
Computational and Structural Biotechnology Journal 20 (2022) 4549–4561
journal homepage: www.elsevier .com/locate /csbj
Brain transcriptomic profiling reveals common alterations across
neurodegenerative and psychiatric disorders
https://doi.org/10.1016/j.csbj.2022.08.037
2001-0370/� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding authors at: BarcelonaBeta Brain Research Center, Pasqual
Maragall Foundation. C.Wellington 30, 08005 Barcelona, Spain, (Natàlia Vilor-
Tejedor); Center for Genomic Regulation (CRG). C. Doctor Aiguader 88, Edif. PRBB
08003 Barcelona, Spain (Roderic Guigo).

E-mail addresses: roderic.guigo@crg.eu (R. Guigo), nvilor@barcelonabeta.org
(N. Vilor-Tejedor).

1 ORCID: 0000-0003-4935.
2 ORCID: 0000-0002-5738-4477.
Iman Sadeghi a,b,c, Juan D. Gispert a,d,e,f, Emilio Palumbo b,d,e, Manuel Muñoz-Aguirre b,g, Valentin Wucher b,
Valeria D’Argenio c,h, Gabriel Santpere d,e,i, Arcadi Navarro a,b,d,j,k, Roderic Guigo b,d,⇑,2,
Natàlia Vilor-Tejedor a,b,d,l,⇑,1
aBarcelonaBeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
bCentre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, Barcelona E-08003, Catalonia, Spain
cCEINGE-Biotecnologie Avanzate, via G. Salvatore 486, 80145 Naples, Italy
dUniversitat Pompeu Fabra (UPF), Barcelona, Spain
e IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
fCentro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
gUniversitat Politècnica de Catalunya. Departament d’Estadística i Investigació Operativa, Barcelona, Spain
hDepartment of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
iNeurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Barcelona, Catalonia, Spain
j Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
k Institute of Evolutionary Biology (CSIC-UPF), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
lErasmus MC University Medical Center Rotterdam, Department of Clinical Genetics, Rotterdam, The Netherlands

a r t i c l e i n f o
Article history:
Received 13 April 2022
Received in revised form 16 August 2022
Accepted 16 August 2022
Available online 19 August 2022

Keywords:
Transcriptome profiling
RNA-Seq
Neurodegeneration
Psychiatric disorder
Network analysis
Brain cell types
a b s t r a c t

Neurodegenerative and neuropsychiatric disorders (ND-NPs) are multifactorial, polygenic and complex
behavioral phenotypes caused by brain abnormalities. Large-scale collaborative efforts have tried to iden-
tify the genetic architecture of these conditions. However, the specific and shared underlying molecular
pathobiology of brain illnesses is not clear. Here, we examine transcriptome-wide characterization of
eight conditions, using a total of 2,633 post-mortem brain samples from patients with Alzheimer’s dis-
ease (AD), Parkinson’s disease (PD), Progressive Supranuclear Palsy (PSP), Pathological Aging (PA),
Autism Spectrum Disorder (ASD), Schizophrenia (Scz), Major Depressive Disorder (MDD), and Bipolar
Disorder (BP)–in comparison with 2,078 brain samples from matched control subjects.
Similar transcriptome alterations were observed between NDs and NPs with the top correlations

obtained between Scz-BP, ASD-PD, AD-PD, and Scz-ASD. Region-specific comparisons also revealed
shared transcriptome alterations in frontal and temporal lobes across NPs and NDs. Co-expression net-
work analysis identified coordinated dysregulations of cell-type-specific modules across NDs and NPs.
This study provides a transcriptomic framework to understand the molecular alterations of NPs and
NDs through their shared- and specific gene expression in the brain.
� 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Neurodegenerative and neuropsychiatric disorders (ND-NPs)
are multifactorial, polygenic, and complex behavioral phenotypes
caused by changes in multiple underlying mechanisms [1,2]. In
some NDs, nerve cells become unable to respond to changes in
their internal and external environments, eventually resulting in
an impairment of brain function [3–5]. At present, the most preva-
lent NDs [6,7] are Alzheimer’s disease (AD), Parkinson’s disease
(PD), progressive supranuclear palsy (PSP), as well as early preclin-
ical manifestations of those such as pathological aging (PA).
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Because of the presence of amyloid plaques, but not tangles, and
the absence of dementia, PA is considered to be either a prodrome
of AD or a condition, in which there is resistance to the develop-
ment of neurofibrillary tangles and/or dementia [8]. Alteration of
neuronal communications has been implicated in NDs, as well as
in NPs such as schizophrenia (Scz), bipolar disorder (BP), autism
spectrum disorder (ASD), and major depressive disorder (MDD),
which are also among the major contributors to disability world-
wide [9]. The etiology and mechanisms of NDs and NPs are elusive
and a broad spectrum of causative genetic and environmental fac-
tors have been proposed [10].

Several investigations have shed light on the genetic hetero-
geneity within brain conditions and the degree of molecular simi-
larities between closely related disorders [11–13]. Patterns of
converging clinical and biological characteristics across NDs such
as AD, PD, and PA have been lately discussed [14–16]. NPs have
also shown symptomatic overlaps [17,18]. This demands uncover-
ing condition-specific and overlapping pathological mechanisms
across ND-NPs, which has been partly revealed by recent large-
scale genome-wide association studies (GWAS) [19–21]. For
instance, the genetic correlation between eight neuropsychiatric
disorders revealed 3 different sub-groups with high levels of
genetic overlap as well as multiple pleiotropic loci related to genes
involved in neurodevelopment [22]. Moreover, some effort has
been made to relate shared genetic causes with shared transcrip-
tomic alterations in the post-mortem brains in subsets of these dis-
orders, revealing similar relationships among diseases even if not
necessarily implicating the same genes [21,23].

Such integrative transcriptomic studies attempt to fill the func-
tional gap and establish the degree of coupling between primary
genetic causes and secondary events captured by the transcrip-
tome in adult postmortem samples [24]. However, a comprehen-
sive characterization of gene expression changes in brain regions
from individuals with major brain NDs and NPs compared with
healthy subjects is missing. To address this shortcoming, we have
uniformly analyzed a large collection of bulk RNA-Seq samples
from post-mortem brain regions of subjects with NDs and NPs pro-
duced by different studies. The results of our meta-analysis
revealed similarities in transcriptomic alterations between NDs
and NPs which have also been observed in brain regions such as
frontal and temporal lobes across the conditions. We additionally
found coordinated downregulation of neuron-specific co-
expression modules in both NDs and NPs, while oligodendrocyte
and astrocyte modules showed mainly upregulation across
conditions.
2. Results

2.1. Samples characteristics and clustering

We analyzed 4,711 RNA-Seq samples produced by 19 different
labs [8,21,25–42] from patients with AD (n = 906 samples), PD
(n = 29), PA (n = 58), PSP (n = 168), Scz (n = 535), ASD (n = 187),
MDD (n = 240), BP (n = 510), and non redundant controls
(n = 2,078) pooled across all studies, obtained from seven major
brain regions (Fig. 1 & S1, for further details see Table S1 & S2).
To produce a uniform gene expression quantification that could
be compared across different datasets, the samples were processed
using the Grape RNA-Seq pipeline [43] and underwent normaliza-
tion and quality control (see Methods & Fig. S2-S9). The cell-type
proportion was also calculated for RNA-Seq data from each sample
(Fig. S10) using BRETIGEA R package v. 1.0.3 [44] and the data were
normalized for the proportion of the cell types using the same
package. t-Distributed Stochastic Neighbor Embedding (tSNE)
[45] analysis in combination with principal component analysis
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(PCA) was used to produce a latent representation of the samples
from different conditions based on their gene expression profiles
(see Methods). In general, some brain regions (e.g. cerebellum
and basal ganglia) are clustered separately from other regions
(Fig. 2a). Within the cerebellum cluster, ASD samples are clearly
separated from other conditions (Fig. 2a and Fig. S11a-b). PA and
PSP clustered together very distinctively, but this could be con-
founded because samples for these conditions come from the same
regions. ASD clustered into two different groups, likely reflecting
the brain region from which samples originated. This could indi-
cate that ASD may correspond to different molecular conditions.
We observed a better separation of condition samples compared
to controls (Fig. S11a). This was confirmed by the higher correla-
tion between the top five PCs of gene expression computed in
the condition samples and the regions compared to that obtained
for controls (Fig. S11c).To some extent, this also happens with
MDD. Finally, BP shows partly clustering with Scz based on the ori-
gin of the regions (Fig. 2a).

2.2. Condition-specific differential gene expression (DGE)

Condition-specific differential gene expression (DGE) analyses
were performed using a linear mixed-effect model (see Methods).
These analyses provided insights regarding transcriptional changes
for the pathobiology of each condition (Supplementary Data 1 &
Fig. S12). As the density plot shows some conditions have DEGs
with logFCs close to zero, we kept those genes with an absolute
logFC > 0.58 (Fig. S12). In total, we found 2891 unique genes differ-
entially expressed in at least one condition. The correlation test
showed no significant relationship between sample size and the
number of DEGs (p = 0.058). In addition, the results obtained from
random downsampling of one of the datasets (PRJNA394722, Pan-
tazatos et al [37]) showed that sample size does not affect DEG
results (Supplementary Data 2). Also, significant overlap between
condition-specific DEGs and those obtained from individual data-
sets represented the reproducibility of the results (Fig. S13). Most
DEGs were exclusive of one single condition, and we did not find a
single gene shared across all the conditions, but there were genes
shared across several conditions (Fig. 2b & Fig. S14). For instance,
MPZL2, SERPINA3, and heat shock protein-encoding genes HSPA6
and HSPB1 which have been associated with neuro-inflammation,
and stress response in neuronal damage [46,47], were deregulated
in at least five conditions. Gene enrichment analysis performed
using DEGs for each condition showed that the top enriched path-
ways are condition-specific (Fig. 2c); however functions related to
stress response, synapse, and immune response were shared
among some conditions (FDR-corrected p-value < 0.05; Fig. 2c &
Fig. S15).

2.3. Cross-condition transcriptome overlap observed across NDs and
NPs

To investigate the similarity between transcriptome alterations
underlying the NDs and NPs, we compared the genes’ fold change
(FC) in expression in cases vs controls between conditions, by
explicitly computing the pairwise correlation of logFCs from
15,819 shared genes (See Methods, Fig. S16a and Supplementary
Data 3). This set of genes showed significant overlap with the list of
common genes across psychiatric disorders from Gandal et al [21].
study (odd ratio = 4.5, FDR-corrected p-value < 0.001). Scz and BP
represented the strongest correlation with the overlap of both
downregulated and upregulated genes (Fig. 3a & Fig. S16b). Also,
performing correlation analysis including variably expressed genes
across conditions showed the highest correlation between ASD-BP
and AD-PD (Fig. S16c). According to the transcriptional alterations,
ASD clustered together with NDs, rather than within other NPs



Fig. 1. Schematic of the study design and samples used for gene expression analysis via an RNA-Seq pipeline. Post-mortem brain RNA-Seq data were obtained from
subjects with AD (n = 906 samples), PD (n = 29), PA (n = 58), PSP (n = 168), Scz (n = 535), ASD (n = 187), MDD (n = 240), BP (n = 510), and matched controls (n = 2078) (see
Supplementary Table S1&S2 and Fig. S1).
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(Fig. 3b). Within NPs, Scz and BP clustered closer, and within NDs,
PA and PSP. MDD clustered separately from the rest of the condi-
tions (Fig. 3b). These results were confirmed by computing corre-
lations of the logFCs from the same set of genes across individual
datasets to check for reproducibility (Fig. S16d).
2.4. Region-specific differential gene expression

Although some regions were present for only a limited number
of conditions, we also considered analyzing differential expression
for the samples from the same regions. Although after correcting
for multiple tests, many regions did not show significant DEGs
(Fig. S17), region-specific DGE revealed a set of overlapping genes
that were frequently differentially expressed in multiple brain
regions across conditions or vice versa (Supplementary Data 4).
These genes included GABRE and KCNE4 involved in neurotrans-
mission [48,49], SERPINA5 associated with neuropathies and the
formation of amyloid-fibrils in condition [50–52], and HSPB1 asso-
ciated with stress inflammation [53], and [54]. We built classifier
models using the expression of DEGs from temporal and frontal
regions (the most present regions across conditions) to explore
the discrimination power of transcriptomic profiles between con-
dition and control samples. High prediction accuracy was obtained
for PD (78 %) and AD (79 %) in the frontal and temporal cortex,
respectively (Fig. S18).

Analysis of the similarities in transcriptional alterations
between different conditions in the individual brain regions sepa-
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rately generally recapitulated the findings in Fig. 3a. BP and Scz
showed a high positive correlation in all the regions in which these
conditions were assayed (Fig. 3c & Fig. S19). MDD showed little
correlation with the other conditions across different regions..
Some conditions, however, showed similar or distinct transcrip-
tome alterations depending on the region. Thus, transcriptomic
changes underlying PSP and AD were highly correlated in the cere-
bellum but negatively associated in the temporal lobe (Fig. 3c &
Fig. S19). In some cases, therefore, apparently similar phenotypic
outcomes are the consequence of different molecular events in dif-
ferent brain regions.
2.5. Network analyses identified condition-specific and shared
transcriptional signatures

To connect molecular alterations with the phenotypes of NDs
and NPs, via their impact on the cellular composition of the
brain, we constructed co-expression networks using combined
normalized datasets for the same set of shared genes using
weighted gene co-expression network analysis (rWGCNA) [55]
and obtained seventeen co-expression modules (Fig. 4a &
Supplementary Data 5). Module M0 comprises the genes that
are not included in specific modules. We assigned cell types to
each module based on the overlap between the genes in the
module and the genes defining the cell type as in the PanglaoDB
database [56]. Several modules were enriched for cells of a
specific type: M2 for oligodendrocytes and Schwann cells, M5



Fig. 2. Condition-specific transcriptome alterations. (a) tSNE visualization of the pooled samples as colored by region (left) and condition (right). (b) A heatmap of
differentially expressed genes across neurodegenerative disorders (ND) and neuropsychiatric disorders (NP). The row labels represent the genes differentially expressed in at
least 5 conditions. (FDR-corrected P < 0.05 & |log2FC| > 0.58). (c) Conditions-specific gene enrichment analysis. Top significantly enriched pathways are represented for
significantly differentially expressed genes across conditions (FDR-corrected p-value < 0.05).
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for astrocytes and Bergmann glia, M10 for microglia, M8 and
M13 for neurons, and M14 for ependymal cells (Fig. 4b). These
modules were the most distinct from the rest according to the
correlation analysis and MDS (Fig. S20). The assignments were
confirmed using an independent RNA-Seq dataset [57] composed
of five main brain cell types including neurons, astrocytes,
oligodendrocytes, microglia, and endothelial cells (Fig. S21a).
We also identified the hub genes (the genes with the highest
intramodular connectivity for each module (Fig. S21b). The
functional categories enriched in cell-type-specific modules were
broadly consistent with the cell-type assignments (Fig. 4c &
Supplementary Data 6).
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We next identified the differential expression of cell-type-
specific modules in each condition from the expression of eigen-
genes (the first principal component of the expression matrix of
the corresponding module, as a representative of an entire co-
expression module) in each module using a linear mixed model
(see Methods, Fig. 5a & Supplementary Data 7). In addition, the
differential expression of top hub genes within these modules
was measured for each condition (Fig. 5b). Then, we could relate
NDs and NPs to cellular alterations in the brain.

Thus, neuron-specific modules (M8 and M13) were broadly
downregulated across AD, PD, ASD, Scz, and BP, but upregulated
in PA and PSP. The oligodendrocyte module M2 was upregulated



Fig. 3. Similarity of transcriptional alterations across conditions. (a) Correlation plot (top) shows transcriptome alterations overlap obtained by computing Spearman’s
correlations using logFC values of the shared genes between the conditions. Rank-rank hypergeometric overlap (RRHO; bottom) depicts the direction (upregulation and
downregulation) of the logFC overlaps. The guide panel represents the cross-condition overlapping relationship. Signals in the upper left quadrant display an overlap for
shared upregulated genes, while those in the bottom right quadrant depict shared downregulated genes. The color bar displays the degree of significance of the overlap
(Fisher’s exact test with FDR < 0.05). (b) Correlation network (top) and a tree dendrogram (bottom) obtained from pairwise correlations corresponding to a. show the
relationship of the conditions based on transcriptome alterations. (c) A circos plot demonstrating correlations of transcriptional alterations across conditions. Only significant
correlations after FDR correction (FDR < 0.05) with a cut-off of absolute correlation > 0.1 are displayed here (see Supplementary Fig. S19). The outer layer represents
conditions, while the inner layer displays brain regions defined by colors.
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in all conditions except PA and PSP (Fig. 5a,b), and consistently
enriched with genes involved in oligodendrocyte and glial cell dif-
ferentiation (Fig. 4c). The microglia-associated module (M10)
which was upregulated in neurodegenerative diseases AD and
PD, PA, and a psychiatric disorder ASD represented enrichment
for genes involved in the immune response. These results are con-
sistent with the reported microglial activation in AD [58], PD [59],
and ASD [60] and also with the crucial role of microglia in CNS
development and immunity [61,62]. The astrocyte-specific module
(M5), broadly upregulated in AD, PD, PA, ASD, Scz, and BP (Fig. 5a),
was enriched for metabolic genes. An increase in astrocytic reactiv-
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ity has previously been reported in response to oxidative stress
induced by amyloid-beta accumulation [63]. Additional analysis
demonstrated a significant overlap of module M5 with an
astrocyte-specific module from the Gandal et al. [21] study which
represented coordinated upregulation in ASD, BP, and Scz
(Fig. S21c). These results highlight the significant role of astrocytes
in synaptic signalling, neuroprotection, and brain development
[64–66].

Furthermore, we investigated the role of enhancers in the regu-
lation of the network modules. We used an independently derived
dataset of brain enhancer RNAs or eRNA (a class of relatively long



Fig. 4. Cross-condition co-expression modules identified by network analysis. (a) A dendrogram plot displaying co-expression modules obtained from the topological
overlap of 15,819 shared genes between conditions. Each color represents an individual module and the grey color (M0) contains genes that are not included in a specific
module. The corresponding plot on the right side shows the number of genes within each module. (b) Enrichment of co-expression modules for brain cell types, measured by
comparing genes within each module to the brain single-cell dataset from PanglaoDB [56] (see also Supplementary Fig. S21a). (c) Heatmap plot of gene ontology enrichment
for cell-type-specific modules using top five significant pathways for each module. The color key shows -log10(FDR).

Fig. 5. Co-expression gene module characterizations. (a) Differential expression of cell-type-specific modules across conditions. b values on the y-axis computed by linear
mixed effect model show the relationship of modules eigengenes with conditions. (b) Differential expression of top hub genes within cell-type-specific modules across
conditions. Brain cell-type-specific modules are annotated with colors. (c) Enrichment of brain enhancer RNAs for cell-type-specific modules. The overlap between co-
expression modules and eRNA modules from an independent dataset [67] was computed by Fisher’s exact test (FDR < 0.05). Color key shows the -log10 (FDR-corrected p-
values; *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001; see also Supplementary Fig. S22). (d) A circular heatmap showing expression of protein-coding and their flanking lncRNAs in
neuron modules M8 and M13 across conditions (see also Supplementary Fig. S23). (e) The enrichment of co-expression modules for mitochondrial transcriptomes. An
independent study that previously reported synaptic and nonsynaptic mitochondria co-expression modules was obtained and compared to co-expression modules in this
study using Fisher’s exact tests (FDR < 0.05). Yellow and black colors represent enrichment of synaptic and nonsynaptic mitochondrial transcriptomes for co-expression
modules. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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non-coding RNAs) modules [67] (sets of eRNAs which are coordi-
nately expressed in the brain). Results demonstrated the enrich-
ment of multiple eRNA modules for the cell-type-specific
modules (Fig. 5c & Supplementary Fig. S22), demonstrating the
role of these enhancer modules in regulating network modules
across brain conditions. Neuron-specific modules M8 and M13
showed enrichment for eRNA eModule5, which shows expression
specificity for cerebral cortex [67]. In addition, the relationship
between protein-coding genes and their adjacent lncRNAs in neu-
ron modules shows their coordinated regulation across the condi-
tions (Fig. 5d & Fig. S23). Oligodendrocyte and microglia modules
(M2 andM10) were enriched for eModule7 which is specific for the
thalamus- a region affected in a variety of systemic or metabolic
diseases, degenerative diseases, and psychiatric conditions [68].
The astrocyte-specific module M5 is associated with eModule6,
which is specific for medulla oblongata [67] (a part of the brain-
stem), a region associated with neurodegeneration and movement
disorders [69–71]. These results demonstrate the regulation of co-
expression modules across the conditions in the brain.

Eventually, as mitochondrial genes have been formerly linked
to neuronal phenotypic diversity and brain conditions [72–75],
we performed enrichment analysis of synaptic and nonsynaptic
mitochondrial genes for each module using an independent data-
set [75]. Multiple neuron-related modules (M15, M13, M8, M4,
and M3) were enriched for mitochondrial genes [75], of which
M15, M8 and M3 showed significant enrichment for synaptic mito-
chondria (Fig. 5e & Supplementary Data 8). These modules which
have previously shown enrichment for neurons, contain genes
mainly downregulated across the conditions (Fig. 5a). These results
highlight the relationship between alteration of mitochondrial
transcriptome and synaptic dysfunction in the brain across condi-
tions [76].
3. Discussion

Leveraging the transcriptome profile of post-mortem tissues
from several brain regions, for the first time to our knowledge,
we highlighted the substantial overlapping molecular patterns
across eight brain conditions including NDs and NPs. Dysregulation
of overlapping genes such as MPZL2, SERPINA, HSPA6 and GABRE
across brain regions suggests shared perturbation of several mech-
anisms such as activation of microglia [77], inflammatory mecha-
nisms, synapse development, and synaptic plasticity [54] across
conditions. Microglia and astrocytes are vital in regulating neu-
ronal activity and brain functioning during development and in
the adult brain [78]. These results are consistent with previous
well-established findings that molecular mechanisms in microglia
and astrocytes are altered in ND-NPs [66,79].

In line with this, co-expression network results revealed mainly
downregulation of neuron-specific modules across multiple condi-
tions, reflecting neural dysfunction in both NDs [80] and NPs [81].
The microglial-related module showed mainly upregulation in NDs
(i.e. AD and PD) reflecting activation of microglia during neurode-
generation and brain dysfunction [61,82]. Astrocyte- and
oligodendrocyte-specific modules demonstrated broad upregula-
tion across conditions including both NDs and NPs, representing
activation of these cell types in neurogenesis, signaling, and cell
development [21,64,83]. Also, coordinated downregulation of
synaptic mitochondria-related modules across conditions suggests
the importance of mitochondria for synaptic connections, neuronal
survival, and function [75] in both NDs [84] such as PD [85] and AD
[86], as well as in NPs [87].

Moreover, our results revealed shared transcriptional changes
between neurodegenerative and psychiatric disorders. The findings
from this study report new results about similar molecular changes
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between NDs and NPs, as well as supporting previous reports on
shared transcriptional changes within each etiology (e.g., between
NDs or NPs). Specifically, we observed similar transcriptional
changes between PD-ASD, AD-ASD, PD-BP, PD-Scz, and AD-Scz.
Moreover, within NDs, we found transcriptome overlap between
AD-PD and PA-PSP, while within NPs, we found top transcriptome
similarities between Scz-BP and Scz-ASD. The high correlations
observed for the Scz-BP and Scz-ASD pairs support previous
reports on the molecular similarity of these disorders [21,22]. Cor-
relation of transcriptomic alterations across brain regions demon-
strated the limbic lobe captures the majority of transcriptomic
similarity between Scz and BP, supporting the role of this region
in mood and psychotic disorders [88]. Although the only region
studied for PD was the frontal lobe, similar transcriptional changes
were observed between PD-ASD, particularly for the genes such as
CHI3L1, HSPA1, and HSPB1 involved in neuroinflammation pathway
that has been recently linked to autism [89,90]. High frequency of
parkinsonism has previously been reported in autistic cases [91], in
which inflammatory mechanisms are seemingly involved in the
pathobiology of the disease [92,93]. The correlation of transcrip-
tional alterations between AD and ASD (p-value < 0.001) supports
the evidence of neuroinflammation in autism [94,95–97]. This
transcriptomic similarity between AD and ASD was mainly
observed for temporal > frontal lobes. The overlapping expres-
sional changes of genes such as CHI3L1 between Scz and PD suggest
perturbation of dopaminergic-glutamatergic balance in the brain,
as described previously [98,99]. The Scz-AD similarity, which was
mainly captured by the temporal lobe, is also consistent with the
evidence of shared mechanisms between neurodegeneration and
Scz [100,101]. Primary damaged regions in PSP and PA are reported
to be brain stem (specifically substantia nigra) [102] and hip-
pocampus [103], respectively. However, the significant transcrip-
tome correlation between PSP and PA, mainly observed in the
temporal lobe, suggests similar transcriptional changes in this
brain area for the conditions. Although PSP is sometimes misdiag-
nosed as PD due to similar clinical symptoms [104], we did not
observe transcriptome similarity here. This could be due to the lack
of primary damaged regions for either condition and/or different
pathobiology of the conditions [105].

In addition, our findings provide new insights into the shared
pathobiology in ASD and Scz and their transcriptome similarity
with NDs [106,107]. Also, the results did not show a significant cor-
relation between AD and PA, suggesting their divergent molecular
pathobiology [108]. Transcriptional relationships were not
observed between MDD and other NPs such as Scz and ASD as
expected, which could be due to its heterogeneous nature
[21,22,109]. Of note, shared transcriptional changes observed here
do not necessarily indicate similar pathobiology of the conditions,
particularly in conditions such as PD, PSP, and PA which lack pri-
mary damaged regions and demand further investigation.

Comparisons of transcriptional changes across brain regions
demonstrated similar molecular changes in the temporal and fron-
tal lobe across NDs and NPs, implicating their possible impairment
in the pathogenesis of a variety of brain diseases [110–116]. Simi-
lar molecular patterns of the cerebellum were observed across AD,
PSP, and PA, supporting its emerging role in the pathobiology of
NDs [117,118]. Despite the lack of samples for some of the condi-
tions mentioned before, the basal ganglia and limbic lobe showed
transcriptional similarities across Scz, ASD, BP, and MDD, implying
their involvement in several mood and psychiatric disorders. These
findings suggest, on one hand, the molecular changes of multiple
brain regions (rather than one primary region) in one condition
and, on the other hand, the involvement of one region in multiple
conditions.

Of note, in the analysis of the overlapping transcriptomic alter-
ations, we did not expect to capture modifications directly linked
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to the underlying etiological mechanisms of the different condi-
tions studied here. However, this was addressed in condition-
specific gene expression analyses and will be more investigated
in future analyses with the same database, along with the explo-
ration of conditions sharing common mechanisms (i.e. cerebral
proteinopathies) or between the different stages of the same dis-
ease (i.e. preclinical and clinical stages of AD) [119,120]. In line
with this, we anticipate that future research will also benefit from
the integration of transcriptomics with other omics modalities,
such as genomics, proteomics, metabolomics, and epigenomics.
This promises to provide deeper insights into the causative path-
ways through which genes and environment interact during life
and influence the human brain [121]. Additional research could
also benefit from further identification of sex-specific gene net-
works and transcription profiles to unravel the molecular mecha-
nisms of brain diseases [122–124].

In addition, since tissue samples from all brain regions were not
available for all conditions, in some of them, we might have missed
the transcriptomic profile of the brain area in which the primary
pathology is expected to be expressed (i.e. basal ganglia in PD).
Another limitation could be the potential impact of sample size
on the DEG results. This could be avoided by using large-scale
cohorts for all the conditions in future investigations. Also, even
though batch-effect corrections have thoroughly been applied
here, the inevitable effect of merging multiple datasets on the
results could still be a limitation. Furthermore, the heterogeneity
between brain regions could be a potential contributing factor
for condition-specific differential expression analysis due to their
cellular composition diversity. We tried to tackle this issue by per-
forming analyses for each region. However, despite the limitations
of the current analyses, molecular signatures here described across
ND-NPs can provide target leads for the development of therapeu-
tic interventions targeted to common pathological mechanisms
which may overcome indications solely based on clinical manifes-
tations, thus paving the way for the rational design of personalized
and mechanistically-based therapies [125].
4. Methods

4.1. Samples and raw data

RNA-Seq raw data were obtained from 4,711 post-mortem
brain samples from subjects with AD, PD, PSP, PA, Scz, MDD,
ASD, BP, and controls through previously published studies
[8,21,25–42] and consortia including CommonMind Consortium
and PsychENCODE Consortium from Sage Synapse (https://www.
synapse.org/) and the NCBI Gene Expression Omnibus (GEO)
(https://www.ncbi.nlm.nih.gov/geo/) (see Table S1). The samples
from individual datasets were processed separately (cases and con-
trols from each study) and analyzed according to our RNA-Seq
pipeline as described below.
4.2. Data processing

The data obtained from individual datasets were processed sep-
arately. We used RNA-Seq fastq files as the initial source of data
processing. The samples that were retrieved as SRA and BAM files
were converted to fastq file formats using SRA-toolkit [126] and
SAM-tools [127], respectively. For further sample processing, the
Grape pipeline [128] was used for RNA-Seq analysis, with Nextflow
[129] as the execution backend, the STAR aligner v.2.6.0a tool [130]
for mapping reads to the human genome build hg19 with GEN-
CODE v.28 annotations, and the RSEM tool [131] for isoform quan-
tification (using default options). Next, post-alignment quality
control (QC) was performed using STAR aligner statistics, Qualimap
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v.2.2.1 tools [132], and Picard tools v1.8 (https://broadinstitute.
github.io/picard/) to check for the total number of reads, the total
number of mapped reads, GC percentage, exonic rate, intronic rate,
intergenic rate, duplication rate, and insertion/deletion rate.
Sequencing statistics were used to check for quality control and
sample outliers for each study independently. The data were then
normalized for library size using the voom-limma R package [133].
To filter out lowly-expressed genes, only genes with at least log2(-
CPM) of 0.5 in 70 % of the samples were kept for further analyses.
The sva R package v.3.32.1 [134] was used to correct for any batch
effect of sequencing library preparations. For each study batch
effect correction was performed for known batch effects such as
library preparation, load date, and biobank as assessed by surro-
gate variables and PCA (data not shown). Unknown batch effects
were also assessed by checking surrogate variables using the sva
R package. For condition- and region-specific analyses, the data
were corrected for study as a batch effect. To remove sample out-
liers, standardized network connectivity Z-scores were measured
and a cutoff of Z < -2 was set as the threshold [135,136]. Normal-
ized datasets were kept for downstream analyses.

4.3. Cell-type proportion analysis and cell-type normalization

To estimate the cell-type proportion of bulk tissue RNA-seq data
used here, a cell-type deconvolution was performed on each sam-
ple using the brain cell–type marker signatures provided by the
BRETIGEA R package v. 1.0.3 [137]. For each cell type, 500 genes
were used from the human brain cell marker gene set (neurons,
endothelial, oligodendrocytes, microglia, astrocytes, and OPCs) to
generate all surrogate cell-type proportion (SPV) estimates. Nor-
malization of the RNA-seq for brain cell type was also performed
by BRETIGEA, using the default parameters and the calculated
SPV values from the previous step.

4.4. Samples clustering and tSNE analysis

t-SNE [45] was used to produce a latent representation of the
samples based on their gene expression profiles across datasets
using all normalized datasets which were pooled together in an
expression matrix using 15,819 genes common across the condi-
tions. Before this, principal component analysis (PCA) [138] was
first performed using the prcomp function in R to reduce the num-
ber of dimensions and obtain the top 50 principal components
(PCs) as input to the tSNE analysis. The tSNE analysis was then per-
formed by using Rtsne R package v. 0.15 using parameters dims = 2,
initial_dims = 50, perplexity = 50, theta = 0, check_duplicates = T
RUE, and PCA = FALSE. The first two t-SNE coordinates were used
for visualization. To see clustering of the samples including con-
trols, PCA and tSNE analyses were performed using the same
parameters mentioned above (see Fig. S10a). In addition, tSNE
analysis was performed for each region on the samples from differ-
ent conditions (see Fig. S10b). We compared the correlation
between the top five PCs of gene expression computed in control
samples and the regions and those computed in the disease sam-
ples and the regions.

4.5. Differential gene expression (DGE) analysis and transcriptome
comparisons

Differential expression analysis for each dataset was performed
using limma with empirical Bayes moderated t-statistics, with the
following model (expression � diagnosis + age + sex + RIN (RNA
integrity) + PMI (postmortem interval)). Those variables with sig-
nificant differences between cases and controls were included in
the model. For the condition-specific DGE analyses, normalized
expression data from relevant studies were combined and sample

https://www.synapse.org/
https://www.synapse.org/
https://www.ncbi.nlm.nih.gov/geo/
https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
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outliers were removed as described previously. DGE was calculated
using linear mixed-effects models by the nlme R package v.3.1–140
[139], with fixed effects of diagnosis, age, sex, brain region, and
study. A random effect for subjects was used to fix for overlapping
subjects between the studies (expression � diagnosis + age + sex +
brain region + study + 1 | subject). The calculated log fold-change
(logFC) values were used for downstream analyses. Significantly
differentially expressed genes (DEGs) were filtered by using an
FDR-corrected p-value of < 0.05. We then filtered those genes that
had an absolute log2FC > 0.58.

In order to assess the similarity of transcriptional changes, we
obtained an intersection of 15,819 genes that were present in all
conditions after normalization. The logFCs of these genes were
used to perform Spearman correlation tests. We also performed
the same test with the inclusion of variably expressed genes across
conditions (in total 26,366 genes).

4.6. Reproducibility of differential expression results

To check the reproducibility of the DGE results, the list of DEGs
obtained from each individual dataset was compared to those
obtained from condition-specific analysis by calculating the odd
ratio using GeneOverlap R package v. 1.20.0 [140]. Fisher’s exact
test was used to calculate the p-values of each comparison. We
also reperformed the DEG analysis for PRJNA394722, Pantazatos
et al [37] by randomly downsampling. In addition, to avoid the
effect of each study on the results from combined datasets, the
DGE results from individual studies were also compared with each
other for each condition (Fig. S16d).

4.7. Building classifier models

To identify the prediction power of transcriptional alterations
from the frontal and temporal lobe between cases and control sam-
ples, normalized expressions of DEGs for each region were used to
build classifier models using random forests [141] The dataset con-
taining cases and controls from each region was split into train and
test partitions. The training was performed using the trainControl R
function from caret R package v. 6.0–90 with a cross-validation
method and 10-fold cross-validation to avoid overfitting, followed
by using the train R function with a random forest method. Then,
the confusionMatrix R function was used to obtain the accuracy,
sensitivity, and specificity of the final models for comparing the
results.

4.8. Comparisons of transcriptional alterations

To analyze cross-condition transcriptome profile comparisons,
we only kept the 15,819 genes that were common across all dis-
eases. Pairwise gene expression comparisons were performed
using Spearman’s correlation over logFC values of the genes. In
addition, a correlation network and tree dendrogram was built
using the correlations statistics to obtain a relative relationship
of the conditions based on transcriptional alterations. To check
the reproducibility of results, logFC values of the genes common
across condition-specific analyses and individual datasets were
compared using Spearman’s correlation test. Moreover, brain
region-specific comparisons across conditions were performed
using logFC values of the genes shared between the present condi-
tions for each region.

4.9. Rank-Rank hypergeometric overlap (RRHO) analysis

In order to highlight the degree of overlap in gene signatures
across conditions, as well as compare condition pairs for shared
brain regions, we performed an unbiased rank-rank hypergeomet-
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ric overlap (RRHO) analysis using the RRHO R package v.1.24.0
[142]. A one-sided version of the test only looking for over-
enrichment was used. RRHO difference maps were produced by
calculating for each pixel the normal approximation of difference
in the log odds ratio and standard error of overlap with expression
data in the intersection list. P-values were calculated and FDR-
corrected for multiple comparisons across pixels.

4.10. Gene co-expression network analysis

We performed robust Weighted Gene Co-Expression Network
Analysis (rWGCNA) using the WGCNA R package v.1.68 [55] to
identify co-expressed gene modules using expression data that
were first normalized for different covariates. The expression data
from condition-specific DGE analyses were combined using the
15,819 genes common between all datasets. Batch effect correction
for the studies was performed using the ComBat R function from
the sva R package v. 3.42.0.

We first computed the soft threshold power using pick-
softThreshold R functions with a ‘‘signed” network type, ‘‘bicor” cor-
relation function and a block size of ‘‘20,000”. Co-expression
networks were built using the blockwisemodules R function from
the WGCNA R package. The network dendrogram was created
using the ‘‘average” linkage hierarchical clustering of the topolog-
ical overlap dissimilarity matrix to identify modules of highly co-
regulated genes. A power function with a soft-threshold of 20
was applied to the merged expression dataset to obtain an approx-
imately scale-free weighted co-expression network (scale-free
R2 > 0.9). Modules were defined as branches of the dendrogram
using the hybrid dynamic tree-cutting method, followed by a
dynamic cut-tree algorithm to separate clustering dendrogram
branches into gene modules. Modules were then summarized by
their first principal component (ME, module eigengene) and those
with high eigengene correlations were again merged.

Because the topological overlap between two genes reflects
both their direct and indirect interactions through all other genes
in the network, this approach helps to build more cohesive and
more biologically meaningful modules. To ensure the robustness
of the module, random resampling was performed from the initial
set of samples 100 times followed by consensus network analysis.
The final module was achieved using network parameters includ-
ing biweight midcorrelation (bicor), a minimum module size of
50, a deepsplit of 4, a merge threshold of 0.1, and negative pamS-
tage. Each module was assigned a unique (and arbitrary) color
identifier. Genes with the highest intramodular connectivity (those
with more connections at the core of the network) were considered
hub genes. Significance values were FDR-corrected to account for
multiple comparisons. Top hub genes with the most connections
were prioritized based on their module membership (kME),
defined as a correlation to the module eigengene. Module-
condition relationships were measured using a linear mixed-
effects model, with a random effect for subjects to fix for overlap-
ping subjects (expression � diagnosis + age + sex + 1 | subject).

4.11. Cell-type-specific enrichment analysis

To analyze cell-type-specific gene expression within each mod-
ule, we retrieved the single-cell data for human brain cell types
from the PanglaoDB database [56]. The genes within each module
were then compared to the marker genes for each brain cell type
using the GeneOverlap R package v.1.20.0 [140]. Fisher’s exact test
with an FDR-correction for p-values was used to analyze the gene
overlap comparisons. To check the consistency of the results,
another cell-type-specific expression dataset composed of five
main brain cell types including neurons, astrocytes, oligodendro-
cytes, microglia, and endothelial cells was obtained from another
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RNA-seq dataset of purified cell populations from healthy human
brain samples [57]. Gene symbols were mapped to Ensembl gene
identifiers using the biomaRt R package. Specificity for the five
brain cell types was calculated with the specificity.index function
from pSI R package v.1.1 [143]. Fisher’s exact test with FDR correc-
tion for p-values was applied to check for the significant cell-type
specificity (FDR-corrected p-value < 0.05 was considered statisti-
cally significant).

4.12. Gene ontology enrichment analysis

Gene Ontology (GO) pathway enrichment for each condition
and gene module was performed using the gprofiler2 R package
v. 0.2.1. Only pathways that comprise 10 to 2000 genes were fil-
tered for analysis. The top pathways with an FDR-corrected p-
value < 0.05 were considered significantly related.

4.13. Brain enhancer RNAs co-expression analysis

To understand the relationship between regulatory factors in
the brain and co-expression modules, an expression dataset for
brain enhancer-RNAs (eRNA)- a non-coding RNA transcribed from
active enhancers [67]- was obtained from an independent study of
human brain region-specific eRNAs co-expression analysis [67]. To
explore the co-expression of gene modules from our dataset and
each brain eRNA module, the overlap of genes within each module
and genes from eRNA modules was tested by Fisher’s exact test. A
p-value of < 0.05 followed by FDR correction was used to filter the
significant enrichments.

4.14. Protein coding-lncRNA co-expression analysis

Within each co-expression module, genomic coordinates for the
genes were obtained using the BiomaRt R package. Next, the genes
were filtered to protein-coding genes and lncRNA pairs with a dis-
tance of < 10 Mb, as the cis-regulatory cutoff distance. The expres-
sion fold change (beta) values of the genes across the conditions
were illustrated in a genomic circos plot using the circlize [144] R
package.

4.15. Mitochondrial transcriptome enrichment analysis

To see whether co-expression modules are enriched for mito-
chondrial transcriptome, an independent dataset containing
synaptic and nonsynaptic mitochondria modules was obtained
[75,145]. Enrichment analysis for each module was performed by
Fisher’s exact test followed by FDR correction for p-values.

4.16. Software and code availability

The R programming language version 3.5.0 (https://www.r-pro-
ject.org/) was used for statistical analyses and data visualization.
The functions and libraries used in this study are available as R
packages: WGCNA, nlme, RRHO, GeneOverlap, pSI, ggplot2, Rtsne,
gprofiler2, caret, limma, pheatmap, ComplexHeatmap, circlize at
CRAN (https://cran.r-project.org/) and/or Bioconductor (https://
bioconductor.org/).
5. Data availability

The raw data incorporated in this work were gathered from var-
ious resources. RNA-Seq raw data, metadata, and source files are
available on the NCBI GEO database and Sage Synapse as described
in Supplementary Table S1.
4558
Funding

At the time of writing this manuscript, I.S. is supported by the
European School of Molecular Medicine (SEMM) at CEINGE Biotec-
nologie Avanzate s.c.a.r.l, Naples, Italy. J.D.G. is supported by the
Spanish Ministry of Science and Innovation (RYC-2013-13054).
M.M.A. is supported by the FPU15/03635 grant from Ministerio
de Educación, Cultura y Deporte. N.V.-T. is funded by a postdoc-
toral grant, Juan de la Cierva Programme (FJC2018-038085-I), Min-
istry of Science and Innovation–Spanish State Research Agency. N.
V.-T. has received additional support from the Health Department
of the Catalan Government (Health Research and Innovation
Strategic Plan (PERIS) 2016-2020 grant# SLT002/16/00201) and
‘‘la Caixa’’ Foundation (ID 100010434), under agreement LCF/PR/
GN17/50300004. All CRG authors acknowledge the support of the
Spanish Ministry of Science, Innovation, and Universities to the
EMBL partnership, the Centro de Excelencia Severo Ochoa and
the CERCA Programme / Generalitat de Catalunya.
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgements

RNA-seq data (retrieved from Sage Synapse with accession number
syn2759792, with access governed by NIMH Repository and Geno-
mics Resource) were generated as part of the PsychENCODE Con-
sortium supported by U01MH103339, U01MH103365,
U01MH103392, U01MH103340, U01MH103346, R01MH105472,
R01MH094714, R01MH105898, R21MH102791, R21MH105881,
R21MH103877, and P50MH106934 awarded to Schahram Akbar-
ian (Icahn School of Medicine at Mount Sinai), Gregory Crawford
(Duke), Stella Dracheva (Icahn School of Medicine at Mount Sinai),
Peggy Farnham (USC), Mark Gerstein (Yale), Daniel Geschwind
(UCLA), Thomas M. Hyde (LIBD), Andrew Jaffe (LIBD), James A.
Knowles (USC), Chunyu Liu (UIC), Dalila Pinto (Icahn School of
Medicine at Mount Sinai), Nenad Sestan (Yale), Pamela Sklar (Icahn
School of Medicine at Mount Sinai), Matthew State (UCSF), Patrick
Sullivan (UNC), Flora Vaccarino (Yale), Sherman Weissman (Yale),
Kevin White (UChicago) and Peter Zandi (JHU).

RNA-seq data (retrieved from Sage Synapse with accession
number syn4921369 governed by NIMH Repository and Genomics
Resource) were generated as part of the CommonMind Consortium
supported by funding from Takeda Pharmaceuticals Company Lim-
ited, F. Hoffmann-La Roche Ltd and NIH grants R01MH085542,
R01MH093725, P50MH066392, P50MH080405, R01MH097276,
RO1-MH-075916, P50M096891, P50MH084053S1,
R37MH057881, AG02219, AG05138, MH06692, R01MH110921,
R01MH109677, R01MH109897, U01MH103392, and contract
HHSN271201300031C through IRP NIMH. Brain tissue for the
study was obtained from the following brain bank collections:
the Mount Sinai NIH Brain and Tissue Repository, the University
of Pennsylvania Alzheimer’s Disease Core Center, the University
of Pittsburgh NeuroBioBank and Brain and Tissue Repositories,
and the NIMH Human Brain Collection Core. CMC Leadership:
Panos Roussos, Joseph Buxbaum, Andrew Chess, Schahram Akbar-
ian, Vahram Haroutunian (Icahn School of Medicine at Mount
Sinai), Bernie Devlin, David Lewis (University of Pittsburgh), Raquel
Gur, Chang-Gyu Hahn (University of Pennsylvania), Enrico Dome-
nici (University of Trento), Mette A. Peters, Solveig Sieberts (Sage
Bionetworks), Thomas Lehner, Stefano Marenco, Barbara K. Lipska
(NIMH).

https://www.r-project.org/
https://www.r-project.org/
https://cran.r-project.org/
https://bioconductor.org/
https://bioconductor.org/


I. Sadeghi, J.D. Gispert, E. Palumbo et al. Computational and Structural Biotechnology Journal 20 (2022) 4549–4561
Author contributions

I.S., V.D., R.G., and N.V.-T. conceived the study. I.S. performed
the analyses. E.P., M.M.-A., G.S., A.N., R.G., and N.V.-T. provided sta-
tistical and analysis advice. J.D.G., V.W., M.M.-A., G.S., A.N., R.G.,
and N.V.-T. contributed to the interpretation of the results. I.S., J.
D.G., R.G. and N.V.-T. wrote the manuscript. R.G. and N.V.-T. super-
vised the project. All authors read and approved the final
manuscript.
Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2022.08.037.
References

[1] Gratten J, Wray NR, Keller MC, Visscher PM. Large-scale genomics unveils the
genetic architecture of psychiatric disorders. Nat Neurosci 2014;17:782–90.

[2] Hosseini E, Bagheri-Hosseinabadi Z, De Toma I, Jafarisani M, Sadeghi I. The
importance of long non-coding RNAs in neuropsychiatric disorders. Mol
Aspects Med 2019;70:127–40.

[3] Gerfen CR. Indirect-pathway neurons lose their spines in Parkinson disease.
Nat Neurosci 2006;9:157–8.

[4] Surmeier DJ, Obeso JA, Halliday GM. Selective neuronal vulnerability in
Parkinson disease. Nat Rev Neurosci 2017;18:101–13.

[5] Menzies FM, Fleming A, Rubinsztein DC. Compromised autophagy and
neurodegenerative diseases. Nat Rev Neurosci 2015;16:345–57.

[6] Hodges JR. Alzheimer’s disease and other dementias. Oxford Medicine Online
2010. https://doi.org/10.1093/med/9780199204854.003.2442.

[7] Möller T. Huntington Disease, Parkinson Disease, and Other
Neurodegenerative Diseases. Oxford Medicine Online 2013. https://doi.org/
10.1093/med/9780199794591.003.0065.

[8] Allen M et al. Human whole genome genotype and transcriptome data for
Alzheimer’s and other neurodegenerative diseases. Sci Data 2016;3.

[9] World Health Organization. World Health Statistics 2016: Monitoring Health
for the SDGs Sustainable Development Goals. World Health Organization;
2016.

[10] Insel TR, Cuthbert BN. Brain disorders? Precisely Science 2015;348:499–500.
[11] Pardiñas AF et al. Publisher Correction: Common schizophrenia alleles are

enriched in mutation-intolerant genes and in regions under strong
background selection. Nat Genet 2019;51:1193.

[12] Matias I, Morgado J, Gomes FCA. Astrocyte Heterogeneity: Impact to Brain
Aging and Disease. Front Aging Neurosci 2019;11.

[13] Strohäker T et al. Structural heterogeneity of a-synuclein fibrils amplified
from patient brain extracts. Nat Commun 2019;10:5535.

[14] Parikshak NN, Gandal MJ, Geschwind DH. Systems biology and gene networks
in neurodevelopmental and neurodegenerative disorders. Nat Rev Genet
2015;16:441–58.

[15] Lynch MA, Hardiman O, Elamin M, Kirby J, Rowland LP. Common Themes in
the Pathogenesis of Neurodegeneration. Neurodegenerative Disorders
2016;1–12. https://doi.org/10.1007/978-3-319-23309-3_1.

[16] Santiago JA, Bottero V, Potashkin JA. Dissecting the Molecular Mechanisms of
Neurodegenerative Diseases through Network Biology. Front Aging Neurosci
2017;9:166.

[17] . (American Psychiatric Pub 2013.
[18] Hafemeister TL. Mental Disorders and Criminal Behavior. Criminal Trials and

Mental Disorders 2019;7–42. https://doi.org/10.18574/nyu/
9781479804856.003.0002.

[19] Consortium IS et al. Common polygenic variation contributes to risk of
schizophrenia and bipolar disorder. Nature 2009;460:748–52.

[20] Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification
of risk loci with shared effects on five major psychiatric disorders: a genome-
wide analysis. Lancet 2013;381:1371–9.

[21] Gandal MJ et al. Shared molecular neuropathology across major psychiatric
disorders parallels polygenic overlap. Science 2018;359:693–7.

[22] Cross-Disorder Group of the Psychiatric Genomics Consortium. Electronic
address: plee0@mgh.harvard.edu & Cross-Disorder Group of the Psychiatric
Genomics Consortium. Genomic Relationships, Novel Loci, and Pleiotropic
Mechanisms across Eight Psychiatric Disorders. 179

[23] Li M et al. Integrative functional genomic analysis of human brain
development and neuropsychiatric risks. Science 2018;362.

[24] Ahmadi A, Gispert JD, Navarro A, Vilor-Tejedor N, Sadeghi I. Single-Cell
Transcriptional Changes In Neurodegenerative Diseases. Neuroscience 2021.
https://doi.org/10.1016/j.neuroscience.2021.10.025.

[25] Labonté B et al. Sex-specific transcriptional signatures in human depression.
Nat Med 2017;23:1102–11.

[26] Jaffe AE et al. Developmental and genetic regulation of the human cortex
transcriptome illuminate schizophrenia pathogenesis. Nat Neurosci
2018;21:1117–25.
4559
[27] Wu JQ et al. Transcriptome sequencing revealed significant alteration of
cortical promoter usage and splicing in schizophrenia. PLoS ONE 2012;7:
e36351.

[28] Pacifico R, Davis RL. Transcriptome sequencing implicates dorsal striatum-
specific gene network, immune response and energy metabolism pathways in
bipolar disorder. Mol Psychiatry 2017;22:441–9.

[29] MacMullen CM, Fallahi M, Davis RL. Novel PDE10A transcript diversity in the
human striatum: Insights into gene complexity, conservation and regulation.
Gene 2017;606:17–24.

[30] Akula N et al. RNA-sequencing of the brain transcriptome implicates
dysregulation of neuroplasticity, circadian rhythms and GTPase binding in
bipolar disorder. Mol Psychiatry 2014;19:1179–85.

[31] Lipska BK et al. Critical factors in gene expression in postmortem human
brain: Focus on studies in schizophrenia. Biol Psychiatry 2006;60:
650–8.

[32] Xiao Y et al. The DNAmethylome and transcriptome of different brain regions
in schizophrenia and bipolar disorder. PLoS ONE 2014;9:e95875.

[33] Chang X et al. RNA-seq analysis of amygdala tissue reveals characteristic
expression profiles in schizophrenia. Transl Psychiatry 2017;7:e1203.

[34] Corley SM, Tsai S-Y, Wilkins MR, Shannon Weickert C. Transcriptomic
Analysis Shows Decreased Cortical Expression of NR4A1, NR4A2 and RXRB
in Schizophrenia and Provides Evidence for Nuclear Receptor Dysregulation.
PLoS ONE 2016;11:e0166944.

[35] Wright C et al. Altered expression of histamine signaling genes in autism
spectrum disorder. Transl Psychiatry 2017;7:e1126.

[36] Li J et al. Integrated systems analysis reveals a molecular network underlying
autism spectrum disorders. Mol Syst Biol 2014;10:774.

[37] Pantazatos SP et al. Whole-transcriptome brain expression and exon-usage
profiling in major depression and suicide: evidence for altered glial,
endothelial and ATPase activity. Mol Psychiatry 2017;22:760–73.

[38] Dumitriu A et al. Integrative analyses of proteomics and RNA transcriptomics
implicate mitochondrial processes, protein folding pathways and GWAS loci
in Parkinson disease. BMC Med Genomics 2016;9:5.

[39] Wang M et al. The Mount Sinai cohort of large-scale genomic, transcriptomic
and proteomic data in Alzheimer’s disease. Sci Data 2018;5.

[40] He Z, Bammann H, Han D, Xie G, Khaitovich P. Conserved expression of
lincRNA during human and macaque prefrontal cortex development and
maturation. RNA 2014;20:1103–11.

[41] Liu X et al. Disruption of an Evolutionarily Novel Synaptic Expression Pattern
in Autism. PLoS Biol 2016;14:e1002558.

[42] Ramaker RC et al. Post-mortem molecular profiling of three psychiatric
disorders. Genome Med 2017;9:72.

[43] guigolab. GitHub - guigolab/grape-nf: An automated RNA-seq pipeline using
Nextflow. https://github.com/guigolab/grape-nf.

[44] Andrew McKenzie, M. W. A. B. Z. BRETIGEA: Brain Cell Type Specific Gene
Expression Analysis. R package version 1.0.2. (2019).

[45] van der Maaten L, Hinton G. Visualizing Data using t-SNE. J Mach Learn Res
2008;9:2579–605.

[46] Matute-Blanch C et al. Chitinase 3-like 1 is neurotoxic in primary cultured
neurons. Sci Rep 2020;10:7118.

[47] Sanfilippo C, Malaguarnera L, Di Rosa M. Chitinase expression in Alzheimer’s
disease and non-demented brains regions. J Neurol Sci 2016;369:242–9.

[48] Paschou P, Fernandez TV, Sharp F, Heiman GA, Hoekstra PJ. Genetic
susceptibility and neurotransmitters in Tourette syndrome. Int Rev
Neurobiol 2013;112:155–77.

[49] Lucas TA, Zhu L, Buckwalter MS. Spleen glia are a transcriptionally unique
glial subtype interposed between immune cells and sympathetic axons. Glia
2021;69:1799–815.

[50] Kamboh MI et al. Alpha-1-antichymotrypsin (ACT or SERPINA3)
polymorphism may affect age-at-onset and disease duration of Alzheimer’s
disease. Neurobiol Aging 2006;27:1435–9.

[51] Lei Z, Brizzee C, Johnson GVW. BAG3 facilitates the clearance of endogenous
tau in primary neurons. Neurobiol Aging 2015;36:241–8.

[52] Cao Y-L et al. A role of BAG3 in regulating SNCA/a-synuclein clearance via
selective macroautophagy. Neurobiol Aging 2017;60:104–15.

[53] Muranova LK, Sudnitsyna MV, Strelkov SV, Gusev NB. Mutations in HspB1 and
hereditary neuropathies. Cell Stress Chaperones 2020;25:655–65.

[54] Spiegel I et al. Npas4 regulates excitatory-inhibitory balance within neural
circuits through cell-type-specific gene programs. Cell 2014;157:1216–29.

[55] Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinf 2008;9.

[56] Franzén O, Gan L-M, Björkegren JLM. PanglaoDB: a web server for exploration
of mouse and human single-cell RNA sequencing data. Database 2019;2019.

[57] Zhang Y et al. Purification and Characterization of Progenitor and Mature
Human Astrocytes Reveals Transcriptional and Functional Differences with
Mouse. Neuron 2016;89:37–53.

[58] Hemonnot A-L, Hua J, Ulmann L, Hirbec H. Microglia in Alzheimer Disease:
Well-Known Targets and New Opportunities. Front Aging Neurosci
2019;11:233.

[59] Ferreira SA, Romero-Ramos M. Microglia Response During Parkinson’s
Disease: Alpha-Synuclein Intervention. Front Cell Neurosci 2018;12.

[60] Rodriguez JI, Kern JK. Evidence of microglial activation in autism and its
possible role in brain underconnectivity. Neuron Glia Biol 2011;7:205–13.

[61] Mosser C-A, Baptista S, Arnoux I, Audinat E. Microglia in CNS development:
Shaping the brain for the future. Prog Neurobiol 2017;149–150:1–20.

[62] Brain Pathology vol. 1 2–5 (1990).

https://doi.org/10.1016/j.csbj.2022.08.037
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0005
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0005
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0010
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0010
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0010
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0015
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0015
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0020
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0020
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0025
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0025
https://doi.org/10.1093/med/9780199204854.003.2442
https://doi.org/10.1093/med/9780199794591.003.0065
https://doi.org/10.1093/med/9780199794591.003.0065
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0040
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0040
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0045
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0045
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0045
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0050
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0055
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0055
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0055
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0060
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0060
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0065
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0065
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0070
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0070
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0070
https://doi.org/10.1007/978-3-319-23309-3_1
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0080
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0080
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0080
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0085
https://doi.org/10.18574/nyu/9781479804856.003.0002
https://doi.org/10.18574/nyu/9781479804856.003.0002
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0095
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0095
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0100
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0100
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0100
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0105
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0105
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0115
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0115
https://doi.org/10.1016/j.neuroscience.2021.10.025
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0125
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0125
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0130
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0130
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0130
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0135
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0135
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0135
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0140
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0140
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0140
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0145
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0145
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0145
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0150
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0150
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0150
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0155
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0155
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0155
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0160
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0160
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0165
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0165
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0170
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0170
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0170
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0170
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0175
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0175
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0180
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0180
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0185
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0185
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0185
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0190
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0190
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0190
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0195
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0195
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0200
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0200
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0200
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0205
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0205
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0210
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0210
https://github.com/guigolab/grape-nf
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0225
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0225
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0230
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0230
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0235
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0235
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0240
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0240
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0240
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0245
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0245
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0245
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0250
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0250
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0250
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0255
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0255
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0260
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0260
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0265
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0265
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0270
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0270
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0275
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0275
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0280
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0280
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0285
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0285
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0285
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0290
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0290
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0290
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0295
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0295
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0300
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0300
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0305
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0305


I. Sadeghi, J.D. Gispert, E. Palumbo et al. Computational and Structural Biotechnology Journal 20 (2022) 4549–4561
[63] Rodriguez-Vieitez E et al. Diverging longitudinal changes in astrocytosis and
amyloid PET in autosomal dominant Alzheimer’s disease. Brain
2016;139:922–36.

[64] Siracusa R, Fusco R, Cuzzocrea S. Astrocytes: Role and Functions in Brain
Pathologies. Front Pharmacol 2019;10:1114.

[65] Kim D-Y, Hwang I, Muller FL, Paik J-H. Functional regulation of FoxO1 in
neural stem cell differentiation. Cell Death Differ 2015;22:2034–45.

[66] Li K, Li J, Zheng J, Qin S. Reactive Astrocytes in Neurodegenerative Diseases.
Aging and disease 2019;10:664.

[67] Yao P et al. Coexpression networks identify brain region-specific enhancer
RNAs in the human brain. Nat Neurosci 2015;18:1168–74.

[68] Elvsåshagen T et al. The genetic architecture of the human thalamus and its
overlap with ten common brain disorders. Nat Commun 2021;12:1–9.

[69] Grinberg LT, Rueb U, Heinsen H. Brainstem: neglected locus in
neurodegenerative diseases. Front Neurol 2011;2:42.

[70] Grabher P, Blaiotta C, Ashburner J, Freund P. Relationship between brainstem
neurodegeneration and clinical impairment in traumatic spinal cord injury.
Neuroimage Clin 2017;15:494–501.

[71] Hemali Phatnani TM. Astrocytes in Neurodegenerative Disease. Cold Spring
Harb Perspect Biol 2015;7.

[72] Lunnon K et al. Mitochondrial genes are altered in blood early in Alzheimer’s
disease. Neurobiol Aging 2017;53:36–47.

[73] Iwamoto K, Bundo M, Kato T. Altered expression of mitochondria-related
genes in postmortem brains of patients with bipolar disorder or
schizophrenia, as revealed by large-scale DNA microarray analysis. Hum
Mol Genet 2005;14:241–53.

[74] Vawter MP et al. Mitochondrial-related gene expression changes are sensitive
to agonal-pH state: implications for brain disorders. Mol Psychiatry
2006;11:663–79.

[75] Winden KD et al. The organization of the transcriptional network in specific
neuronal classes. Mol Syst Biol 2009;5:291.

[76] Olesen MA, Torres AK, Jara C, Murphy MP, Tapia-Rojas C. Premature synaptic
mitochondrial dysfunction in the hippocampus during aging contributes to
memory loss. Redox Biol 2020;34:101558.

[77] Gyoneva S et al. Cx3cr1-deficient microglia exhibit a premature aging
transcriptome. Life Science Alliance 2019;2:e201900453.

[78] Reemst K, Noctor SC, Lucassen PJ, Hol EM. The Indispensable Roles of
Microglia and Astrocytes during Brain Development. Front Hum Neurosci
2016;10:566.

[79] Fakhoury M. Microglia and Astrocytes in Alzheimer’s Disease: Implications
for Therapy. Curr Neuropharmacol 2018;16:508–18.

[80] Saxena S, Caroni P. Selective neuronal vulnerability in neurodegenerative
diseases: from stressor thresholds to degeneration. Neuron 2011;71:35–48.

[81] Wang X, Christian KM, Song H, Ming G-L. Synaptic dysfunction in complex
psychiatric disorders: from genetics to mechanisms. Genome Med 2018;10:9.

[82] Salter MW, Stevens B. Microglia emerge as central players in brain disease.
Nat Med 2017;23:1018–27.

[83] Liu Y, Zhou J. Oligodendrocytes in neurodegenerative diseases. Frontiers in
Biology 2013;8:127–33.

[84] Sheng Z-H, Cai Q. Mitochondrial transport in neurons: impact on synaptic
homeostasis and neurodegeneration. Nat Rev Neurosci 2012;13:77–93.

[85] González-Rodríguez P et al. Disruption of mitochondrial complex I induces
progressive parkinsonism. Nature 2021. https://doi.org/10.1038/s41586-021-
04059-0.

[86] Stojakovic A et al. Partial inhibition of mitochondrial complex I ameliorates
Alzheimer’s disease pathology and cognition in APP/PS1 female mice.
Communications Biology 2021;4:1–20.

[87] Manji H et al. Impaired mitochondrial function in psychiatric disorders. Nat
Rev Neurosci 2012;13:293–307.

[88] Benes FM. The development of ‘mis-wired’ limbic lobe circuitry in
schizophrenia and bipolar disorder. Neurodevelopment and Schizophrenia
2004;295–309. https://doi.org/10.1017/cbo9780511735103.018.

[89] Patel S et al. Maternal immune conditions are increased in males with autism
spectrum disorders and are associated with behavioural and emotional but
not cognitive co-morbidity. Transl Psychiatry 2020;10.

[90] Eissa N, Sadeq A, Sasse A, Sadek B. Role of Neuroinflammation in Autism
Spectrum Disorder and the Emergence of Brain Histaminergic System.
Lessons Also for BPSD? Front Pharmacol 2020;11:886.

[91] Starkstein S, Gellar S, Parlier M, Payne L, Piven J. High rates of parkinsonism in
adults with autism. J Neurodev Disord 2015;7:29.

[92] Suzuki K et al. Microglial Activation in Young Adults With Autism Spectrum
Disorder. JAMA Psychiatry 2013;70:49–58.

[93] Pajares M, Rojo IA, Manda G, Boscá L, Cuadrado A. Inflammation in
Parkinson’s disease: Mechanisms and therapeutic implications. Cells
2020;9:1687.

[94] Kern JK, Geier DA, Sykes LK, Geier MR. Evidence of neurodegeneration in
autism spectrum disorder. Transl Neurodegener 2013;2:17.

[95] Pearson BL et al. Identification of chemicals that mimic transcriptional
changes associated with autism, brain aging and neurodegeneration. Nat
Commun 2016;7:11173.

[96] Liao X, Yang J, Wang H, Li Y. Microglia mediated neuroinflammation in autism
spectrum disorder. J Psychiatr Res 2020;130:167–76.

[97] Matta SM, Hill-Yardin EL, Crack PJ. The influence of neuroinflammation in
Autism Spectrum Disorder. Brain Behav Immun 2019;79:75–90.
4560
[98] Riederer P, Lange KW, Kornhuber J, Danielczyk W. Glutamatergic-
dopaminergic balance in the brain. Its importance in motor disorders and
schizophrenia. Arzneimittelforschung 1992;42:265–8.

[99] McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in
schizophrenia: biology, symptoms and treatment. World Psychiatry
2020;19:15–33.

[100] Archer T. Neurodegeneration in schizophrenia. Expert Rev Neurother
2010;10:1131–41.

[101] Ashe PC, Berry MD, Boulton AA. Schizophrenia, a neurodegenerative disorder
with neurodevelopmental antecedents. Prog Neuropsychopharmacol Biol
Psychiatry 2001;25:691–707.

[102] Ahmed Z, Asi YT, Lees AJ, Revesz T, Holton JL. Identification and quantification
of oligodendrocyte precursor cells in multiple system atrophy, progressive
supranuclear palsy and Parkinson’s disease. Brain Pathol 2013;23:
263–73.

[103] Dubois B et al. Preclinical Alzheimer’s disease: Definition, natural history, and
diagnostic criteria. Alzheimers Dement 2016;12:292–323.

[104] Coughlin DG, Litvan I. Progressive supranuclear palsy: Advances in diagnosis
and management. Parkinsonism Relat Disord 2020;73:105–16.

[105] Dickson DW, Rademakers R, Hutton ML. Progressive Supranuclear Palsy:
Pathology and Genetics. Brain Pathol 2007;17:74–82.

[106] Gonatopoulos-Pournatzis T et al. Autism-Misregulated eIF4G Microexons
Control Synaptic Translation and Higher Order Cognitive Functions. Mol Cell
2020. https://doi.org/10.1016/j.molcel.2020.01.006.

[107] Sokol DK, Maloney B, Long JM, Ray B, Lahiri DK. Autism, Alzheimer disease,
and fragile X: APP, FMRP, and mGluR5 are molecular links. Neurology
2011;76:1344–52.

[108] Murray ME, Dickson DW. Is pathological aging a successful resistance against
amyloid-beta or preclinical Alzheimer’s disease? Alzheimer’s Research &
Therapy 2014;6:24.

[109] Penninx BWJH, Lamers F, Milaneschi Y. Clinical heterogeneity in major
depressive disorder. Eur Neuropsychopharmacol 2018;28:S59–60.

[110] Cajanus A. et al. The Association Between Distinct Frontal Brain Volumes and
Behavioral Symptoms in Mild Cognitive Impairment, Alzheimer’s Disease,
and Frontotemporal Dementia. Front. Neurol. 10, 1059 (2019)

[111] Matsuoka K et al. Left dorsolateral prefrontal cortex atrophy is associated
with frontal lobe function in Alzheimer’s disease and contributes to caregiver
burden. Int J Geriatr Psychiatry 2018;33:703–9.

[112] Maidan I et al. The Role of the Frontal Lobe in Complex Walking Among
Patients With Parkinson’s Disease and Healthy Older Adults: An fNIRS Study.
Neurorehabil Neural Repair 2016;30:963–71.

[113] Ng B et al. Distinct alterations in Parkinson’s medication-state and disease-
state connectivity. NeuroImage: Clinical 2017;16:575–85.

[114] Wolk DA et al. Medial temporal lobe subregional morphometry using high
resolution MRI in Alzheimer’s disease. Neurobiol Aging 2017;49:204–13.

[115] Allen P et al. Abnormal relationship between medial temporal lobe and
subcortical dopamine function in people with an ultra high risk for psychosis.
Schizophr Bull 2012;38:1040–9.

[116] Cobia DJ, Smith MJ, Wang L, Csernansky JG. Longitudinal progression of
frontal and temporal lobe changes in schizophrenia. Schizophr Res
2012;139:1–6.

[117] Mormina E et al. Cerebellum and neurodegenerative diseases: Beyond
conventional magnetic resonance imaging. World J Radiol 2017;9:371–88.

[118] Kaufmann T et al. Common brain disorders are associated with heritable
patterns of apparent aging of the brain. Nat Neurosci 2019;22:1617–23.

[119] Yan J et al. Identification of discriminative imaging proteomics associations in
alzheimer’s disease via a novel sparse correlation model. Biocomputing
2017;2017. https://doi.org/10.1142/9789813207813_0010.

[120] Nazeri A et al. Imaging proteomics for diagnosis, monitoring and prediction
of Alzheimer’s disease. Neuroimage 2014;102(Pt 2):657–65.

[121] Casamassimi A, Federico A, Rienzo M, Esposito S, Ciccodicola A.
Transcriptome profiling in human diseases: new advances and
perspectives. Int J Mol Sci 2017;18.

[122] Kodama L et al. Microglial microRNAs mediate sex-specific responses to tau
pathology. Nat Neurosci 2020;23:167–71.

[123] Villa A, Della Torre S, Maggi A. Sexual differentiation of microglia. Front
Neuroendocrinol 2019;52:156–64.

[124] Tiihonen J et al. Sex-specific transcriptional and proteomic signatures in
schizophrenia. Nat Commun 2019;10:3933.

[125] Vilor-Tejedor N et al. Strategies for integrated analysis in imaging genetics
studies. Neurosci Biobehav Rev 2018;93:57–70.

[126] Staff SRAS. Using the sra toolkit to convert. sra files into other
formats. National Center for Biotechnology Information (US); 2011.

[127] Ramirez-Gonzalez RH, Bonnal R, Caccamo M, MacLean D. bio-samtools: Ruby
bindings for SAMtools, a library for accessing BAM files containing high-
throughput sequence alignments. Open Research Computation 2012;1:1.

[128] Knowles DG, Roder M, Merkel A, Guigo R. Grape RNA-Seq analysis pipeline
environment. Bioinformatics 2013;29:614–21.

[129] Di Tommaso P et al. Nextflow enables reproducible computational
workflows. Nat Biotechnol 2017;35:316–9.

[130] Dobin A et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics
2013;29:15–21.

[131] Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data
with or without a reference genome. BMC Bioinf 2011;12.

http://refhub.elsevier.com/S2001-0370(22)00371-3/h0315
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0315
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0315
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0320
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0320
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0325
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0325
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0330
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0330
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0335
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0335
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0340
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0340
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0345
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0345
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0350
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0350
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0350
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0355
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0355
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0360
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0360
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0365
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0365
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0365
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0365
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0370
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0370
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0370
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0375
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0375
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0380
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0380
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0380
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0385
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0385
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0390
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0390
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0390
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0395
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0395
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0400
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0400
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0405
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0405
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0410
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0410
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0415
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0415
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0420
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0420
https://doi.org/10.1038/s41586-021-04059-0
https://doi.org/10.1038/s41586-021-04059-0
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0430
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0430
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0430
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0435
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0435
https://doi.org/10.1017/cbo9780511735103.018
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0445
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0445
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0445
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0450
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0450
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0450
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0455
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0455
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0460
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0460
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0465
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0465
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0465
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0470
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0470
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0475
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0475
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0475
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0480
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0480
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0485
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0485
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0490
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0490
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0490
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0495
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0495
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0495
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0500
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0500
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0505
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0505
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0505
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0510
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0510
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0510
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0510
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0515
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0515
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0520
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0520
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0525
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0525
https://doi.org/10.1016/j.molcel.2020.01.006
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0535
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0535
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0535
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0540
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0540
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0540
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0545
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0545
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0555
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0555
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0555
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0560
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0560
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0560
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0565
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0565
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0570
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0570
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0575
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0575
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0575
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0580
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0580
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0580
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0585
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0585
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0590
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0590
https://doi.org/10.1142/9789813207813_0010
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0600
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0600
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0605
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0605
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0605
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0610
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0610
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0615
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0615
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0620
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0620
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0625
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0625
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0630
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0630
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0635
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0635
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0635
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0640
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0640
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0645
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0645
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0650
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0650
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0655
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0655


I. Sadeghi, J.D. Gispert, E. Palumbo et al. Computational and Structural Biotechnology Journal 20 (2022) 4549–4561
[132] Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-
sample quality control for high-throughput sequencing data. Bioinformatics
2016;32:292–4.

[133] Ritchie ME et al. limma powers differential expression analyses for RNA-
sequencing and microarray studies. Nucleic Acids Res 2015;43:e47.

[134] Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey J. D. sva: Surrogate Variable
Analysis. R package version 3.10. 0. 2014;10:B9.

[135] Cousineau D, Chartier S. Outliers detection and treatment: a review.
International Journal of Psychological Research 2010;3:58.

[136] Shiffler RE. Maximum Z Scores and Outliers. The American Statistician
1988;42:79.

[137] McKenzie AT et al. Brain Cell Type Specific Gene Expression and Co-
expression Network Architectures. Sci Rep 2018;8.

[138] Monfreda M. Principal Component Analysis: A Powerful Interpretative Tool at
the Service of Analytical Methodology. Principal Component Analysis 2012.
https://doi.org/10.5772/36929.
4561
[139] Pinheiro J, Bates D, DebRoy S, Sarkar D. & Team, R Core. nlme: Linear and
nonlinear mixed effects models. R package version 3, 2012.

[140] Shen LG. An R package to test and visualize gene overlaps. R Package 2014.
[141] Breiman L. Machine Learning 2001;45:261–77.
[142] Plaisier SB, Taschereau R, Wong JA, Graeber TG. Rank–rank hypergeometric

overlap: identification of statistically significant overlap between gene-
expression signatures. Nucleic Acids Res 2010;38:e169–e.

[143] Xu X, Wells AB, O’Brien DR, Nehorai A, Dougherty JD. Cell type-specific
expression analysis to identify putative cellular mechanisms for neurogenetic
disorders. J Neurosci 2014;34:1420–31.

[144] Gu Z, Gu L, Eils R, Schlesner M, Brors B. circlize Implements and enhances
circular visualization in R. Bioinformatics 2014;30:2811–2.

[145] Schapira AHV. Mitochondrial Dysfunction in Neurodegenerative Diseases.
Neurochem Res 2008;33:2502–9.

http://refhub.elsevier.com/S2001-0370(22)00371-3/h0660
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0660
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0660
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0665
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0665
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0670
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0670
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0675
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0675
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0680
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0680
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0685
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0685
https://doi.org/10.5772/36929
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0695
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0695
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0700
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0705
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0710
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0710
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0710
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0715
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0715
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0715
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0720
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0720
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0725
http://refhub.elsevier.com/S2001-0370(22)00371-3/h0725

	Brain transcriptomic profiling reveals common alterations across neurodegenerative and psychiatric disorders
	1 Introduction
	2 Results
	2.1 Samples characteristics and clustering
	2.2 Condition-specific differential gene expression (DGE)
	2.3 Cross-condition transcriptome overlap observed across NDs and NPs
	2.4 Region-specific differential gene expression
	2.5 Network analyses identified condition-specific and shared transcriptional signatures

	3 Discussion
	4 Methods
	4.1 Samples and raw data
	4.2 Data processing
	4.3 Cell-type proportion analysis and cell-type normalization
	4.4 Samples clustering and tSNE analysis
	4.5 Differential gene expression (DGE) analysis and transcriptome comparisons
	4.6 Reproducibility of differential expression results
	4.7 Building classifier models
	4.8 Comparisons of transcriptional alterations
	4.9 Rank-Rank hypergeometric overlap (RRHO) analysis
	4.10 Gene co-expression network analysis
	4.11 Cell-type-specific enrichment analysis
	4.12 Gene ontology enrichment analysis
	4.13 Brain enhancer RNAs co-expression analysis
	4.14 Protein coding-lncRNA co-expression analysis
	4.15 Mitochondrial transcriptome enrichment analysis
	4.16 Software and code availability

	5 Data availability
	Funding
	Declaration of Competing Interest
	ack30
	Acknowledgements
	Author contributions
	Appendix A Supplementary data
	References


