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Abstract. In spite of the recent advances in Machine Translation (MT)
for spoken languages, translation between spoken and Sign Languages
(SLs) or between Sign Languages remains a difficult problem. Here, we
study how Neural Machine Translation (NMT) might overcome the com-
munication barriers for the Deaf and Hard-of-Hearing (DHH) community.
Namely, we approach the Text2Gloss translation task in which spoken
text segments are translated to lexical sign representations. In this con-
text, we leverage transformer-based models via (1) injecting linguistic
features that can guide the learning process towards better translations;
and (2) applying a Transfer Learning strategy to reuse the knowledge
of a pre-trained model. To this aim, different aggregation strategies are
compared and evaluated under Transfer Learning and random weight
initialization conditions. The results of this research reveal that linguis-
tic features can successfully contribute to achieve more accurate models;
meanwhile, the Transfer Learning procedure applied conducted to sub-
stantial performance increases.

Keywords: Neural Transformers - Linguistic Features - Sign Gloss Ma-
chine Translation - Sign Language

1 Introduction

In the era of mass communication and wide uptake of digital technologies amongst
the general public, there still exist barriers for many people where access to in-
formation is of concern, and this is particularly the case for the DHH community.
Of the 466 million people worldwide with some kind of hearing loss 2, around 70
million communicate through SL* - the preferred mode of communication among
the DHH people [21]. Recently, the European Commission adopted the Strategy
for the rights of persons with disabilities®, which indicates the need to provide SL
interpretation to improve accessibility for the DHH community. There is a great
opportunity for MT to bridge the gap between written/spoken languages and

3 https://www.who.int /news-room /fact-sheets/detail /deafness-and-hearing-loss
4 .

https://wideaf.org/our-work/
5 https://ec.europa.eu/social /main.jsp?catIld=738&langld=en&publd=8376



2 Egea Goémez, S. et al.

SLs. But, in spite of the recent advances in MT for spoken languages, translation
between spoken and SLs or between SLs (SLT) remains a challenge.

In terms of data and resource availability, SLs are considered ‘extremely low
resource’ languages [13], which implies a salient issue for MT applied to SL. The
latest approaches to MT are based on neural networks, particularly transformer
models [22,24]. Transformer-based systems are data-hungry and computation-
ally expensive, so their viability for SLT is yet to be fully established.

Unlike spoken languages, a linear stream of information in the oral-auditory
modality, SLs exist in the gestural-visual modality consisting of often parallel
manual and non-manual cues [14]. This modality difference poses an important
challenge in building corpora. Writing systems capturing the exact pattern and
timing of signs are extant [8], however these systems are not widely used to
annotate SL corpora nor are they widely known by signers [9]. Instead, SL glosses
are preferred as an intermediate representation between SL video data and text
in a MT paradigm (e.g. [5, 13, 23]). Glosses, and the Text2Gloss (T2G) process,
are used as a tool to represent a given sign as a lexeme - usually in the ambient
language of the geographical area where a SL is native®. In spite of criticism
towards gloss annotation [23]|, one advantage of glosses in lexical signs is their
suitability as a text representation to feed into machine learning models. These
glosses can be represented within embedding vectors that are fed into neural
models where mappings between the input and output texts can be established.

In our previous work [7], we showed how word dependencies can boost T2G
translation. Here, we extend the experiments considering a range of linguistic
features and different ways of injecting them into transformer models. We also
show that Transfer Learning (TL) can be successfully applied to this particular
MT task, spoken German to German Sign Language (DGS) translation.

2 Related Work

Translation between spoken and sign languages is not new and it has been in-
vestigated from several angles including example-based [12], rule-based [2], and
statistical-based MT [18]. Transformer-based NMT models have been shown to
be successful in producing translations for a wide range of language pairs with
state-of-the-art accuracy [10], including low resource spoken languages [22|. Per-
haps the most notable is mBART [24], a widely used pretrained transformer
architecture for NMT. A key benefit of these powerful models is their ability to
be fine-tuned to a downstream task in NLP such as MT.

SLT as a subset of MT is, however, a more challenging area. The task is inher-
ently multimodal, and has severely limited resources. While E2E translation is
possible from text to sign [6, 15], ‘cascaded’ systems involving intermediate steps
appear to yield higher translation accuracy [5,25]. Therefore it is important for
the moment to focus on improving these intermediate stages. Cascaded building
blocks for SLT may involve continuous SL recognition as a computer vision task,

5 For example, glosses in written English for American Sign Language.
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SL generation (e.g. [1]) from glosses into SL through 3D avatars, and Text2Gloss
or Gloss2Text to facilitate translation through a text-to-text mapping.

A wide range of resources exist across multiple SLs such as parallel corpora,
video corpora and repositories of signs produced in isolation. One problem is
that for comparatively widely spoken languages, the size of these corpora are
markedly smaller [9]. Co-occurring issues include domain specificity [5, 19] with-
out examples of alternative semantic fields, little variation in signers both in di-
versity and positioning in 3D space [15] and a noise-free video background [25].
On top of cascading, breaking up SLT into a pipeline, there are further mitiga-
tion strategies to augment the training data available such as back-translation,
previously avoided in SLT [25], or rule-based generation of glosses [13]. Alterna-
tively, it is possible to augment the existing data with more information during
training. This study follows the latter approach.

Sennrich and Haddow [20] introduced a ‘Factored Transformer’ model which
inserts linguistic feature embeddings (lemmas, part-of-speech tags, lexical de-
pendencies and morphological features) into the encoder of an attention-based
NMT architecture. This schema was then used on a low-resource translation task
English-Nepali [3] that improved performance on FLoRes” by 1.2 BLEU. Our
recent work in Text2Gloss [7] explored the use of lexical dependencies in the
model embeddings obtaining a peak improvement of 5.7 BLEU over a baseline.

Considering previous research, we hypothesize that linguistic features may
boost model performances for T2G. We formulate three main research questions
based on this prediction: (1) Which are the most informative features? (2) How
do we inject them into transformer models? and (3) Can Transfer Learning pro-
vide performance increases when linguistic features are injected to the models?
In order to shed light on these research questions, we propose a T2G system,
analyse its performance, and discuss alternatives.

3 System Overview

The T2G translation system presented here is composed of three key components
that Fig. 1 shows: (1) a Text Processing step to generate linguistic features to be
injected to the model; (2) a T2G Model based on the mBart architecture [24];
and (3) a Transfer Learning process to get advantage of pretrained weights. We
make the implementation of our system available in GitHub®, along with an
extended results analysis.

Considering the linguistic rules applied in the SL gloss production, we pre-
dict that linguistic features might play a relevant role in T2G translation task.
Therefore, we use the available language resources to generate the linguistic fea-
tures described in the Section 3.1. These features are aligned with the subword
tokens generated by the mBART tokenizer as is depicted in Fig. 1. Unfortu-
nately, there are not equivalent resources for DGS, an important restriction for
us in exploring Gloss2Text translation.

7 Facebook Low Resource benchmark
8 https://github.com/LaSTUS-TALN-UPF /Linguistically-Enhanced-Text2Gloss-MT
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As mBART architecture is difficult to manage due to its very large number
of parameters, we have designed a strategy to take advantage of TL while using
a much simpler neural architecture. Namely, we employ a transformer with 3
multi-attention layers with 4 heads for both the encoder and decoder, and the
internal and output dimensions are set to 1024 and 512 respectively. Regarding
the embeddings, we use 512-length vectors in two separate tables: One for sub-
word tokens and another for linguistic features. The word and linguistic features
are aggregated using different strategies which are also a matter of study of this
research (Section 3.2).

In order to exploit the knowledge acquired by mBART during its multilingual
pre-training, we filter and align the original mBART embedding table keeping
only the tokens appearing in our training corpus. Additionally, the linguistic
embeddings are initialized by randomly selecting vectors from mBART embed-
dings. As there are not control tokens to represent SLs in mBART, we reuse
the Dutch language one to represent DGS; since German and Dutch are closely
related languages. To fit the mBART weights into our architecture model, slic-
ing is applied so that the vector elements are adapted to our neural architecture
size.

H TEXT PROCESSING T2G MODEL
i pos  <PAD> <PAD>  POS1 | POS2  POSs POSa  POSs  <PAD> <PAD> LINGUISTIC FEATURE
| DEP | <PAD> | <PAD> | DEP: || DEP2  DEPs | DEPa DEPS | <PAD> <PAD> -+ EMBEDDING —— , l-ii " —— ENCODER
i MOR | <PAD> <PAD> = MOR: = MORz MORs MORs  MORs  |<PAD> <PAD> TABLE
i 1 1
SPACY | t
* | !
i WORDS |<STARTS |'<SPOK>" | im || Westen | ist || es | freundiich |/<END> '<PADS —-— i
i WORD
EMBEDDING «——— DECODER
GLOSSES |<START> |<GLOSS> | FREITAG || VIEL WOLKE BEWOELKT <END> «——  TABLE i |
| |
: ; i :
| | |
PRETRAINED PRETRAINED PRETRAINED !
MBART ENCODER MBART DECODER MBART EMBEDDINGS EMBEDDING _ | DECODER ENCODER
| WEIGHTS WEIGHTS WEIGHTS
FILTER & ALIGMENT | ‘ !
WEIGHT SLICING
TRANSFER LEARNING

Fig. 1. An overview of the proposed system.

3.1 Linguistic Features

We labeled the input text with linguistic features using the de_core_news_sm
model of the spaCy? library. This model is trained over the TIGER Korpus [4],
a widely used German corpus partially annotated with POS, morphological in-
formation, and syntactic structure. The dependency labels used by spaCy are
based on the TIGER Korpus format and differ from Universal Dependencies.

9 https:/ /spacy.io/
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The linguistic features calculated for the input text are: Part-of-Speech (POS,
16 unique labels), dependency labels from the parse tree (DEP, 38 unique la-
bels), and morphological information (MOR).

The tagger incorporates different types of morphological information for each
word, including person and tense for verbs, and case and gender for nouns.
We generate a tag that combines the different feature-value pairs into a single
morphological label. For example, the noun Westen in the example from Fig. 1
would have the MOR label Case_Dat-Gender_Masc-Number_Sing. However,
there is a large number of possible combinations of these features and their
values: in the training corpus we found around 400 combinations, most of them
used only a few times. To reduce the sparsity of this information, we used the
following heuristic when creating the tag:

— If the combination of feature-value pairs of a word belongs to the top 60
most frequent combinations, we use the serialized combination described
before (this covers around 66% of the corpus).

— Otherwise, we use the POS tag. This covers cases in which the morphological
analyzer returns an empty value (around 32% of the words), so the labels
can at least discriminate by POS in those cases.

As we used the mBART SentencePiece tokenizer [11], each word in the input
might be split into one or more subword tokens, so the corresponding linguistic
feature labels are associated to each of the tokens a word is split into.

3.2 Feature Aggregation Blocks

We aggregated the word information and the linguistic features in each experi-
ment using different strategies. The following aggregation rules were applied to
each linguistic feature separately (ablation study) and to all three jointly.
Reduce Sum & Product. These are very simple rules that enable combin-
ing the input features without adding new learnable parameters in the model.
Learnable Sum & Product. Learnable weights are incorporared into the
ReduceSum&Prod operations. Namely, one learnable vector is multiplied by each
input embedding to strengthen or weaken its contribution in the resulting vector.
Concatenation Mapping (ConcatMap). The embeddings are concate-
nated and fed to a dense network that maps the vector to a dimension of 512.
The weights of the mapping network are also learned during training.
Convolutional Block (ConvBlock). As words and linguistic features could
conceal complex relation patterns, a CNN network is employed with the aim of
mining these complex relationships. Firstly, the input is reshaped to (32,16), and
it is fed to the following layers: CNN; (kernel = (8,8), channels = 4)-CNNy (kernel
= (8,8), channels = 4). Finally, the generated vectors are flattened and fed to a
mapper network to adapt the dimensions to the encoder input shape.
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Table 1. Data partitions Information

Samples Words Glosses
Total Unique Total Unique
Train 7096 99081 2887 55247 1085
Dev 519 6820 951 3748 393
Test 642 7816 1001 4264 411

4 Methods & Material

4.1 Phoenix Dataset

The corpus employed in our experiments is the RWTH-PHOENIX-2014-T [5],
a very well-known SL corpus that is publicly available!®, which includes images
and transcriptions in German text and DGS glosses. The data was extracted
and annotated from weather forecasting news in a public TV station. And, in
spite of its semantic limited domain, it comprises a rich vocabulary of 1117
different signs produced by nine different signers, being quite popular in SLT
research. We focus on text and gloss data in this paper. The dataset is split into
train (=~ 86%), development (~ 6%) and test (= 8% partitions with the data
distribution presented in Table 1. The partitions were created to ensure they
contain a variety of syntactic structures.

4.2 Training & Evaluation Settings

Regarding the training settings, we train all models on the train data for 500
epochs using a learning rate of 5e~6. The learning objective is the Cross Entropy
loss function without any regularization term at loss level. We apply generation
on development partition using Beam Decoding with 5 beams. The best epoch
model is selected and the scores are confirmed on test data. These steps are
repeated 5 times for all models and the means and standard deviations are
reported to avoid misleading observations due to randomness during training.

4.3 Performance Metrics

To evaluate our models, SacreBLEU [17] with word tokenization is assumed as
main metric in model selection. SacreBLEU consists of a standardized version
of traditional BLEU, which uses input tokenization to obtain more comparable
results. This metric analyzes different N-grams against reference segments and
aggregates them for a robust evaluation. Furthermore, we analyze other per-
formance metrics during the test phase to have a wider understanding of how
linguistic features contribute to the T2G task. The selected metrics are: Sacre-
BLEU with character-level tokenization, which is used in our previous work [7]

10 https: / /www-i6.informatik.rwth-aachen.de/ koller/RWTH-PHOENIX-2014-T/
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and can be analyzed in a comparative manner. METEOR is also used, which
evaluates the word alignments according to precision and recall using unigrams
- giving recall higher importance to the metric computation.

5 Experimental Results

In this section we report and discuss the results obtained in our experiments
involving the linguistic features (Section 3.1) and different feature aggregators
(Section 3.2) under random initialization (RI) and Transfer Learning (TL) set-
tings. First, we compare the aggregators under RI; then, TL is explored for the
best aggregation rules; finally, we study individually the advantage of each lin-
guistic feature. Afterwards the performances are analyzed on the test partition.

5.1 Comparison amongst Aggregation Blocks

Here, we compare the different aggregation rules including a model (Only Words)
as baseline, which only uses the word embedding table. Fig. 2 presents the Sacre-
BLEU scores obtained on the development partition during the whole training.
As can be observed, the best aggregation strategy is ConvBlock, which out-

—— OnlyWords —— ReduceProd —— LearnableProd ConcatMap
—— ReduceSum  —— LearnableSum —— ConvBlock

18
17 4

16 i~ == /.

SacreBLEU

15 T T T T T
20022 250 275 | 300 325 350

T T
200 300 400 500
Training Epochs

Fig. 2. SacreBLEU curves for the different aggregation blocks with random initializa-
tion.

performs OnlyWords at certain epochs. The highest SacreBLEU produced by
ConvBlock is 17.59 after 305 epochs, overcoming the best OnlyWords (17.21 at
270 epochs). In the case of ConcatMap, the highest SacreBLEU happens at 220
epochs obtaining a score very similar to OnlyWords (17.13), but slightly lower.
The rest of aggregation rule models perform worse compared to Only Words, with
LearnableProd and ReduceProd as clearly the poorest aggregators. The reason
why the aggregation rules using prod obtained the worst scores might be due to
the scale in the produced embedding vectors.

As ConvBlock, OnlyWords and ConcatMap are the three best models, we
compare them using TL and RI in the following section.
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5.2 Transfer Learning vs Random Initialization

Fig. 3 presents the SacreBLEU curves obtained for the three best models (se-
lected from the previous experiment) when TL and RI is employed. The effect

—— OnlyWords-RI

ConvBlock-RI —— ConcatMap-RI

—— OnlyWords-TL  —— ConvBlock-TL ~—— ConcatMap-TL

SacreBLEU

0 100 200 300 400 500
Training Epochs

Fig. 3. SacreBLEU curves for the three best models with and without Transfer Learn-
ing.

of TL is evident for all models, and the improvements respecting RI reach up
to 5 sacreBLEU in certain cases. Again, the best model is produced by Con-
vBlock aggregation rule when TL is applied, achieving a SacreBLEU of 22.17
at 285 training epochs. The benefits of TL are also marked for ConcatMap and
OnlyWords, obtaining SacreBLEUs of 21.70 and 21.41 respectively. These per-
formance increases confirm that the TL strategy applied to our models allows
them to take advantage of the pre-learned knowledge of mBART, but using a
more manageable architecture. Also interestingly, ConvBlock-TL exhibits better
performances than other aggregation strategies, which reveals that the CNNs
are extracting patterns that enrich the embeddings input into the encoder.

5.3 Ablation Study: Comparison amongst Linguistic Features

In this section, we assess the contributions of each linguistic feature for the
translation task. To this end, we compare the SacreBLEU produced by differ-
ent aggregation rules when each linguistic feature is individually injected. This
analysis is performed anew with focus on the best models found during the pre-
vious experiments. Thus, we compare ConcatMap-TL and ConvBlock-TL using
all (denoted by ALL) and individual features; and, additionally, we include the
OnlyWords-TL as a baseline. The metric curves for these models are presented
in Fig. 4. As it can be observed, the best models are generated using ConvBlock



Linguistically Enhanced Tezt to Sign Gloss Machine Translation 9

—— OnlyWords-TL —— ConvBlock-DEP-TL —— ConcatMap-DEP-TL
—— ConvBlock-ALL-TL —— ConvBlock-POS-TL —— ConcatMap-POS-TL
—— ConcatMap-ALL-TL  —— ConvBlock-MOR-TL ConcatMap-MOR-TL
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Fig. 4. SacreBLEU curves for the best models using all linguistic features and each
one individually

with DEP and ALL features. Also, the differences between these two models
are not substantial. Therefore, ConvBlock extracts rich embedding vectors using
only DEP and without needing to include MOR and POS.

Analyzing each feature individually, we find that the models using POS ob-
tained lower SacreBLEU than the rest of the linguistic features. Moreover, the
ConvBlock-POS-TL curve is below the OnlyWords-TL at many training points.
Regarding MOR models, their SacreBLEU scores are very close to DEP and
ALL models, but without any superior performances compared to them.

Finally, it is also important to highlight the differences between aggregation
blocks. The behavior of ConvBlock differs from the ConcatMap in the fact that
the former starts learning slower than the latter (which is clearly observable
between 50 — 200 training epochs). On the contrary ConvBlock scores overcome
the ConcatMap ones, showing more stability after 250 epochs.

5.4 Results on test data

To conclude our study, we analyze the scores over the test partition of the models
that had best SacreBLEU on development. In this case, we include additional
performance metrics that might reveal relevant behaviors about the models an-
alyzed. From Table 2, we can observe that the improvements achieved by the
TL strategy are also noticeable on the test data for all the aggregation rules
and all performance metrics. Comparing ConvBlock-ALL-TL & RI, we find that
SacreBLEU-Char increases up to more than 5 points in the case of ConvBlock
and METEOR improves by around .052. These improvements are also evident
for ConcatMap and OnlyWords models.

Contrary to the findings on development, the effect of using ALL features
and each feature individually is not so notable in the case of ConvBlock. Using
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Table 2. Performance metrics computed on test. We report average metric (and stan-
dard deviation) for 5 experiment iterations. SacreBLEU-Word & Char denote the dif-
ferent tokenization methods for this metric.

SacreBLEU-Word?T SacreBLEU-Chart METEOR?

OnlyWords-RI 16.61 (.664) 52.70 (.664) .409 (.005)
OnlyWords-TL 19.89 (.441) 56.01 (.783) 454 (.005)
ConvBlock-ALL-RI 16.72 (.608) 52.63 (.805) .406 (.005)
ConvBlock-ALL-TL 20.24 (.976) 57.30 (.365) .458 (.005)
ConvBlock-DEP-TL 20.11 (.310) 57.45 (.406) .460 (.004)
ConvBlock-POS-TL 19.94 (.526) 56.75 (.390) .456 (.004)
ConvBlock-MOR-TL 20.36 (.759) 57.45 (.565) .461 (.005)
ConcatMap-ALL-RI 16.77 (.298) 51.79 (.521) .408 (.003)
ConcatMap-ALL-TL 20.57 (.737) 56.53 (.375) .458 (.005)
ConcatMap-DEP-TL 19.56 (.760) 56.49 (.865) .452 (.005)
ConcatMap-POS-TL 19.69 (.885) 56.82 (.746) 453 (.006)
ConcatMap-MOR-TL 19.30 (.392) 56.20 (.702) .450 (.005)

ALL features with ConcatMap result in increases of up to 1 point in SacreBLEU-
Word. Meanwhile, similar results are seen in METEOR and SacreBLEU-Char.

Globally, we can observe that ConvBlock produces better performance than
other aggregation rules for all settings and metrics explored, with the exception
of ConcatMap-ALL-TL in terms of SacreBLEU-Word. This result may be caused
by the simple architecture tuning explored in this research. We posit that it might
be possible to enhance the pattern mining with CNNs including more layers and
regularization techniques. Finally, considering our previous research [7], we can
observe a substantial improvement of around 4 points in SacreBLEU-Char and
0.6 in METEOR when CNNs and TL is applied.

6 Conclusions & Future Work

In this paper, we study the potential of injecting linguistic features into neu-
ral transformers for a T2G translation task. The experiments presented involve
several types of linguistic features which are aggregated to the traditional sub-
word embeddings according to different aggregation strategies. These strategies
comprise of simple rules (such as ReduceSum & Prod) and more sophisticated
aggregators able to mix the features while extracting hidden patterns (CNN,
Learnable Sum & Prod, and so on). Furthermore, we show that TL can robustly
improve the performance of T2G models via applying a simple, but effective,
filtering and slicing procedure.

According to our results, using CNNs or concatenating features produces the
best results. Regarding the features to include in the models, we find interesting
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improvements when using all available linguistic features on development data,
but this is not so clear for the test data. Finally, the most remarkable perfor-
mance improvements are produced when TL is applied according to the method
described in this paper, resulting in improvements on all metrics. For the sake
of research reproducibility, we make our implementations available in GitHub'?.

The experimental results reported here leave room for interesting future re-
search that may be materialized in the following research lines. (1) Approaching
the translation task in the other direction (Gloss2Text), which requires the pro-
duction of linguistic resources to annotate SLs, (2) Extending the experiments
to other SLs and SL corpora, which could involve multilingual settings, and
(3) Integrating multimodal features, such as manual and/or non-manual infor-
mation, and visual features. For achieving (1), it will be necessary to create a
tagger and a dependency parser for DSG, which would imply annotating many
resources. This has been tried for other languages in the past (e.g. for Swedish
Sign Language [16]), but so far existing corpora annotated in this way is very
scarce, making this a very challenging problem.
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