’
life-time. After applying a S1-S4 protocol (S1: 430 ms | S2: 300 ms, S3: 280 ms, S4:
270 ms) at the RV apex (black dot), a reentry circuit was generated. A conduction
block is observed 30 ms after S4 pacing (black cross). Then, the arrows show the
direction of the wavefront, and almost 200 ms after S4 pacing, the slow CC can be
seen. This slow channel caused by the last extra-stimulus corresponds to one of the
BZCs detected in Adas3D (purple channel). In the end, it can be observed that the
slow CC repolarizes the cardiac tissue, subsequently causing a SVT.

On the other hand, Figure 17 shows the BZ activation of myocytes after applying
a S1-S3 protocol (S1: 430 ms | S2: 290 ms, S3: 260 ms) at the RV apical zone, at
which a SVT was generated. After S3 pacing, a conduction block is observed (white
cross) at the endocardial-septal wall. At 500 ms, the white arrows represent the re-
gion at which late activation was originated, although the reentry circuit generating
it could not be detected. Then, 300 ms after pacing, a SVT is initiated.
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Figure 16: Simulation snapshots of patient 2 after applying a S1-S4 protocol (S1: 430 ms | S2:
300 ms, S3: 280 ms, S4: 270 ms) at the right ventricle apex (black dot). Colors correspond to the
time to resting state. Purple tubes correspond to BZCs detected in Adas3D.
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Figure 17: Simulation snapshots of patient 4 after applying a S1-S3 protocol (S1: 430 ms | S2: 290
ms, S3: 260 ms) at the right ventricle apical zone. Colors correspond to the time to resting state.
Purple tubes correspond to BZCs detected in Adas3D. Left images show the epicardial-septal BZ
wall of the left ventricle. Right images show the endocardial-septal BZ wall of the left ventricle.
BZ: Border zone.
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4 Discussion
The present project describes a pipeline to perform LV electrophysiological simula-
tions in patients who have a heterogeneous scar due to MI, making it possible to
stratify VT risk in these patients in a non-invasive way. Such study was carried
out in 15 patients. A virtual pacing protocol simulating the real protocol used in
the clinic was implemented, and fast electrophysiological simulations were performed
with the aim of making the simulations as similar as possible to the pipeline followed
in the clinical practice.

4.1 Simulations results

Results of the scar mass characterization showed correlation with the results of the
BZC mass [32]. Patients with a scar mass that occupied more than the 20% of the
total LV mass (see Figure 14) also presented a higher BZC mass (see Figure 15).
This correlation could be observed in patients 1, 3, 4, 10, 12 and 15. Analysing the
percentages of scar mass, those with a higher percentage of BZ than of CZ were
the ones with more arrhythmogenic substrate. Regarding patients with induced VT
during EPS, comparing the results of the simulations (see Table 2) with the scar
metrics (see Figure 14), patients with a percentage of CZ inferior than the per-
centage of BZ presented a higher probability of virtually inducing VT and a greater
amount of BZC, except patients 4, 6 and 12. Although patient 4 had the largest scar
and BZC mass, the probability of VT detection was not very high, as it happened
with patients 6 and 12. This may be due to the fact that myocyte propagation was
not well detected in the voxelized models, because the alternative CC were small
and more difficult to detect, or it could rely on the fact that the basal conditions of
the patient were not considered. Despite these less accurate results, for each of the
seven patients who had induced VT during the EPS, at least one in-silico pacing
location detected a VT episode. This demonstrated that the models, although being
less detailed, were able to reproduce VT re-entrant behaviour.

Regarding patients with non-induced VT at the EPS, patients in whom no VT event
was virtually induced tended to be those with no or very low BZC mass. Neverthe-
less, in patient 9, although not having BZC, SVT was detected at two pacing sites.
As stated above, perhaps the fact that the BZ was much higher than CZ is what
led to the detection of alternative CCs during cell propagation, as it was the case
of patient 14. Virtual simulations showed that patient 14 had a high probability of
suffering a VT event despite of the low scar and BZC mass. On the contrary, patient
15 presented a very high BZC mass (<20%) and a probability of virtually inducing
a VT of 28.5%, although in the EPS the result was negative. Such large discrep-
ancy on this patient’s results demanded experts’ opinion. After sharing the results
with electrophysiologists at Centro Médico Teknon, the conclusion reached was that
perhaps when the patient underwent the EPS, the patient’s baseline conditions at
that time were such that no VT was induced. This idea was proposed since, based
on the high BZC mass and the results obtained in the simulations, it made more
sense to have induced VT than not to have it.
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As for patients 8 and 10, since they did not undergo an EPS, the results could not
be compared with real data. Patient 8 had a zero probability of inducing virtually a
VT. The scar mass was very low (see Figure 14) and did not present BZC mass (see
Figure 15), being reasonable with the simulation results obtained. In patient 10 the
opposite behaviour was observed. If this patient had an EPS performed, the results
showed in Table 5 and in Figures 14 and 15 suggested that the outcome would be
positive, since a 57,1% probability of virtually inducing a VT was obtained. Also,
it presented a large scar (<30%) and BZC mass.

With respect to the pacing sites, one of the objectives of this project was to simu-
late the pacing site at the same place in which is performed in clinical practice: at
the RV apex. By analysing the accuracy of the seven pacing sites, the in-silico RV
apical-endocardial pacing site achieved the best results (see Table 7), thus match-
ing the results of clinical practice. On the other hand, the difference on accuracy
between the epicardial and endocardial pacing sites at the LV took place because
of the different conduction velocities of the epicardial and endocardial layers. The
endocardium has a higher conduction velocity than the epicardium [46]. Based on
this, the simulated conduction velocity in the endocardium might prevent the de-
tection of slow CCs in the models, and thus re-entrant circuits. A slower conduction
velocity of the epicardium could possibly have been the reason for the detection of
alternative CCs that, with a higher conduction velocity, might not be detected.

Besides, although a LVEF<35% is the only primary prevention parameter consid-
ered in the approach to SCD, previous studies [33] stated that the scar mass is an
independent predictor of adverse outcome, and could be a future parameter to con-
sider for ICD placement in primary prevention of SCD. Table 8 at the Appendix
showed that patients 2, 4, 6 and 12 had a LVEF ≤ 35%. These patients had a signi-
ficative scar mass and presented VT events at the EPS and in the simulations (see
Table 2), indicating that it may exist risk of SCD. These results demonstrated that
the performance of LV patient-specific electrophysiological simulations, as previously
reported in the work by Trayanova et al. [21], together with the characterization
of the scar mass, could be a future non-clinical parameter, more accurate than the
LVEF, to predict the risk of SCD associated with VT caused by post-infarction scar.

Lastly, the computational time required by the CA-based software to perform a
10.000 ms simulation was of 10 minutes. Therefore, although each patient obtained
different results when applying the pacing protocol, the approximate total compu-
tational time required to complete the pacing protocol was of 35 minutes. Although
the results do not yet correspond to the real times in clinical practice, this results
contrasts with the simulation times that would be obtained with biophysical models,
where a single 10.000 ms simulation would take more than 24 hours. Hence, fast
simulations based on CA have demonstrated that are able to reproduce the electro-
physiological properties of the LV with high reproducibility. This can be seen in the
results, which are similar to those obtained during the EPS. This study confirms
that fast simulations can be performed by progressively adapting to real pacing
protocols duration while assessing arrhythmia propensity.
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4.2 Limitations and further work

In the first case, the biventricular model needs to be improved. In the generated
biventricular models, both ventricles were segmented independently, each with its
epicardial and endocardial layers. However, for the model to be realistic, an epicar-
dial layer should surround both ventricles to ensure proper propagation of cardiac
cells. Due to the lack of this layer, there were some regions where the ventricles were
not in contact with each other and, therefore, proper myocyte propagation could not
be computed. On top of that, the RV segmentations need also be improved, since
with DIXON sequences in the LGE-CMR it is difficult to visualize the RV anatomy,
especially the basal and apical areas. For this reason, RV segmentations varied so
much between patients, because the anatomy of the basal and apical zones could
not be accurately distinguished. Although the simulation results obtained at the
RV were quite accurate, it is necessary to improve the segmentations, perhaps by
segmenting the RV from a CT image, to obtain more robust results.

Another aspect to highlight is the complexity of the visualization of reentry circuits
during wavefront propagation. First, only the BZ region was computed for better vi-
sualization, as this region is where reentry circuits originate. However, the exported
model showing the life-time propagation of the BZ nodes only allowed visualization
of the external part of the BZ, not the activation that happened inside it (see Figure
16). Plus, based on the BZCs detected in the segmentation, most channels in the
models were small and narrow, making it even more difficult to detect the re-entrant
circuits causing the VT. In general, it was possible to identify in which region the
reentry originated (see Figure 17), but not the exact circuit causing it. By correctly
identifying the reentry circuits that originate the VT, a comparison with the BZCs
detected in the segmentation can be done, to visualize if they correspond to the
same slow conducting channels simulated, and helping in this way to optimize the
VT-RFA procedure. Nevertheless, this comparison could only be done in one pa-
tient (see Figure 16), where indeed one of the BZC detected in the segmentation
matched with the slow CC computed in-silico. In the rest of the patients where VT
was induced, it was not possible to detect visually the reentry circuits. As possible
further work, the division of 10 layers from the endocardium to the epicardium could
help in the detection of reentry circuits, allowing a further analysis of each layer and
the detection of the circuits originating the VT.

Finally, aside from the computational issues, another factor to be considered is the
baseline condition of the patients. Although the exact baseline conditions of the
patients during EPS were unknown, Isoproterenol was administered in some cases,
improving the inducibility of the arrhythmia. The CA model could not take into ac-
count the effect of drugs, so it is possible that VT was not induced in some patients
because drug administration was not contemplated. A possible next step to consider
could be the incorporation of the effects that these drugs have on the physiology of
patients, making it possible to identify cases in which VT was not inducible, but
that under the effects of drugs could be detectable.
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5 Conclusions

The current bachelor thesis aimed to present a pipeline for performing fast LV elec-
trophysiological simulations able to stratify the risk of VT in patients that have
suffered a MI by following the steps that are carried out in the clinical practice.

The similarity of the results obtained in-silico with those obtained in EPS demon-
strate that CA-based fast cardiac electrophysiology simulators together with the
implementation of the pacing protocols used in real interventions are valid for as-
sessing arrhythmia risk. The virtual implementation of the same pacing protocols is
clearly necessary to test and validate the behaviour of the models. With that, it has
been proven that the best in-silico pacing site matches that of EPS, demonstrating
how relevant it is to perform cardiac simulations following the steps used in clinic.

Therefore, it is a step towards creating robust VA prediction models, which relia-
bility would eventually reach the point where it could be considered as reliable as
procedures performed in clinical practice. In this way, invasive EPS could be pre-
vented by establishing in-silico models as a reliable parameter to assess VT risk.

Hence, with the aim of creating more accurate models, an improvement of the biven-
tricular model used to perform the simulations is needed, and a better visualization
of the electrical propagation would help on the detection of reentry circuits that
cause the VT. On top of that, given that fast simulations are computed, this would
enable studies with a larger number of patients, obtaining in this way greater sets
of results that would help to reach more reliable conclusions.
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Appendix

Induced VT on EPS No VT on EPS No EPS

P1 P2 P3 P4 P5 P6 P12 P7 P9 P11 P13 P14 P15 P8 P10

Clinical characteristics

Sex (M/F) M M M M M M M M M M F M M M M
Age (years) 84 70 61 49 81 53 68 63 69 60 75 56 72 50 70
LVEF (%) 28 35 32 35 25 36 37 57 59 54 43 60 39 55 47

Scar characterization

Scar mass (g) 47.5 17.9 57.1 106.5 32.5 16.8 29.5 18.5 9.6 10.1 17.1 10.1 28.4 4.7 36.8
BZ mass (g) 42.2 13.1 34.2 65.7 24.3 13.3 21.4 13.7 8.4 7.2 8.1 8.0 21.9 3.4 24.2
CZ mass (g) 5.1 4.8 22.9 40.7 8.2 3.5 8.0 4.8 1.1 2.8 9.0 2.0 6.4 1.3 12.6

Table 8: Clinical and scar characteristics of each patient.
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