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Abstract

Computational models can help bring light to the underlying cognitive mechanisms

responsible for the emergence of conventions in human societies. In order to pro-

vide meaningful theoretical insight, these models of behavior should aim to resemble

human-like performance. Deep Reinforcement Learning (deep RL) algorithms fail to

do so; these techniques are data inefficient and require several training instances to

approximate the speed of human learning. Episodic Reinforcement Learning (ERL)

algorithms, for their part, seek to improve deep RL algorithms by implementing

memory buffers that can counter the sample inefficiency problem. Nonetheless, this

approach also falls short because it considers memories as isolated, discrete events.

On the other hand, episodic control models provide a model-free, non-parametric ap-

proach capable of rapid learning, thus resembling more closely human performance.

These algorithms introduce a fast memory system inspired by the hippocampus

that allows them to search for a solution without having to make strong assump-

tions about the world. The present work will test the adequacy of one particular

episodic control algorithm, the Sequential Episodic Control (SEC) model to sim-

ulate human behavioral data in a repeated coordination game. This project will

compare the modeled and behavioral data concerning efficiency, fairness, and sta-

bility measures to evaluate the model’s performance. Finally, given the structure of

the model, this project will examine the potential theoretical implications of human

conventionalization, as well as the limitations and future work on this approach.

Keywords: Sequential Episodic Control; Episodic Control; Social Conventions; Be-

havioral Coordination.





Chapter 1

Introduction

1.1 Conventions

Although complex, human social behavior provides societies with guidelines that

facilitate interactions between agents. Within a community, different individuals

may have conflicting preferences [1], which may force them to either compete or co-

operate. On such occasions, they can rely on norms to solve coordination problems,

namely, situations where the interests of individuals coincide.

One feature that makes social life complex is that one cannot directly observe other

agents’ internal mental states —like their goals and intentions. Norms are help-

ful because they allow agents to reduce uncertainty over future social interactions

by providing a common ground. In other words, by establishing a standard that

determines which actions are suitable or not, norms help regulate social behavior.

Since the outcome of social interactions depends not only on the behaviors of oneself

but also on the actions of others, individuals must act according to their expecta-

tions of how different people will react [2]. Thus, norms are widespread behaviors

that allow society members to know what to expect when they act a certain way.

Furthermore, norms allow agents to anticipate how others might behave in a given

situation because they possess an adaptive value; people need to learn what guides

behavior in a community to survive.

1



2 Chapter 1. Introduction

Conventions emerge as a response to recurrent coordination problems. Specifically,

conventions arise when it becomes necessary to regulate the behavior of bilateral

individuals or groups in repeated social interactions [3]. Ultimately, when people

seek to coordinate, a learning process takes place and gives rise to social order. In

everyday life, it is possible to find multiple examples of conventions: from linguistic

customs such as the accepted names to give children and pets, to the conceptual-

ization of the notion of fairness [4].

The relationship between social interactions and conventions is bidirectional: they

regulate and are regulated by each other. Initially, people may adopt a pre-existing

convention to provide them with initial expectations and a code on how to guide

their behavior; however, as interactions become more frequent, the original con-

vention may change along with the evolving dynamics between individuals [3]. It

follows that, for conventions to be successful, individuals must be competent at

learning about the regularities that govern interactions and proficient in shaping

and improving existing conventions in ways that benefit everyone.

Consequently, community members will continue to abide according to the estab-

lished conventions as long as their expectations are maintained. Conventions are

self-enforcing in the sense that it is advantageous for individuals to cooperate as

long as the behavioral patterns persist and people have reasons to believe others

will act consistently. Additionally, coordination problems may have multiple plausi-

ble solutions that are chosen arbitrarily. These solutions could be equally probable

and acceptable, but one of them will be regularly preferred by individuals. In this

manner, we can assert conventions are self-sustaining and arbitrary [5].

1.2 Games and conventions

Game theory is a model that describes social interactions as an analogy of "games,"

where rational players make strategic decisions based on the other player’s plan of

action. In this framework, a Nash equilibrium refers to the strategy that is the

best response to the strategy of others [6]. Accordingly, in terms of this theoretical
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Player 1

Boxing Ballet

Player 2
Boxing (2,1) (-1,-1)

Ballet (-1,-1) (1,2)

Table 1: "Battle of the Sexes" payoff matrix.

context, the process of conventionalization can be understood as a repeated game

with multiple, equally beneficial equilibria.

To reach an equilibrium, the individuals participating in a game of this nature ought

to coordinate their behavior. The cognitive processes of the people involved, along

with the dynamics of their interaction, will shape the resulting conventions. That

is to say, considering the historic payoffs and interplay, players will adhere to one of

the equiprobable solutions. The resulting behavioral consistency allows society to

deal with recurrent coordination problems efficiently.

A classic example of a coordination game is the "Battle of the Sexes." In this game,

Player 1 and Player 2 have two choices: they can either go to a Boxing match

(preferred by Player 1) or to the Ballet (preferred by Player 2), but both would

rather go out together than attend their favored event. The players must make their

decisions simultaneously and cannot communicate with each other before doing so.

Table 1 illustrates the game’s payoff matrix [7]. The game has three Nash equilibria:

two pure strategies in which both players go to the same event, and one (inefficient)

mixed equilibrium where they select at random which event to attend [5]. This game

is an example of impure coordination: it is in everyone’s best interest to match the

other’s selection, but doing so is intrinsically unfair.

If the "Battle of the Sexes" were to be played repeatedly, getting to a convention

would address the interests of the concerned parties by maximizing their shared pay-

offs in time. In fact, the emerging conventions would represent additional equilibria;
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for example, if the agents alternated their selected events across iterations, they

could engage in turn-taking and reach a fair equilibrium after some trial-and-error

[8]. Even if the players do not communicate explicitly with each other, they do so

by exchanging information in the form of their past patterns of choices; this is what

leads the way to coordination [7].

Even though conventions are regularities in behavior, they constrain the agents’

actions but without removing their ability to make choices [2]. An individual’s

reasons for following a convention may not be necessarily rational [9]; consequently,

agents have the option to depart from the norm. Nonetheless, if people identify

an individual who deviates from an established convention, they could sanction

and distrust him. An attitude of non-reciprocity is discouraged because it would

jeopardize future collaboration, and, for that reason, cooperation is encouraged [10].

It is also worth noting that conventions —or any norms, for that matter— do not

govern all social interactions. In the particular case of coordination problems, they

can also be solved through spontaneous coordination [11]. In other words, even if a

repeated coordination issue exists, individuals could tackle it from the very beginning

of each iteration. Cognitively speaking, it is expensive for an individual to formulate

a convention: it requires a learning process and takes up memory capacity; therefore,

conventions only arise when it is not efficient to coordinate "on the fly."

For coordination to be feasible, the involved parties must learn about each other’s

beliefs. Furthermore, they must share their interpretation regarding the expectations

each of them holds for the interaction [3]. This means that people should be able

to represent conventions mentally; there should be a collectively shared knowledge

about the often unspoken agreement they need to observe. Thus, the question of

how conventions are created and how individuals conceptualize them can be tackled

through research.
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1.3 Research on conventions

In the interest of studying dynamic interactions, researchers have developed varia-

tions around the design of classical, single-turn (discrete) games. For example, in

2016, Hawkins and Goldstone [5] proposed the "Battle of the Exes," a modification

of the "Battle of the Sexes" game. In the new scenario, Player 1 and Player 2 have

to choose between two coffee shops: one with an Okay coffee and another one that

serves a Great product. The players have to make multiple decisions over time,

always simultaneously and without talking to one another. Even though they would

both prefer to go to the Great coffee shop, they want to avoid each other above

everything else.

With the "Battle of the Exes," Hawkins and Goldstone were interested in studying

convention formation in repeated social interactions. The authors carried out a real-

life behavioral study in which they paired up the participants in fixed dyads so that

they would always interact with the same person. Then, they divided them into

distinct experimental conditions in order to analyze two factors that were suspected

of having an impact on the emergence of coordination: the difference between the

payoffs associated with each choice alternative and the continuity of the interaction

within trials.

Hawkins and Goldstone introduced two conditions for the payoff structure: low

stakes and high stakes. The "high stakes" condition resulted in a larger gap between

the reward obtained from the Great and the Okay alternatives; in other words,

there was a marked difference in the quality of the coffee between establishments.

In comparison, the opportunity cost of selecting the Okay alternative for the "low

stakes" condition was small. Table 2 shows the payoff matrices for both, the low

and the high stakes experimental conditions.

The researchers also laid out two different conditions for the continuity of the in-

teraction: simultaneous (ballistic) and real-time (dynamic) rounds. In the ballistic

condition, the participants made their "final" choice before the trial started; this

way, they were unaware of the other’s selection for the current round. On the other
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Player 1 Player 1

Great Okay Great Okay

Player 2
Great (0,0) (1,2)

Player 2
Great (0,0) (1,4)

Okay (2,1) (0,0) Okay (4,1) (0,0)

Low Stakes High Stakes

Table 2: "Battle of the Exes" payoff matrices for the low and high stakes conditions.

hand, the players that interacted in a dynamic environment could constantly update

their choice throughout the trial. In other words, in a real-time round, participants

could see each other approaching their currently selected coffee shop and actively

adjust their decision until they reached the establishment.

Hawkins and Goldstone found that behavioral coordination was achieved faster in

the dynamic condition for the "Battle of the Exes" game. It is worth mentioning that

coordination was also achieved in the ballistic condition, even without explicit com-

munication between the players within rounds. Accordingly, they must have been

communicating indirectly between trials, extracting information from their shared

experience [9]. However, the dynamic condition allowed participants to exchange

information in real-time, thus leading to faster convergence.

Nonetheless, coordination in a dynamic environment does not guarantee convention-

alization: the within-round dynamic can help avoid ties in real-time, but it does not

ensure stability across trials. According to the study’s findings, having high stakes

facilitated the emergence of a convention in time. This is, when participants had

more to lose, it became cost-efficient to come up with a model that prevented them

from repeatedly engaging in the same effort to coordinate on each trial (whereas

when the opportunity cost was low, players could resort to an "on the fly" solution).

Overall, behavioral research —like the one done by Hawkins and Goldstone— can

help answer questions about the emergence of coordination and the conditions that
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facilitate long-term cooperation. Nonetheless, it does not offer theoretical insight

into the cognitive process underlying conventionalization itself. In order to get a

sense of the latent components and procedures of this process, it would be relevant

to develop computational models of human behavior that help fathom the establish-

ment of a convention [11].

1.4 Modeling conventions

To model conventions is important for more than a couple of reasons: firstly, a

coordination model can help us comprehend the underlying nature of convention

formation in real-life scenarios. By abstracting the interaction components, one

can explicitly study what a coordination problem entails and how an equilibrium is

reached. Furthermore, understanding the social dynamics involved in an interaction

provides a robust example of organization and adaptability that can be used in the

design of models and algorithms, and the insights drawn from modeling real-life

interactions can, in turn, improve these algorithms. On top of that, they could

be used for the design of artificial-intelligent machines to incorporate them into a

human society [11].

Deep Reinforcement Learning (deep RL) techniques are a good candidate for model-

ing human performance. RL algorithms lead to explicit values that guide behavior:

they provide the mapping of a particular action-value couplet considering the ini-

tial and successor states, and the immediate or future rewards (state-action-reward

mappings) [12]. Combined with deep learning, these algorithms can compile large

amounts of information and achieve optimal outcomes.

Accordingly, a deep Q-Learning architecture that uses multi-agent RL can be an

effective tool for emulating human interaction in a coordination task, where each

involved agent has to make decisions based on historic payoffs and the interaction

with others [13]. Moreover, deep RL algorithms have already shown human-level

performance in a series of tasks: deep Q-network agents have been able to rival

the performance of professional human players in, for instance, multiple Atari 2600
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games [14] and even board games like chess, shogi, and Go [15].

Nonetheless, if the objective is to understand the underlying mechanisms responsible

for behavioral convergence, deep RL algorithms fail to capture the minutiae. Deep

RL focuses on emulating human-level results but does not incorporate an insight

into the structure and processes that lead to them. In particular, RL algorithms

are very slow learners because they are data inefficient: it can take them up to

tens of millions of training iterations in order to achieve their targeted performance

(whereas humans are much faster learners) [16].

Sample inefficiency in Deep RL is the result of various factors. Firstly, deep RL algo-

rithms need incremental parameter adjustment in order to refrain from erasing pre-

viously learned data upon acquiring new information. Hence, Deep RL only makes

small-step adjustments while learning to maximize generalization. Furthermore,

Deep RL techniques include a weak inductive bias; this allows them to, ultimately,

adapt to more variance and master a more comprehensive range of patterns [17].

However, real-life interactions commonly possess a predictable configuration, and

assuming (by default) a stochastic environment can be a relatively slow approach

to generate a human-like model for learning [16].

Some researchers have developed alternatives to counter sample inefficiency. For in-

stance, Episodic Reinforcement Learning (ERL) can either exploit previous reward-

ing outcomes through a value propagation approach or introduce a new memory

system to bootstrap learning. An example of an ERL algorithm is the Episodic

Memory Deep Q-Network: it adds a memory buffer parallel to a Q-Learning net-

work, thus allowing faster reward propagation that reduces the amount of sampled

data [18]. Another ERL algorithm is the Episodic Reinforcement Learning with As-

sociative Memory, which operates with a smaller sample due to its instance-based

reasoning model [19]. However, regardless of the improvements, this approach does

not fully solve the sample inefficiency problem: ERL algorithms preserve the deep

RL system for gradient-based updates and, therefore, continue to require long learn-

ing times [20].



1.5. Episodic control models 9

1.5 Episodic control models

Another approach that can be useful to study the mechanisms behind convention

formation is that of episodic control models. By drawing inspiration from how the

hippocampus works, these models mimic the fast learning mechanisms present in

humans [21]. These models are non-parametric; therefore, it is unnecessary for

them to make strong assumptions about underlying mapping functions present in

the world. This way, by exploring data, the algorithms can search for the "best fit"

as they gather information directly from the agent’s environment. Non-parametric

algorithms tackle the sample inefficiency issue present in deep RL, and although

it takes them longer to train, they are adequate when there is no prior knowledge

about how the world works [22].

One example of an episodic control model is the Model-Free Episodic Control (MFEC).

This model assumes an environment with stable states and rewards, where decisions

must be made relatively quickly, so planning-based models are too expensive and

impractical. Since hippocampal learning is instance-based, this algorithm does not

learn until computing an optimal result. Still, it guides the action-in-turn accord-

ing to the most rewarding state-action couplet experienced so far. To accomplish

this, the MFEC updates itself by storing, in a tabular memory, the highest values

experienced in a particular state [16].

1.5.1 Sequential Episodic Control

The Sequential Episodic Control (SEC) is another episodic control learning model;

it was developed in 2021 by Freire et al. [20]. Like the previous algorithm, it uses

tabular memory to save past rewarding states. Nevertheless, in contrast to MFEC

and even most ERL algorithms, the SEC model stores complete sequences of state-

action couplets instead of discrete events. This way, the SEC model favors the

selection of a recurrent pattern of states and actions that is shown to be rewarding.

Episodic control algorithms and, in particular, the SEC model appears to be a

suitable approach for modeling behavioral convergence in repeated interactions [20].
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Due to the predictable configuration of conventionalization environments, it follows

that a potentially competent model is one that can optimize the time needed for

achieving coordination. Contrary to model-based techniques, the SEC algorithm

uses an episodic-memory-driven approach to bias the agent’s action selection towards

recently rewarding state-action sequences. Therefore, in a scenario intended to study

the formation of conventions, it is expected to resemble human-like behavior more

closely than alternative approaches.

1.6 Modeling the Battle of the Exes

The present project will model the Battle of the Exes task proposed by Hawkins

and Goldstone to test the performance of the SEC approach in convention forma-

tion [3]. However, it is worth noting that this is not the first attempt at modeling

this particular repeated coordination game. In 2020, Freire et al. [11] proposed the

Control-based Reinforcement Learning (CRL) model, an approach that integrated

a lower-level sensorimotor loop (Reactive Layer) and a higher-level learning algo-

rithm (Adaptive Layer.) With this model, they simulated the Battle of the Exes

and analyzed whether the modeled data predicted the behavioral results previously

obtained by Hawkins and Goldstone.

To assess CRL’s performance on this matter, the authors conducted a pairwise

comparison between the behavioral and the modeled data. The study relied on

Binmore’s levels of priority [6] to evaluate CRL’s adequacy: they measured the

efficiency, fairness, and stability of the results. The first level of priority, efficiency,

evaluates whether the players manage to maximize their collective rewards. Fairness

shows whether both players’ rewards are balanced throughout the game. Lastly, we

can understand stability following the notion of arriving at an equilibrium in a game;

it concerns the robustness of the arising conventions.

Even though Freire’s simulation entailed a data-efficient approach, it failed to pre-

dict the human-level performance on the stability measure. This limitation suggests

that the CRL model could not capture the complexity underlying human cognitive
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processes. In other words, the Adaptive Layer failed to abstract the concepts behind

the strategies that the players came up with during the task. For example, human

players could have decided (inductively) to engage in a "turn-taking" strategy be-

tween rounds; nonetheless, the CRL model would not have been able to learn (from

scratch) a separate, specific policy for each of the two available alternatives [11].

1.7 Research motivation and objectives

As was previously mentioned, the purpose of this thesis is to assess the perfor-

mance of the SEC algorithm during a repeated coordination game. Particularly, by

implementing this model to simulate the Battle of the Exes scenario, the present

work aims to emulate Hawkins and Goldstone’s experimental results [3] in terms of

Binmore’s levels of priority [6]. Consequently, if the model accurately predicts the

existing behavioral data, it could provide a comprehensive insight into the underly-

ing theoretical mechanisms responsible for convention emergence in human societies.

The present study will attempt to answer the following questions:

• Can the SEC model achieve human-level performance for Efficiency, Fairness,

and Stability?

• If so, what intuition does it provide about the mechanisms underlying human

conventionalization?

• What advantages does the SEC algorithm contribute to the modeling of con-

vention formation compared to other approaches (e.g., the CRL model)? What

are its limitations?

Given the existing evidence that shows that introducing a sequential inductive bias

improves memory efficiency when engaging in the exploration of new environments

[21] [20], it is expected that SEC will perform efficiently in the task at hand. Namely,

it is hypothesized that the algorithm will be suitable for modeling human-like behav-

ior in the early stages of repeated social interaction, where behavioral coordination
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does not rely on a preconceived model of the world, but on the dynamics of the inter-

action itself. In particular, it is expected that implementing a sequential-memory-

driven algorithm will address CRL’s inability to simulate the stability seen in the

behavioral data: by favoring the selection of recurrent state-action pair sequences,

the SEC algorithm can optimize the time needed to reach an equilibrium.

1.8 Structure of the report

This thesis project is organized as follows: the first chapter covers the theoretical

framework, offering a review of the existing and relevant literature to justify the

work. In the second chapter, the methodology is described, detailing the charac-

teristics of the model, the virtual environment for the conventionalization task, and

the subsequent implementation of SEC. Then, chapter three reviews and analyzes

the gathered data and carries out a pairwise comparison between the preceding be-

havioral study and the current model’s outcome. Finally, chapter four is dedicated

to discussing the results and the conclusions on the scope of this work, including

recommendations for future work.



Chapter 2

Materials and methods

2.1 Experimental design

In this project, a multi-agent simulation of the Battle of the Exes task 1 will be

implemented to evaluate the performance of the Sequential Episodic Control (SEC)

model in emulating behavioral data during a repeated coordination task. The ex-

perimental design is a 2x1 between-subjects study, where the factor of interest is

the continuity of the interaction between the players. Within the Battle of the Exes

benchmark, this refers to the dynamic and ballistic versions of the game. Following

the methodology done by Freire et al. [11], the condition above is to be played by 50

agents paired in fixed dyads (25 dyads in total). The pairs will interact for 50 trials

and will engage in a high stakes situation, where there is a large disparity between

the players’ payoffs.

The agents’ task is to reach one of the two reward spots displayed in the environment,

and each round ends with the arrival of an agent to any of them. Additionally, a "tie

area" surrounds the reward spots. If a player reaches a particular spot and the other

agent is within its tie area, the trial results in a draw, and both agents receive the

corresponding payoff. This feature is particularly relevant for the dynamic condition

since the players can update their decisions and adjust their trajectories during the
1
Designed by Hawkins and Goldstone (2019) [3].

13
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round. In this condition, each agent can see their opponent’s behavior in real-time

and react accordingly. On the contrary, for the ballistic variation, the agents do not

have the opportunity to change their course of action once the trial has begun.

2.1.1 Technical setup

To implement the previously described task, we employ the 2D virtual environment

developed by Freire et al. [11] for modeling the Control-based Reinforcement Learn-

ing (CRL) algorithm. This is a simulated robotic environment, where two mobile

machines known as "e-pucks" represent the players. The e-pucks are equipped with

six proximity sensors that allow them to perceive the elements in the environment,

two wheels (one on each side of the robot) with incorporated motors, and a network

of connections that links the sensors with the wheels’ motors.

Furthermore, two spots positioned in the environment serve as the two distinct

coffee shops, and a circle surrounding each represents the tie area. The reward

spots vary in size, depending on whether they embody the high or the small reward,

and on every trial, they are randomly allocated to one of two predefined locations.

Figure 1.B depicts the environment’s composition. Moreover, there are two different

versions for the virtual environment: one is intended for the ballistic condition, and

the second one is for the dynamic interaction within trials.

Each e-puck has three types of sensors which are divided as follows: two sensors

for perceiving the high reward spot; two sensors for the low reward spot; and the

last two sensors that detect the proximity of the other agent. These three types of

sensors are present on both the left side and the right side of the e-puck. Figure

1.A illustrates the previous configuration. This arrangement allows the agent to

perceive the proximity of different entities and to send this input signal into the

wheels’ motors through a series of excitatory and inhibitory connections. The motors

control the agent’s speed according to the input they get from the sensors, weighted

by the values of the agent’s governing behavioral model.
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Figure 1: The experimental setup designed by Freire et al., 2020 [11]. Image A.
Top view of an agent, represented as an "e-puck" in the virtual environment. This
particular agent is facing the top of the page. The black rectangles on its sides
represent the robot’s wheels and the colored circles on the front illustrate the differ-
ent sensors it possesses: "A" refers to the agent proximity sensors, "L" to the low
reward sensors, and "H" to the sensors for the detection of the high reward. Image
B. Top view of the 2D simulation environment. The blue circles represent the agents
(e-pucks) in their initial position, the green spots illustrate the high (large spot) and
low (small spot) rewards, and the white circles define the tie area.

2.2 Experimental framework

2.2.1 The SEC model

In order to emulate convention formation, agents are modeled according to the SEC

algorithm. This model’s approach guides an agent’s behavior according to state-

action sequences that have been rewarding in recent history. Concretely, the SEC

model consists of a short-term memory buffer (E), a long-term episodic memory

(EC) component, and an action selection algorithm. Figure 2 details the aforemen-

tioned model’s steps.

The SEC model, as proposed by Freire et al. (2021) [20], is structured as follows:

1. First, the model is introduced into an environment that allows it to encounter

a series of state-action couplets.
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Figure 2: Sequential Episodic Control Model (SEC) algorithm, proposed by Freire
et al., 2021 [20].

2. Then, SEC saves the upcoming input in its short-term memory buffer. In an

ordered manner, the model takes in the most recently experienced sequence of

state-action pairs.

3. When the short-term memory buffer reaches a total of 50 accumulated cou-

plets, it begins to apply the "first-in, first-out" rule; this means that it begins

to drop the oldest couplet in the sequence and updates the buffer with a newly

encountered pair.

4. The moment it comes across a reward, the model associates it with the state-

action sequence currently saved in the short-term buffer. This sequence-reward

pair is then sent into the long-term memory component and saved as a state

representation.

5. Now, the action selection algorithm compares each experienced state against

all the state representations collected within the long-term memory component
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by applying a similarity metric (which gets the Euclidian distance between

these states):

6. The model estimates the eligibility scores (G) for the state-action couplets by

taking the result of the previous equation and weighting it using a sequential

bias (B) to compute the history of recently chosen state-action pairs. This

way, the probability of selecting a recurrent sequence increases:

7. Subsequently, the model selects candidate state-action pairs (C) whose eligi-

bility scores surpassed an absolute and a proportional threshold:

8. Next, the model associates the couplet candidates with the reward values

assigned to their corresponding stored sequences; these values are normalized

to the maximum reward associated with the pairs at hand. In addition, they

are weighted using a decay value that depends on how far the couplet is from

the end of the sequence:

This way, the model is biased towards selecting actions that are near bigger

rewards.
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9. By normalizing the sums of all the relative reward values associated with the

candidate state-action couplets, a probability distribution is generated over

the discrete action space. And, finally, the model randomly picks an action

from this distribution:

In summary, the short-term memory buffer transiently stores the most recently

experienced sequence of state-action couplets. When the algorithm comes across a

reward, it is attached to the current couplet sequence and the pair is sent into the

long-term episodic memory to be saved as a state representation. This algorithm

will perform randomly in the beginning, but upon gathering observations, it will

choose actions more selectively. Figure 3 illustrates the structure of the SEC model.

Figure 3: Representation of the Sequential Episodic Control (SEC) model. On
the top, the Contextual Layer consists of a short-term memory buffer and a long-
term episodic memory component, as well as an action selection algorithm. On the
bottom, the Reactive/Adaptive Layer represents the sensorimotor control loop that
bridges the Contextual Layer and the environment. In this image, the Sequential
Episodic Control Model (SEC) model, proposed by Freire et al., 2021 [20], concerns
the Contextual Layer.
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2.3 Algorithm and experimental adjustments

Here, we introduce the necessary adjustments in order to adapt the previously de-

scribed SEC model to the Battle of the Exes task. The first thing to consider is that

the structure of the environment is different from the one where Freire et al. (2021)

[20] originally implemented the model: the Animal AI testbed [23]. The preceding

virtual simulation consisted of a 3D environment where agents received first-person

visual input (an 84 by 84 pixels arrangement) at each timestep. Conversely, the

technical setup for the simulation at hand is a 2D robotic simulation with two dis-

tinct implementations that depend on the continuity of the agents’ interactions: the

ballistic and the dynamic conditions.

2.3.1 Ballistic condition

For the ballistic condition, just like in the previous implementation, the agents only

compute their own payoffs without considering the other player’s rewards or the

gap between them. However, for this condition, the agents compute both players’

actions for each trial. This is, an agent keeps track of its own sequence of selected

actions, as well as that of its opponent.

Consequently, we define a trial’s "state" as the action sequences that were chosen in

the most recently experienced trials by both players; the state is then associated with

the agent’s selected action for the current trial (namely, the state-action couplet).

There are two possible actions an agent can choose on each trial: selecting the low-

reward coffee shop is represented with a 0 while setting the course for the high-reward

destination is depicted with a 1.

Since states are not continuous real-time occurrences but discrete instances, the

short-term memory buffer has a smaller couplet capacity than the original model

implementation. Instead of accumulating up to 50 pairs, we designate the length of

the buffer to a fixed size that encompasses the ordered lists of the pair of actions

selected by the agent and its opponent. In order to determine the appropriate size

of a state, we will test different lengths ranging from 2 to 7 trials. This is, we will
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examine sequences of 6 distinct lengths and choose the value (n) whose result better

resembles human behavior. It is worth noting that instead of using the Euclidean

distance for comparing the sequence in STM against the ones saved in the LTM, we

will use the Hamming distance since it is more accurate for binary vectors.

In addition, given the nature of the task’s configuration, every state is also automat-

ically associated with a reward. Hence, unlike the previous implementation, here the

algorithm sends a state-action couplet into the long-term memory for each experi-

enced trial. Additionally, the reward associated with the sequence in the short-term

memory is equal to the accumulated reward of all the trials encompassed in the state

representation and the currently experienced trial.

During the initial trials (when the amount of encountered states is less than n)

the empty slots in the short-term memory buffer are filled with -1 values, both for

the selected action and the reward value. Even though these rounds’ state-action

pairs are also stored in the long-term memory, the probability of being picked by

the action selection algorithm is low due to the application of the similarity metric,

since no posterior sequences include actions equal to -1.

The couplets in the short-term memory update on every trial. However, the short-

term memory buffer is not emptied when the sequence is associated with its reward

and sent into the long-term memory component. Instead, a copy of the current

sequence is sent into the long-term memory and the sequence in the buffer continues

to update according to the first-in, first-out rule.

2.3.2 Dynamic condition

For the dynamic condition, the real-time updates are analogous to the ones in the

CRL configuration: the state-action couplets are continuous and accumulate within

each trial. These updates are registered every 5 timesteps during the simulation.

When the round finishes, the sequence stored in the short-term memory buffer is

sent into the long-term memory component because it always ends with an agent

reaching a reward.
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A sequence is composed of the overall state-action couplets experienced within the

trial; however, we define the size of the short-term memory buffer as 37 state-action

pairs, since 37 is the minimum amount of timesteps needed to reach any given

reward (if the agent’s behavior is as efficient as possible). This way, all the state

representations in the long-term memory possess the same length. Nonetheless, this

also means that if an agent takes a long time exploring before reaching a reward,

only the last 37 couplets are saved.

Furthermore, reward values saved into the LTM are weighted by an exponential

discount associated with the time it takes the agents to arrive at their destination.

Needless to say this only applies to positive reward values, so it does not include

trials that result in a tie. Thus, if at least one epuck reaches a coffee shop within

37 timesteps, the players will receive the full, corresponding rewards. On the other

hand, if it takes them longer to arrive at the reward spots, the value of the payoff

starts to decrease following a logarithmic scale. If none of the agents succeeds in

reaching either spot in less than 60 timesteps, the round ends with a timeout and

starts over.

Additionally, it is worth mentioning that agents can change their course of action

at any point during a round in this condition. Therefore, just as with Freire’s

approach to the Battle of the Exes [11], the agents are equipped with two different

layers of behavior: a Reactive Layer, which handles the sensorimotor contingencies

of the agent within one round, and an Adaptive Layer, which handles learning across

trials.

• The Reactive Layer represents a feedback controller that is implemented as

a set of hard-wired sensorimotor control loops and provides the agents with

a behavioral baseline. This layer bootstraps learning by allowing the agents

to acquire behaviorally relevant information (eg. state-action couplets) in the

initial phases of exploration, where the Adaptive Layer hasn’t acquired any

experience. The Reactive Layer can be conceived as the set of reflexes that

are "pre-wired" in living organisms and offer inductive biases to explore the
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environment [17], thus allowing learning in the Adaptive Layer.

• The Adaptive Layer represents a model-free approach that learns how to ex-

ploit rewarding state-action patterns.

More specifically, the Reactive Layer consists of predefined reward-seeking and

collision-avoidance behaviors. The reward-seeking conduct is achieved through the

agents’ proximity sensors, with a crossed excitatory connection combined with a

direct inhibitory connection between the reward proximity sensors (sX) and the

wheels’ motors (m):

where f is a constant forward speed set to 0.3, X can refer to either the high or

the low reward, and s
X
left, for instance, would be the reward sensor located at the

left side of the agent. The sensors are more highly activated when they are closer

to the reward spots. Consequently, this configuration causes the more activated

sensor to excite the opposite-side motor, thus making the robot turn and approach

the input source. Alternatively, if no reward spot is detected, the robot simply

advances forward with a speed of f.

As for the collision-avoidance behavior, the combination of the connections between

the sensors and the motors is the opposite of the reward-seeking network. What

is more, in this configuration the involved sensors are the agent sensors (sA). As

follows, there is a direct excitatory connection and a crossed inhibitory connection

between the s
A and the wheels’ motors (m):
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where s
A
right refers to the e-puck’s right side sensor, which indicates the proximity of

the other agent. Just as in the preceding scenario, the sensors are more activated

the closer they are to the input source, and if nothing is detected, the agent moves

forward with a speed of f. This configuration makes the more activated sensor excite

the same-side motor, thus making the robot turn away and avoid the other agent.

The Reactive Layer initializes the e-pucks into exploring the environment in the first

trials when they still have no state representations stored in the long-term episodic

memory. Essentially, the agents are embedded with the impulse to approximate

the rewards present in the environment and the impulse to evade the other player

(which is fundamental for the task at hand). In the case of the "other agent"’s

sensors, they are turned off entirely once the SEC model takes control in order to

avoid them overshadowing the impact of the model and biasing the results against

ties. However, they can either be present or absent during the exploration phase.

We will be testing for these two possibilities and select the one that results in more

human-like behavior.

Moreover, the Reactive Layer interacts with the Adaptive Layer by means of a top-

down control mechanism that operates as an inhibitor function: depending on the

action selected by the SEC algorithm, either the high reward or the low reward-

seeking behavior can be inhibited. For example, if the selected action is to approach

the high reward, the low reward-seeking behavior is suppressed.

2.3.3 Experimental modifications

On top of the aforementioned, in order to implement the SEC algorithm into the

existing experimental setup we have to apply the following adjustments:

1. The introduction of an exploration phase before the 50 testing trials. In other

words, the agents are able to explore the environment by following only the

Reactive Layer (before the SEC algorithm is initialized). Different numbers of

trials need to be tested to determine the most adequate exploration duration

that provides the epucks with a basal knowledge of the technical setup; for
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the present implementation, we will assess the values of 20, 30, and 50 trials.

During this phase, each agent will choose a random action at the beginning

of the trial and store the information provided by their sensors, as well as

the reward encountered at the end of each respective trial. For the dynamic

condition, this means that the epucks will behave as if they were in the ballistic

condition during the exploration trials: the coffee shop selected will not be

updated in real-time since only one decision is made at the beginning of the

turn.

2. For the purpose of simplification and reducing the number of parameters being

tested, the capacity of the long-term memory component is set to equal the

total number of trials. Accordingly, this component will be equivalent to 50,

plus the number of exploration trials faced by the agent, resulting in a total

of 70, 80, or 100 trials. It follows that no forgetting method is applied in the

LTM.

3. Saving state-action couplets associated with a zero-value reward into the LTM.

In the SEC’s previous implementation, a reward that equaled zero was dis-

regarded because it did not provide valuable information to the algorithm.

Nonetheless, in the current experimental setup receiving a payoff of zero rep-

resents a tie, and thus it distinguishes itself from receiving no reward.

4. The similarity threshold when comparing the STM against the sequences

stored in LTM. Given that the configuration of the state-action pairs is dif-

ferent than the one present in the Animal AI testbed, the structural changes

in the algorithm need to also adapt to the dimensionality reduction. In other

words, the similarity threshold used in the previous experiment may not be ad-

equate for this new implementation; hence, we will examine different threshold

values to be surpassed by the candidate state-action pairs’ eligibility scores:

we will test 0.7, 0.8, and 0.9.

5. The inclusion of negative values associated with a tie. In the present simula-

tion, the spot that delivers a small reward returns a fixed payoff of 1, while
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Agent 1 Agent 1

Large Small Large Small

Agent 2
Large (0,0) (1,4)

Agent 2
Large (-1,-1) (1,4)

Small (4,1) (0,0) Small (4,1) (-1,-1)

High Stakes, Tie= 0 High Stakes, Tie= -1

Agent 1

Large Small

Agent 2
Large (-4,-4) (1,4)

Small (4,1) (-4,-4)

High Stakes, Tie= -4

Table 3: "Battle of the Exes" payoff matrices for the agents in the virtual simulation,
for the high stakes condition with tie values of 0, -1, and -4.

the other reward equals 4 (since the agents are always immersed in the high

stakes version of the game). Yet, we will examine increasing the gap between

the rewards obtained when the turn ends in a tie and when the players choose

different destinations. The tie reward values that we will test are 0, -1, and

-4; Table 3 shows the payoff matrices for these different scenarios.

2.4 Evaluation metrics

The three metrics used to evaluate the SEC model’s performance are efficiency,

fairness, and stability. The efficiency (E) level is measured by the cumulative sum

of the overall rewards that the agents acquired, divided by the largest possible reward

that could have been earned by both of them altogether (rmax) on each trial:
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where t refers to the total number of rounds experienced by the agents, i to the

current trial, and rp1 and rp2 to the reward assigned on each trial to Player 1

and Player 2 respectively. If E were to approach 1 it would mean that the agents

obtained most of the possible reward they could have acquired; in other words, this

result would indicate that they got close to maximizing their overall payoff.

The fairness (F) level is an aggregated value over trials, just like the efficiency metric.

It refers to the proportion of times each player received the highest reward on each

trial, and then, it is measured by the following normalized payoff ratio:

where hp1 refers to the accumulated number of trials in which Player 1 earned the

highest reward, and consecutively, hp2 concerns the amount of trials in favor of

Player 2. If by the end of the simulation F equals 1, it would mean that both agents

have obtained the highest reward an equal number of times, and the overall payoff

is evenly distributed.

In contrast to the previous metrics, the stability (ST) level regards the predictability

of the agents’ behaviors. Namely, this metric refers to the persistency of dynamic

behavioral patterns throughout the experienced rounds. Following the methodology

of Hawkins and Goldstone, ST is measured by computing "the average surprisal of

a Markov Chain encoding the transition probabilities between events on successive

rounds" [5].

First, to measure ST it is necessary to extract the series of the game outcomes

belonging to one particular dyad of players; these are encoded as a sequence (S ) of

states (s). Each s can take up one of the values belonging to the set of outcomes
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{p1, p2, d}, where p1 equals "Player 1 wins", p2 equals "Player 2 wins", and d

refers to a draw. Now, considering Sm as the set of all the subsequences of length

m that conform S, the next phase is to train a Markov Chain of order m for each

step t in the time-series:

where, for example, ⇧p1 would be the indicator function that equals 1 when p1

is true. This operation allows keeping a "virtual counter" for the set of outcomes,

which converges to the maximum likelihood estimator for each of them.

Following the theory of information proposed by Shannon [24], in order to measure

ST we obtain the degree of surprisal for the agents’ interactions. Therefore, the next

step is to calculate the negative logarithm of the previous probabilities:

where xt refers to the outcome, and P(xt|xt�1,....,xt�m) to the probability of that

outcome according to the Markov chain. The surprisals (for the total of trials)

integrate a second time-series and finally, to compare conditions at a group level,

the last stage is to calculate the mean of the aggregated suprisals for a particular

experimental group (eg. for the players in the low stakes and dynamic condition.)

Concretely, measuring ST provides a quantitative metric of how much regularity can

exist within the agents’ interactions. In this regard, a long period of low surprisals

would imply a stable equilibrium. On the contrary, an agent would be "surprised" if

it perceives an event that goes against what it has learned (this is, if an improbable

event takes place.) During the first trials, when information is yet to be gathered,

the degree of uncertainty will always be high, but it is expected to decrease if the

players’ behaviors start converging. In other words, a higher surprisal level implies

lower environmental ST, and contrariwise, a high level of ST entails less uncertainty

and, potentially, a robust convention.
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2.4.1 Comparison between datasets

After computing the evaluation metrics, we conduct a pairwise comparison of the

metrics for the 2x1 conditions between the results of the SEC model and those of

the behavioral experiment and an experimental control. If results follow a normal

distribution, a one-way ANOVA is applied; if the distribution is non-Gaussian, a

Kruskal-Wallis H-test is performed to determine if there is a statistically significant

difference between groups. Subsequently, if significant differences are found, we run

post-hoc independent tests to compare the human and the control outcomes against

the model results, to analyze whether they follow the same tendencies or not. Here,

we use an independent samples T-test if the distributions are normal and if they are

not, a post-hoc Mann-Whitney U-test. Finally, the results are contrasted against

those obtained from the CRL algorithm implementation to see whether they better

match the human data.
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Results

In this chapter, we report the results of the SEC model simulations in terms of

efficiency, fairness, and stability, across the 2x1 experimental design. The algorithm

simulations are measured against the human experimental results from the work

done by Hawkins and Goldstein [3] and compared to the results of the CRL modeling

done by Freire and collaborators [11]. Additionally, we analyze and interpret the

results, and discuss the significance of the human-model comparisons between the

SEC and the CRL implementations.

We begin by testing potential parameter values to determine which would make

the SEC algorithm better emulate human behavior within the Battle of the Exes

framework. The parameters of interest are:

• The value of the payoff associated with a tie, where we test the effect of having

reward values of 0, -1, and -4.

• The length of the STM for the ballistic condition, where we examine the

following lengths: 2, 3, 4, 5, 6, and 7 components.

• The similarity threshold value that the STM sequence needs to surpass to be

considered "similar" to the sequences stored in LTM; the different values to

be tested are 0.9, 0.8, and 0.7.

29
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• The number of trials the agents spend exploring and learning about the envi-

ronment before beginning the 50 experimental trials; here we test whether it

is best if epucks spend 20, 30, or 50 trials before accessing the SEC-induced

behavior.

• The presence or absence of the "other agent"’s reactive sensors during the

dynamic condition’s exploration phase.

After fine-tuning SEC’s parameters, we select the most adequate values for each

experimental condition. 1 Ultimately, for the dynamic condition, the parameter

combination that shows the closest resemblance with human data is the one with a

similarity threshold of 0.8, 10 exploration trials, a tie reward of -4, and no "avoid

epuck" sensors. As for the ballistic condition, we have multiple potential candidates

so two options are selected: keeping constant the values of 0.8 for the similarity

threshold and 10 exploration trials, alternative SEC A has a tie reward of -4 and

a STM length of 4, and alternative SEC B presents a tie reward of 0 and a STM

length of 2.

3.1 Efficiency, fairness, and stability scores

3.1.1 Ballistic condition

The bar charts in Figure 4 show the efficiency, fairness, and stability mean scores

in the Battle of the Exes, for the ballistic condition. These plots illustrate the

comparison between the behavioral data from the original Goldstein and Hawkins’s

experiment [3], the outcome from the randomized control agents, the results from

the modeling done by Freire et al. [11] with the CRL algorithm, and the results

from the SEC A and SEC B simulations.

Regarding the efficiency results, the post-hoc Mann-Whitney U-tests show that the

difference between the experimental control and the SEC A scores is not statistically
1
For more details on how these values are selected, continue to the following section (3.2 Pa-

rameter fine-tuning).
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Figure 4: Results of the SEC algorithm compared to behavioral data, an experimen-
tal control, and the CRL algorithm in the Battle of the Exes task. These bar plots
concern the comparison of the Efficiency, Fairness, and Stability mean scores for the
Ballistic Condition. Human refers to the results from Goldstein and Hawkins [3];
Control refers to the results from a randomized simulation of the task; CRL refers
to the results from Freire et al. [11]. As for the SEC algorithm results, SEC A is
defined by the parameter values of 10 exploration trials, a similarity threshold of
0.8, a tie reward of -4, and a STM length of 4 elements; SEC B is defined by the
parameter values of 10 exploration trials, a similarity threshold of 0.8, a tie reward
of 0, and a STM length of 2 elements.
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significant (p=0.150); neither is there a significant difference between the experi-

mental control and the SEC B results (p=0.270). On the contrary, when compared

against the behavioral data, both SEC A (p=0.00013) and SEC B (p=7.53e-06)

show a statistically significant difference. In addition, there is as well a statisti-

cally significant difference between the experimental control and the human results

(p<0.001).

As for the fairness metric, post-hoc Mann-Whitney U-tests show a statistically sig-

nificant difference between the experimental control and both SEC implementations,

SEC A (p=3.059e-05) and SEC B (p=1.144e-05). In contrast, the differences be-

tween human results and the SEC A scores (p=0.223), as well as human results in

comparison to SEC B (p=0.058), are not statistically significant. Lastly, there is

no significant difference between the experimental control and the human results

(p=0.44).

Lastly, in regards to the stability metric, the post-hoc Mann-Whitney U-tests show

a statistically significant difference between the experimental control and the results

of both of the SEC simulations, SEC A (p=1.502e-165) and SEC B (p=2.017e-

173). As for the comparison between the human results and the SEC scores, there

is no significant difference between neither for SEC A (p=0.362) nor for SEC B

(p=0.056). Furthermore, there is as well a statistically significant difference between

the experimental control and the human results (p<0.001).

3.1.2 Dynamic condition

The bar charts in Figure 5 show the efficiency, fairness, and stability mean scores

in the Battle of the Exes, for the dynamic condition. In these graphs, we can

observe the comparison between the behavioral data from the original Goldstein

and Hawkins’s experiment [3], the outcome from the randomized control agents, the

results from the modeling done by Freire et al. [11] with the CRL algorithm, and

the results from the SEC model simulations.

Regarding the efficiency results, the post-hoc Mann-Whitney U-tests show that the
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Figure 5: Results of the SEC algorithm compared to behavioral data, an experimen-
tal control, and the CRL algorithm in the Battle of the Exes task. These bar plots
concern the comparison of the Efficiency, Fairness, and Stability mean scores for the
Dynamic Condition. Human refers to the results from Goldstein and Hawkins [3];
Control refers to the results from a randomized simulation of the task; CRL refers to
the results from Freire et al. [11]. As for the SEC algorithm results, SEC is defined
by the parameter values of 10 exploration trials, a similarity threshold of 0.8, a tie
reward of -4, and no "avoid epuck" sensors.
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difference between the experimental control and the SEC model scores is statistically

significant (p=1.255e-17). Similarly, when compared against the behavioral data,

the SEC simulations’ results show a statistically significant difference (p=0.0038).

On the other hand, there is no statistically significant difference between the exper-

imental control and the human results (p=0.26).

As for the fairness metric, post-hoc Mann-Whitney U-tests show a statistically sig-

nificant difference between the experimental control and the SEC scores (p=0.0391).

Also, the difference between human results in comparison to the SEC results is sta-

tistically significant (p=0.0093). Lastly, there is also a significant difference between

the experimental control and the human results (p=0.04).

As for the stability scores, the post-hoc Mann-Whitney U-tests show a statistically

significant difference between the experimental control and the SEC simulations’

results (p=2.214e-135). In regards to the comparison between the human results and

the SEC scores, there is as well a significant difference between them (p=1.532e-78).

Finally, there is also a statistically significant difference between the experimental

control and the human results (p<0.001).

Entropy levels through trials

Another element to take into consideration is the evolution of the epucks’ experi-

enced entropy throughout a dynamic game. Ideally, if the SEC model is able to

learn about the agents’ interactions, it should present a reduction in the previously

mentioned metric’s values while approaching the final turn. In order to look into

this, we also measure the agents’ mean entropy levels turn by turn. We start by

extracting each agent’s experienced entropy level for each timestep. Then, for every

turn, we then get the mean entropy for all the players in the group, and, finally,

we plot the results. Figure 6 shows the evolution of the entropy levels for the SEC

implementation with a similarity threshold of 0.8, a tie reward of -4, and no "avoid

epuck" sensors.
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Figure 6: Evolution of the mean entropy levels (turn by turn) for the agents inter-
acting in the Dynamic Condition, while considering a parameter combination of a
similarity threshold of 0.8, a tie reward of -4, and no "avoid epuck" sensors. The
average entropy value for 10 exploration trials was equal to 0.868; for 20 exploration
trials, 0.833; and for 50 exploration trials, 0.807.

3.2 Parameter fine-tuning

In order to select the best SEC parameter values for the foregoing comparisons, we

need to test all possible combinations for all of the parameters under consideration

(for the ballistic and dynamic conditions). Additionally, these combinations are

also contrasted against a randomized control group. Appendix A includes an overall

comparison of all of the aforementioned combinations in terms of the accumulated

reward through trials and the moving average.

Firstly, we look at the graphical comparison of the accumulated reward through trials

for each combination. This value comes from the rewards both players earn on each

trial and it gives us a preliminary idea of how adequately the model matches human

performance. We observe in these graphics that none of the model’s variations

achieve a performance that maximizes the accumulated reward through a game as

well as humans do. The moving average across trials shows the same tendencies.

As we can see from the examples in Figure 7 and Figure 8, the human results

outperform all of the model’s results, no matter which parameter combination is
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Figure 7: Examples of the Accumulated Reward and the Moving Average compar-
isons between the human data (blue), the experimental control (green), and the
different parameter combinations, for the Ballistic Condition. The top graph shows
the Accumulated Reward throughout all the turns in a game, and the bottom one
presents the Moving Average across trials. These are the results from running the
simulation with the following parameter combination: Ballistic condition, similarity
threshold = 0.7, tie reward = -1, exploration = 20 trials, and all of the STM lengths.
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Figure 8: Examples of the Accumulated Reward and the Moving Average compar-
isons between the human data (blue), the experimental control (green), and the
different parameter combinations, for the Dynamic Condition. The top graph shows
the Accumulated Reward throughout all the turns in a game, and the bottom one
presents the Moving Average across trials. These are the results from running the
simulation with the following parameter combination: Dynamic condition, similar-
ity threshold = 0.8, tie reward = -4, all of the "avoid epuck" options, and all of the
exploration trials.
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selected. In addition, we observe that the control condition always does better

than any of the parameter combinations for the ballistic condition, but the model

implementations have better results in the dynamic condition; this is true for both,

the accumulated reward and the moving average graphs.

It is worth noting that, even though the SEC results do not seem to exactly replicate

the behavioral ones, our objective here is to try to identify the parameter combi-

nation that emulates them as close as possible. With that in mind, these graphs

present us with preliminary indicators that show potential values we could select.

For example, in Figure 7 we can see that the parameter combination that includes

a STM length of 4 elements could be the most adequate for the ballistic condition,

whereas selecting a STM with a length of 7 components appears to have the worst

performance. Likewise, Figure 8 seems to indicate that defining 10 exploration trials

and turning off the avoid "other epuck" sensors might be an adequate choice for the

dynamic condition.

3.3 Graphical comparison

In order to define whether SEC can appropriately model human behavior in the task

at hand, we evaluate its performance in terms of efficiency, fairness, and stability. To

begin with, we compute the evaluation metrics and qualitatively compare the means

for all of the parameter combinations discussed in the previous section against the

experimental control and the human data. The following sections will illustrate some

examples to provide us with a comprehensive idea of which might be the parameter

combinations that emulate human results most adequately; to examine the complete

set of graphical comparisons for each metric for all the parameter combinations, see

Appendix B.

3.3.1 Ballistic condition

In the first place, we can look at the particular example of defining a similarity

threshold of 0.8 and a STM length of 4, in the ballistic condition. Figure 9 refers to

the metric of efficiency, and we can see that a combination of 20 exploration trials
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and a tie value of -1 gets closer to human results than the same combination but

with 10 exploration trials. Nonetheless, the rest of the parameter combinations also

seem to be closer to the experimental control than to the human results; this is true

for all of the combinations tested for efficiency in this condition.

Figure 9: Efficiency results for the Ballistic Condition, when considering a similarity
threshold of 0.8 and a STM length of 4 elements.

Regarding the fairness metric for the same exemplified parameter values, Figure 10

shows how all the model’s results seem closer to the human data than to the ex-

perimental control except when selecting 10 exploration trials, which seems to have

a detrimental impact. However, in contrast to the efficiency scores, the algorithm

does not have a consistent outcome when measuring fairness. When defining the

similarity threshold as 0.7, for instance, the model obtains lower results than hu-

mans (similar to what happens in Figure 10 when selecting 10 exploration trials);

and when defining it as 0.9, the model’s results tend to be more similar to the

experimental control.

Similarly, the stability results for the ballistic condition seem to show a human-like

tendency. As we can see in Figure 11, the model appears to approximate human



40 Chapter 3. Results

Figure 10: Fairness results for the Ballistic Condition, when considering a similarity
threshold of 0.8 and a STM length of 4 elements.

Figure 11: Stability results for the Ballistic Condition, when considering a similarity
threshold of 0.8 and a STM length of 4 elements.
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data when setting a similarity threshold of 0.8 and a STM length of 4. In general,

these results do not generalize to the rest of the parameter combinations: it would

appear that setting longer STM lengths and higher similarity thresholds increases

the Stability values, sending them closer to the experimental control and away from

the human data.

3.3.2 Dynamic condition

In the dynamic condition, the SEC algorithm’s outcome for the efficiency metric

appears to be closer to the experimental control than to the human data. This can

be observed in Figure 12, which illustrates the results that arise from a similarity

threshold of 0.8 and turning off the epuck’s sensor in charge of detecting the other

agent. In this example, however, we can also see that efficiency seems to improve

when implementing a tie reward of -4; this tendency is also perceived when setting

a similarity threshold to 0.7.

The outcomes for the fairness metric in the dynamic condition seem less clear given

Figure 12: Efficiency results for the Dynamic Condition, when considering a simi-
larity threshold of 0.8 and no "avoid epuck" sensors.
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that the behavioral results and the control values are close to one another. As we

can see in the example of Figure 13, the results from the current set of parameters

also surround these values; this also applies to the rest of the combinations for this

metric and this condition. It should be noted that there appears to be a slight

improvement when setting the tie value to -4 (except when the similarity threshold

is set to 0.9).

Figure 13: Fairness results for the Dynamic Condition, when considering a similarity
threshold of 0.8 and no "avoid epuck" sensors.

Finally, when measuring stability for this condition we can observe in the example

of Figure 14 that the model’s results appear to be closer to the experimental control

than to the behavioral data, with a slight improvement when setting the tie value to

-4. The latter seems slim although, in general, it also seems to be more noticeable

when setting 10 exploration trials. The rest of the parameter combinations present

a similar tendency as the one present in the current example.
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Figure 14: Stability results for the Dynamic Condition, when considering a similarity
threshold of 0.8 and no "avoid epuck" sensors.

3.4 Distribution comparison

The previous graphical comparisons provide an overview of which could be the

most suitable parameter values for modeling the Battle of the Exes with the SEC

algorithm. From these comparisons, we can presume, for example, that setting a

similarity threshold of 0.8 and a tie reward of -4 might allow the model to better

approach human results. However, with the intention of doing an exhaustive search,

we now conduct a pairwise comparison between the model variations’ results, the

experimental control, and the human data to determine if the distributions are

significantly different or not.

We begin by verifying whether the results follow a normal distribution, to determine

if we apply a one-way ANOVA or a Kruskal-Wallis H-test to show if there is a

statistically significant difference between groups. After running the tests, all of the

results indicate differences between the model when compared to the human data

and the experimental control (p<0.05). Subsequently, we run post-hoc independent
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tests to compare each parameter combination against the behavioral distribution

(an independent samples T-test or a post-hoc Mann-Whitney U-test, depending

on whether the distributions are normal or not); we repeat the procedure for the

experimental control.

Our aim is to find distributions that show no differences compared to the human

data while also being significantly different from the experimental control. Appendix

B contains the lists with the distributions that showed no difference when compared

against the behavioral and the control data. Overall, these comparisons indicate the

following:

Efficiency

Regarding the efficiency metric, the results show that human performance is not

achieved for either experimental condition, no matter which parameter values are

selected. In particular, the results are worse for the ballistic condition since most

of the parameter combinations show no differences when compared to the control

distribution.

Fairness

For the ballistic condition, the fairness scores show no differences when compares to

most of the model variations, especially when the similarity threshold is set to 0.8

and 0.9. On the other hand, the results for the dynamic condition are ambiguous:

even though several combinations show no differences when compared against the

human data, almost all of them also show no differences when contrasted against

the experimental control. Moreover, the behavioral and the control distributions

show no differences when compared to one another (M = 1513.0; p = 0.127).

Stability

For the stability metric in the ballistic condition, several parameter configurations

show no differences when compared to the human distribution; these configurations

present distinct tie values, number of exploration trials, and STM lengths (with the
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exception of STM with 6 and 7 components). For the dynamic condition, however,

the results show significant differences when compared with the behavioral data for

all possible parameter combinations.
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Conclusions and discussion

In the present thesis, we have examined the Sequential Episodic Control (SEC)

model’s role in forming social conventions in the Battle of the Exes task. For this

work, we carried out a 2x1 between-subjects study simulating agents that interacted

in a repeated, multi-agent game, and learned following the SEC algorithm. SEC is

an episodic control learning model developed by Freire et al. [20]. It uses tabular

memory to store previously experienced rewarding states and, contrarily to other

approaches, it saves whole sequences of state-action couplets instead of discrete

observations. This way, the model favors the selection of a recurrent pattern of

states and actions that is shown to be rewarding.

Given that the conventionalization process entails a predictable nature, SEC’s ability

to potentially identify and engage in behavioral patterns made it a seemingly suitable

contender to try to resemble the human data reported by Goldstone and Hawkins [3].

In addition, its model-free approach could allow it to optimize the time needed for

achieving coordination, thus tackling the data inefficiency issue faced by alternate

models.

Since this work is the first approach to simulating the Battle of the Exes task with the

SEC algorithm, the model’s parameters had to be adjusted to fit the behavioral data

as closely as possible. A total of 5 different parameters were tested, and the resulting

combinations that best emulated human data were, for the dynamic condition, a

46
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similarity threshold of 0.8, 10 exploration trials, a tie reward of -4, and no "avoid

epuck" sensors. As for the ballistic condition, keeping constant the values of 0.8

for the similarity threshold and 10 exploration trials, two options were taken into

consideration: alternative SEC A, with a tie reward of -4 and a STM length of 4,

and alternative SEC B, which included a tie reward of 0 and a STM length of 2.

4.1 Efficiency, fairness, and stability performance

After executing the simulations with the ballistic and dynamic implementations of

the SEC algorithm, we found that the model’s results do not reach human-level

performance for all three considered evaluation metrics. Regarding the ballistic

condition, the proposed SEC configuration shows statistically significant differences

when compared against the behavioral data; however, no differences were found

when comparing the fairness and stability scores. On the other hand, the three

metrics presented statistically significant differences for the dynamic condition when

comparing SEC’s results against human performance.

The SEC algorithm showed an improvement with respect to the stability metric,

when compared to the Control-based Reinforcement Learning (CRL) [11] previous

approach to modeling the task at hand. In particular, in the ballistic condition, it

achieved no differences when comparing the distributions of the human and model

scores. Furthermore, even though the dynamic condition results did not emulate

human data, the SEC algorithm scores got closer to the human results than those

obtained by the CRL simulations.

Regarding the efficiency and fairness metrics, SEC only showed no differences when

comparing the human and model fairness’ distributions in the ballistic condition;

this result is consistent with what was achieved by the CRL simulations. However,

for the rest of the comparisons, the SEC simulations achieved statistically significant

differences between the human and the model scores. Thereupon, in contrast to the

CRL results, efficiency levels are not achieved for the SEC implementation in the

dynamic condition.
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4.2 Mechanisms underlying conventionalization

Ballistic condition

It is worth noting that, for the ballistic condition, several parameter combinations

(besides the SEC A and SEC B configurations) achieved no differences when com-

paring both, their fairness and stability results, to the human data. This is an

indicator of a seeming consistency present in the execution of the ballistic version

of the model; however, it is not clear which parameter values have the most weight

over the results (in other words, there is no clear indicator of which STM length,

which tie value, etc. are responsible for these scores).

Additionally, human efficiency levels could not be emulated and, even more, the

model’s results showed no statistically significant differences when compared to the

experimental control. Although the model is sample-efficient and reaches a fair

and stable performance in a few trials, it still does not follow the same mechanisms

humans do. It appears that incorporating SEC’s sequentiality leads to the emergence

of interaction patterns within trials for the ballistic scenario. However, inefficient

behavioral patterns, although stable, do not lead to a result as optimal as human

performance.

Dynamic condition

For the dynamic condition, the comparison between the SEC model and the human

results showed statistically significant differences with the current parameter adjust-

ments (a tie reward equal to -4, no "other agent" sensors, an exploration phase of

10 trials, and a similarity threshold of 0.8). This means that, so far, we have not

been able to emulate human behavior for this experimental condition; however, it

is worth mentioning that the aforementioned distributions were not that far apart

from one another. In addition, as previously stated, the stability metric improved in

comparison to the CRL simulation results. Thus, this version of the algorithm ap-

pears to draw nearer to an adequate sample-efficient model in a real-time, dynamic

environment.
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Furthermore, in contrast to the ballistic scenario, for this condition is clearer which

parameter values are responsible for best approaching human performance. To be-

gin with, defining 10 as the number of turns for the exploration phase indicates that

having too many training experiences might be detrimental to the subsequent algo-

rithm’s performance. This could be because spending more turns exploring might

quickly flatten the learning curve; hence, our findings indicate that it is better to

initialize the testing phase early. As for the similarity threshold, it is worth re-

minding that for this implementation we used the Hamming distance instead of the

Eucledian distance due to the states’ reduction; thus, it follows that the original 0.9

value was not necessarily going to be adequate.

Likewise, setting the tie value to -4 improved the overall results. This finding is in

line with Goldstone and Hawkins’ conclusion about the cost-efficiency of preventing

repeated coordination efforts when players are engaged in the high stakes condition

[3]. This particular finding is also congruent with what Freire et al. [20] conclude

about comparing high and low stakes, since increasing the difference between rewards

resulted in better results. Moreover, this could be an indicator that agents are not

indifferent but averse to ties.

Regarding the sensors that detect another epuck, we originally thought that the al-

gorithm’s performance could be enhanced by including more variance in the epucks’

experienced states and behavior during the training turns. It is useful to remember

that once the SEC algorithm takes control over the agent, these sensors are turned

off entirely: if they were kept active, they would overshadow the effects of the model

and bias the results away from ties. Nonetheless, our findings seem to indicate that

it is more effective to keep this value the same during the training and testing phases.

Behavioral coordination may surface from within the dynamics of the interaction,

but it does not guarantee conventionalization. For this reason, we also measured

the mean entropy levels through the dynamic condition trials. We observed that the

entropy levels stayed more or less constant throughout the game, with an average

value of 0.868 (with values ranging from 0 to 1, inclusive). Despite that this was a

reasonable value, the overall entropy tendency did not decrease while approaching
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the final turn. Learning would imply a reduction in the levels of uncertainty, which

could come from the ability to identify behavioral patterns. Therefore, it is possible

that the SEC model is not learning from the agents’ interactions and, consequently,

conventionalization might not be guaranteed for the current implementation.

4.3 Limitations and further research

In general, this work’s findings suggest that an episodic control algorithm could

potentially succeed in achieving behavioral coordination in repetitive tasks such as

the Battle of the Exes. However, more work remains to be done. One extension

for this thesis could be testing the current parameter value combination for the low

stakes condition from the original Hawkins and Goldstone’s experiment. Another

evident expansion would be to implement a less altered version of the original SEC

model, by limiting the capacity of the long-term memory component and including

a forgetting mechanism.

It is worth highlighting that computational power limited the parameter values that

could have been explored. For future research, we recommend expanding the param-

eter search, especially around the values that have shown promise. For instance, we

could explore the prospect of "tie aversion" by trying out even lower reward values,

or we could test more values close to the similarity threshold of 0.8 for the dynamic

condition. This computational power limitation also restricted the number of game

simulations; if possible, we also recommend increasing the number of simulations

executed for each condition.

Furthermore, we recommend testing different configurations for the SEC model. In

the present work, we adapted the algorithm to better fit both, the ballistic and the

dynamic conditions. Nonetheless, there is no assurance that the current structure is

the most competent for the task at hand. For the ballistic scenario, one possibility

could be to define a state as the sequences of past rewards, instead of actions, or

possibly to define it as a combination of the two values together. As for the dynamic

condition, we suggest beginning by computing information about their opponents
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into the states of the agents, in order to make this version of the model more social.

Finally, it would be interesting to try combining SEC with a model-based algorithm

to test whether it improves its results during the later stages of interaction; or even

to test its performance in more complex tasks where, for example, learning needs

to be generalized. Likewise, since small group dynamics can be relatively different

from those that emerge in larger groups [4], one focus for future research could be

to test the SEC model in a task with more agents. In doing so, we could investigate

whether the SEC model alone, or SEC enhanced with a model-based algorithm, can

manage to emulate human-like performance.
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BALLISTIC CONDITION, SIMILARITY THRESHOLD = 0.7
3 Model data VS Control (randomized) and Human data
3.1 Accumulated reward through trials
3.1.1 Tie reward = 0

3.1.2 Tie reward = -1



3.1.3 Tie reward = -4



3.2 Moving Average
3.2.1 Tie reward = 0

3.2.2 Tie reward= -1



3.2.3 Tie reward = -4



BALLISTIC CONDITION, SIMILARITY THRESHOLD = 0.8

3 Model data VS Control (randomized) and Human data
3.1 Accumulated reward through trials
3.1.1 Tie reward = 0

3.1.2 Tie reward= -1



3.1.3 Tie reward = -4



3.2 Moving Average
3.2.1 Tie reward = 0

3.2.2 Tie reward= -1



3.2.3 Tie reward = -4



BALLISTIC CONDITION, SIMILARITY THRESHOLD = 0.9
3 Model data VS Control (randomized) and Human data
3.1 Accumulated reward through trials
3.1.1 Tie reward = 0

3.1.2 Tie reward= -1



3.1.3 Tie reward = -4



3.2 Moving Average
3.2.1 Tie reward = 0

3.2.2 Tie reward= -1



3.2.3 Tie reward = -4



DYNAMIC CONDITION, SIMILARITY THRESHOLD = 0.7
3 Model data VS Control (randomized) and Human data
3.1 Accumulated reward through trials

3.1.1 Tie reward = 0 3.1.3 Tie reward -4

3.1.2 Tie reward= -1



3.2 Moving Average

3.2.1 Tie reward = 0 3.2.3 Tie reward = -4

3.2.2 Tie reward = -1



DYNAMIC CONDITION, SIMILARITY THRESHOLD = 0.8
3 Model data VS Control (randomized) and Human data
3.1 Accumulated reward through trials
3.1.1 Tie reward = 0 3.1.3 Tie reward -4

3.1.2 Tie reward= -1



3.2 Moving Average
3.2.1 Tie reward = 0 3.2.3 Tie reward = -4

3.2.2 Tie reward = -1



DYNAMIC CONDITION, SIMILARITY THRESHOLD = 0.9
3 Model data VS Control (randomized) and Human data
3.1 Accumulated reward through trials
3.1.1 Tie reward = 0 3.1.3 Tie reward -4

3.1.2 Tie reward= -1



3.2 Moving Average
3.2.1 Tie reward = 0 3.2.3 Tie reward = -4

3.2.2 Tie reward = -1
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BALLISTIC CONDITION, SIMILARITY THRESHOLD = 0.7
5 EFFICIENCY
STM: 7, 6 STM: 5, 4

STM: 3, 2

5.2 Statistical tests. Are the distributions different?
5.2.2 Human data VS. each condition
No differences: []

5.2.4 Control data VS. each condition
No differences: ['Eff_tie0_stm7_exp10', 'Eff_tie0_stm6_exp10', 'Eff_tie0_stm4_exp10', 'Eff_tie0_stm3_exp10', 'Eff_tie0_stm2_exp10',
'Eff_tieNeg_stm7_exp10', 'Eff_tieNeg_stm6_exp10', 'Eff_tieNeg_stm5_exp10', 'Eff_tieNeg_stm4_exp10', 'Eff_tieNeg_stm3_exp10',
'Eff_tieNeg_stm2_exp10', 'Eff_tieNeg4_stm6_exp10', 'Eff_tieNeg4_stm3_exp10', 'Eff_tieNeg4_stm2_exp10', 'Eff_tie0_stm6_exp20',
'Eff_tie0_stm5_exp20', 'Eff_tie0_stm3_exp20', 'Eff_tieNeg_stm6_exp20', 'Eff_tieNeg_stm5_exp20', 'Eff_tieNeg_stm3_exp20',
'Eff_tieNeg_stm2_exp20', 'Eff_tieNeg4_stm7_exp20', 'Eff_tieNeg4_stm6_exp20', 'Eff_tieNeg4_stm5_exp20', 'Eff_tieNeg4_stm3_exp20',



'Eff_tieNeg4_stm2_exp20', 'Eff_tie0_stm7_exp50', 'Eff_tie0_stm6_exp50', 'Eff_tie0_stm5_exp50', 'Eff_tie0_stm3_exp50', 'Eff_tie0_stm2_exp50',
'Eff_tieNeg_stm7_exp50', 'Eff_tieNeg_stm6_exp50', 'Eff_tieNeg_stm5_exp50', 'Eff_tieNeg_stm4_exp50', 'Eff_tieNeg_stm3_exp50',
'Eff_tieNeg_stm2_exp50', 'Eff_tieNeg4_stm6_exp50', 'Eff_tieNeg4_stm5_exp50', 'Eff_tieNeg4_stm4_exp50', 'Eff_tieNeg4_stm2_exp50',
'Eff_tieNeg4_stm2_exp50']

6 FAIRNESS
STM: 7, 6 STM: 5, 4

STM: 3, 2

6.2 Statistical tests. Are the distributions different?
6.2.2 Human data VS. each condition
No differences: ['Fair_tie0_stm6_exp10', 'Fair_tie0_stm3_exp10', 'Fair_tieNeg_stm5_exp10', 'Fair_tieNeg_stm3_exp10',
'Fair_tieNeg4_stm5_exp10', 'Fair_tieNeg4_stm4_exp10', 'Fair_tieNeg4_stm3_exp10', 'Fair_tie0_stm5_exp20', 'Fair_tieNeg_stm7_exp20',
'Fair_tieNeg4_stm6_exp20', 'Fair_tieNeg4_stm4_exp20', 'Fair_tie0_stm5_exp50', 'Fair_tieNeg4_stm5_exp50', 'Fair_tieNeg4_stm3_exp50']



6.2.4 Control data VS. each condition
No differences: []

7 Stability
Especially in ballistic conditions, people use the random assignment of the payoffs to coordinate. One player will always go top and the other
will always go bottom. The stability of this pattern isn’t captured by the outcomes, so we need to check the direction sequence as well.

STM: 7, 6 STM: 5, 4

STM: 3, 2
stability MEANS
--> Human: 0.614265511886275 Control: 1.173390753650706 Control05:1.1892249874503698
--> surp_tie0_stm3_exp10: 0.4127712200412373 ; surp_tieNeg_stm3_exp10: 0.4167325125621432 ; surp_tieNeg4_stm3_exp10: 0.5385964487595458 ;
surp_tie0_stm2_exp10: 0.4639668259569625 ; surp_tieNeg_stm2_exp10: 0.34286422626087065 ; surp_tieNeg4_stm2_exp10: 0.36080770166356474

7.3 Statistical tests. Are the distributions different?
7.3.2 Human data VS. each condition
No differences: ['surp_tieNeg_stm5_exp10', 'surp_tie0_stm3_exp20', 'surp_tieNeg_stm5_exp20', 'surp_tieNeg_stm3_exp20',
'surp_tieNeg4_stm4_exp20', 'surp_tieNeg4_stm3_exp20', 'surp_tie0_stm4_exp50', 'surp_tieNeg_stm5_exp50', 'surp_tieNeg_stm4_exp50',
'surp_tieNeg4_stm4_exp50']



7.3.4 Control data VS. each condition
No differences: []

BALLISTIC CONDITION, SIMILARITY THRESHOLD = 0.8
5 EFFICIENCY
STM: 7, 6 STM: 5, 4

STM: 3, 2

5.2 Statistical tests. Are the distributions different?
5.2.2 Human data VS. each condition
No differences: []



5.2.4 Control data VS. each condition
No differences: ['Eff_tie0_stm3_exp10', 'Eff_tieNeg_stm6_exp10', 'Eff_tieNeg_stm5_exp10', 'Eff_tieNeg_stm3_exp10',
'Eff_tieNeg_stm2_exp10', 'Eff_tieNeg4_stm6_exp10', 'Eff_tieNeg4_stm4_exp10', 'Eff_tieNeg4_stm2_exp10', 'Eff_tie0_stm5_exp20',
'Eff_tie0_stm4_exp20', 'Eff_tie0_stm3_exp20', 'Eff_tie0_stm2_exp20', 'Eff_tieNeg_stm7_exp20', 'Eff_tieNeg_stm4_exp20',
'Eff_tieNeg_stm2_exp20', 'Eff_tieNeg4_stm7_exp20', 'Eff_tieNeg4_stm3_exp20', 'Eff_tieNeg4_stm2_exp20', 'Eff_tie0_stm2_exp50',
'Eff_tieNeg_stm6_exp50', 'Eff_tieNeg_stm4_exp50', 'Eff_tieNeg_stm3_exp50', 'Eff_tieNeg_stm2_exp50', 'Eff_tieNeg4_stm7_exp50',
'Eff_tieNeg4_stm4_exp50', 'Eff_tieNeg4_stm3_exp50', 'Eff_tieNeg4_stm2_exp50', 'Eff_tieNeg4_stm2_exp50']

6 FAIRNESS
STM: 7, 6 STM: 5, 4

STM: 3, 2



6.2 Statistical test. Are the distributions different?
6.2.2 Human data VS. each condition
No differences: ['Fair_tie0_stm7_exp10', 'Fair_tie0_stm3_exp10', 'Fair_tie0_stm2_exp10', 'Fair_tieNeg_stm7_exp10',
'Fair_tieNeg_stm6_exp10', 'Fair_tieNeg_stm5_exp10', 'Fair_tieNeg_stm4_exp10', 'Fair_tieNeg_stm2_exp10', 'Fair_tieNeg4_stm7_exp10',
'Fair_tieNeg4_stm6_exp10', 'Fair_tieNeg4_stm5_exp10', 'Fair_tieNeg4_stm4_exp10', 'Fair_tieNeg4_stm3_exp10', 'Fair_tie0_stm7_exp20',
'Fair_tie0_stm5_exp20', 'Fair_tie0_stm4_exp20', 'Fair_tie0_stm2_exp20', 'Fair_tieNeg_stm7_exp20', 'Fair_tieNeg_stm6_exp20',
'Fair_tieNeg_stm5_exp20', 'Fair_tieNeg_stm4_exp20', 'Fair_tieNeg_stm3_exp20', 'Fair_tieNeg4_stm7_exp20', 'Fair_tieNeg4_stm6_exp20',
'Fair_tieNeg4_stm5_exp20', 'Fair_tieNeg4_stm4_exp20', 'Fair_tieNeg4_stm2_exp20', 'Fair_tie0_stm7_exp50', 'Fair_tie0_stm6_exp50',
'Fair_tie0_stm5_exp50', 'Fair_tie0_stm4_exp50', 'Fair_tie0_stm2_exp50', 'Fair_tieNeg_stm7_exp50', 'Fair_tieNeg_stm6_exp50',
'Fair_tieNeg_stm5_exp50', 'Fair_tieNeg_stm4_exp50', 'Fair_tieNeg_stm2_exp50', 'Fair_tieNeg4_stm7_exp50', 'Fair_tieNeg4_stm6_exp50',
'Fair_tieNeg4_stm5_exp50', 'Fair_tieNeg4_stm4_exp50', 'Fair_tieNeg4_stm2_exp50', 'Fair_tieNeg4_stm2_exp50']

6.2.4 Control data VS. each condition
No differences: ['Fair_tieNeg_stm5_exp50']

7 Stability
Especially in ballistic conditions, people use the random assignment of the payoffs to coordinate. One player will always go top and the other
will always go bottom. The stability of this pattern isn’t captured by the outcomes, so we need to check the direction sequence as well.

STM: 7, 6 STM: 5, 4

STM: 3, 2



7.3 Statistical tests. Are the distributions different?
7.3.3 Human data VS. each condition
No differences: ['surp_tie0_stm3_exp10', 'surp_tie0_stm2_exp10', 'surp_tieNeg_stm4_exp10', 'surp_tieNeg_stm3_exp10',
'surp_tieNeg4_stm4_exp10', 'surp_tie0_stm2_exp20', 'surp_tieNeg_stm3_exp20', 'surp_tie0_stm2_exp50', 'surp_tieNeg_stm3_exp50']

7.3.4 Control data VS. each condition
No differences: []

BALLISTIC CONDITION, SIMILARITY THRESHOLD = 0.9
5 EFFICIENCY
STM: 7, 6 STM: 5, 4



STM: 3, 2

5.2 Statistical tests. Are the distributions different?
5.2.2 Human data VS. each condition
No differences: []

5.2.4 Control data VS. each condition
No differences: ['Eff_tie0_stm7_exp10', 'Eff_tie0_stm6_exp10','Eff_tie0_stm2_exp10', 'Eff_tieNeg_stm7_exp10', 'Eff_tieNeg_stm6_exp10',
'Eff_tieNeg_stm2_exp10', 'Eff_tieNeg4_stm7_exp10', 'Eff_tie0_stm7_exp20', 'Eff_tie0_stm6_exp20', 'Eff_tie0_stm5_exp20',
'Eff_tie0_stm3_exp20', 'Eff_tie0_stm2_exp20', 'Eff_tieNeg_stm5_exp20', 'Eff_tieNeg_stm3_exp20', 'Eff_tieNeg4_stm7_exp20',
'Eff_tieNeg4_stm6_exp20', 'Eff_tieNeg4_stm4_exp20', 'Eff_tieNeg4_stm3_exp20', 'Eff_tieNeg4_stm2_exp20', 'Eff_tie0_stm7_exp50',
'Eff_tie0_stm6_exp50', 'Eff_tie0_stm5_exp50', 'Eff_tie0_stm4_exp50', 'Eff_tie0_stm3_exp50', 'Eff_tie0_stm2_exp50', 'Eff_tieNeg_stm7_exp50',
'Eff_tieNeg_stm6_exp50', 'Eff_tieNeg_stm5_exp50', 'Eff_tieNeg_stm3_exp50', 'Eff_tieNeg_stm2_exp50', 'Eff_tieNeg4_stm7_exp50',
'Eff_tieNeg4_stm6_exp50', 'Eff_tieNeg4_stm5_exp50', 'Eff_tieNeg4_stm4_exp50', 'Eff_tieNeg4_stm3_exp50', 'Eff_tieNeg4_stm2_exp50',
'Eff_tieNeg4_stm2_exp50']

6 FAIRNESS
STM: 7, 6 STM: 5, 4



STM: 3, 2

6.2 Statistical tests. Are the distributions different?
6.2.2 Human data VS. each condition
No differences: ['Fair_tie0_stm7_exp10', 'Fair_tie0_stm6_exp10','Fair_tie0_stm4_exp10', 'Fair_tie0_stm3_exp10', 'Fair_tie0_stm2_exp10',
'Fair_tieNeg_stm6_exp10', 'Fair_tieNeg_stm5_exp10', 'Fair_tieNeg_stm4_exp10', 'Fair_tieNeg_stm3_exp10', 'Fair_tieNeg4_stm7_exp10',
'Fair_tieNeg4_stm5_exp10', 'Fair_tieNeg4_stm4_exp10', 'Fair_tieNeg4_stm3_exp10', 'Fair_tie0_stm7_exp20', 'Fair_tie0_stm6_exp20',
'Fair_tie0_stm5_exp20', 'Fair_tie0_stm4_exp20', 'Fair_tie0_stm3_exp20', 'Fair_tie0_stm2_exp20', 'Fair_tieNeg_stm7_exp20',
'Fair_tieNeg_stm6_exp20', 'Fair_tieNeg_stm5_exp20', 'Fair_tieNeg_stm4_exp20', 'Fair_tieNeg_stm3_exp20', 'Fair_tieNeg_stm2_exp20',
'Fair_tieNeg4_stm7_exp20', 'Fair_tieNeg4_stm6_exp20', 'Fair_tieNeg4_stm5_exp20', 'Fair_tieNeg4_stm4_exp20', 'Fair_tieNeg4_stm3_exp20',
'Fair_tieNeg4_stm2_exp20', 'Fair_tie0_stm6_exp50', 'Fair_tie0_stm4_exp50', 'Fair_tie0_stm3_exp50', 'Fair_tie0_stm2_exp50',
'Fair_tieNeg_stm7_exp50', 'Fair_tieNeg_stm6_exp50', 'Fair_tieNeg_stm5_exp50', 'Fair_tieNeg_stm4_exp50', 'Fair_tieNeg_stm3_exp50',
'Fair_tieNeg4_stm7_exp50', 'Fair_tieNeg4_stm6_exp50', 'Fair_tieNeg4_stm4_exp50', 'Fair_tieNeg4_stm3_exp50', 'Fair_tieNeg4_stm2_exp50',
'Fair_tieNeg4_stm2_exp50']

6.2.4 Control data VS. each condition
No differences: ['Fair_tieNeg_stm7_exp10', 'Fair_tieNeg_stm5_exp10', 'Fair_tieNeg4_stm7_exp10', 'Fair_tieNeg4_stm6_exp10',
'Fair_tie0_stm7_exp20', 'Fair_tie0_stm4_exp20', 'Fair_tieNeg_stm7_exp20', 'Fair_tieNeg4_stm6_exp20', 'Fair_tie0_stm7_exp50',
'Fair_tie0_stm5_exp50', 'Fair_tieNeg_stm7_exp50', 'Fair_tieNeg_stm6_exp50', 'Fair_tieNeg_stm5_exp50', 'Fair_tieNeg4_stm6_exp50',
'Fair_tieNeg4_stm5_exp50']

7 Stability
Especially in ballistic conditions, people use the random assignment of the payoffs to coordinate. One player will always go top and the other
will always go bottom. The stability of this pattern isn’t captured by the outcomes, so we need to check the direction sequence as well.

STM: 7, 6 STM: 5, 4



STM: 3, 2

7.3 Statistical tests. Are the distributions different?
7.3.2 Human data VS. each condition
No differences: ['surp_tieNeg_stm2_exp20', 'surp_tieNeg4_stm2_exp20', 'surp_tie0_stm2_exp50', 'surp_tieNeg4_stm2_exp50',
'surp_tieNeg4_stm2_exp50']

7.3.4 Control data VS. each condition
No differences:['surp_tieNeg_stm7_exp20']



DYNAMIC CONDITION, SIMILARITY THRESHOLD = 0.7
5 EFFICIENCY

5.2 Statistical tests. Are the distributions different?
5.2.2  Human data VS. each condition
No differences: []

5.2.4 Control data VS. each condition
No differences: []

6 FAIRNESS



6.2 Statistical tests. Are the distributions different?
6.2.2  Human data VS. each condition
No differences: [CTRL, tie0_avoidY_exp10, tie0_avoidN_exp10, tieNeg_avoidY_exp10, tieNeg_avoidN_exp10, tieNeg4_avoidY_exp10,
tie0_avoidN_exp20, tieNeg_avoidY_exp20, tieNeg_avoidN_exp20, tie0_avoidN_exp50, tieNeg_avoidY_exp50, tieNeg_avoidN_exp50,
tieNeg4_avoidY_exp50]

6.2.4 Control data VS. each condition
No differences: [tie0_avoidY_exp10 , tie0_avoidN_exp10 , tieNeg_avoidY_exp10 , tieNeg_avoidN_exp10 , tieNeg4_avoidY_exp10 ,
tieNeg4_avoidN_exp10 , tie0_avoidY_exp20 , tie0_avoidN_exp20 , tieNeg_avoidY_exp20 , tieNeg_avoidN_exp20 , tieNeg4_avoidY_exp20 ,
tie0_avoidY_exp50 , tie0_avoidN_exp50 , tieNeg_avoidY_exp50 , tieNeg_avoidN_exp50 , tieNeg4_avoidY_exp50 , tieNeg4_avoidN_exp50]

8 Stability
Especially in ballistic conditions, people use the random assignment of the payoffs to coordinate. One player will always go top and the other
will always go bottom. The stability of this pattern isn’t captured by the outcomes, so we need to check the direction sequence as well.



8.2 Statistical tests. Are the distributions different?
8.2.2  Human data VS. each condition
No differences: []

8.2.4 Control data VS. each condition
No differences: []

9 Entropy level through trials



DYNAMIC CONDITION, SIMILARITY THRESHOLD = 0.8
5 EFFICIENCY

5.2 Statistical tests. Are the distributions different?
5.2.2  Human data VS. each condition
No differences: []



5.2.4 Control data VS. each condition
No differences: []

6 FAIRNESS

6.2 Statistical tests. Are the distributions different?
6.2.2  Human data VS. each condition
No differences: [CTRL, tie0_avoidY_exp10 , tie0_avoidN_exp10 , tieNeg_avoidY_exp10 , tieNeg_avoidN_exp10 , tieNeg4_avoidY_exp10 ,
tie0_avoidY_exp20 , tie0_avoidN_exp20 , tieNeg_avoidY_exp20 , tieNeg_avoidN_exp20 , tieNeg4_avoidY_exp20 , tie0_avoidY_exp50 ,
tie0_avoidN_exp50 , tieNeg_avoidY_exp50 , tieNeg_avoidN_exp50 , tieNeg4_avoidY_exp50 , tieNeg4_avoidN_exp50 ]

6.2.4 Control data VS. each condition
No differences: [tie0_avoidY_exp10 , tie0_avoidN_exp10 , tieNeg_avoidY_exp10 , tieNeg_avoidN_exp10 , tieNeg4_avoidY_exp10 ,
tie0_avoidY_exp20 , tie0_avoidN_exp20 , tieNeg_avoidY_exp20 , tieNeg_avoidN_exp20 , tieNeg4_avoidY_exp20 , tie0_avoidY_exp50 ,
tie0_avoidN_exp50 , tieNeg_avoidY_exp50 , tieNeg_avoidN_exp50 , tieNeg4_avoidY_exp50 , tieNeg4_avoidN_exp50]



8 Stability
Especially in ballistic conditions, people use the random assignment of the payoffs to coordinate. One player will always go top and the other
will always go bottom. The stability of this pattern isn’t captured by the outcomes, so we need to check the direction sequence as well.

8.2 Statistical tests. Are the distributions different?
8.2.2  Human data VS. each condition
No differences: []

8.2.4 Control data VS. each condition
No differences: []

9 Entropy level through trials



DYNAMIC CONDITION, SIMILARITY THRESHOLD = 0.9
5 EFFICIENCY

5.2 Statistical tests. Are the distributions different?
5.2.2  Human data VS. each condition
No differences: []



5.2.4 Control data VS. each condition
No differences: [ tie0_avoidY_exp10, tieNeg_avoidY_exp10, tieNeg_avoidY_exp50, tieNeg_avoidY_exp50]

6 FAIRNESS

6.2 Statistical tests. Are the distributions different?
6.2.2  Human data VS. each condition
No differences: [ tie0_avoidN_exp10 , tieNeg_avoidY_exp10 , tieNeg_avoidN_exp10 , tieNeg4_avoidY_exp10 , tieNeg4_avoidN_exp10 ,
tie0_avoidY_exp20 , tie0_avoidN_exp20 , tieNeg_avoidY_exp20 , tieNeg_avoidN_exp20 , ieNeg4_avoidN_exp20 , tie0_avoidY_exp50 ,
tie0_avoidN_exp50 , tieNeg_avoidY_exp50 , tieNeg_avoidN_exp50 , tieNeg4_avoidY_exp50 , tieNeg4_avoidN_exp50 ]

6.2.4 Control data VS. each condition
No differences: [tie0_avoidY_exp10 , tie0_avoidN_exp10 , tieNeg_avoidY_exp10 , tieNeg_avoidN_exp10 , tieNeg4_avoidY_exp10 ,
tieNeg4_avoidN_exp10 , tie0_avoidY_exp20 , tie0_avoidN_exp20 , tieNeg_avoidY_exp20 , tieNeg_avoidN_exp20 , tieNeg4_avoidY_exp20 ,
tieNeg4_avoidN_exp20 , tie0_avoidY_exp50 , tie0_avoidN_exp50 , tieNeg_avoidY_exp50 , tieNeg_avoidN_exp50 , tieNeg4_avoidY_exp50 ,
tieNeg4_avoidN_exp50 ]

8 Stability
Especially in ballistic conditions, people use the random assignment of the payoffs to coordinate. One player will always go top and the other
will always go bottom. The stability of this pattern isn’t captured by the outcomes, so we need to check the direction sequence as well.



8.2 Statistical tests. Are the distributions different?
8.2.2  Human data VS. each condition
No differences: []

8.2.4 Control data VS. each condition
No differences: [tieNeg_avoidY_exp50]

9 Entropy level through trials


