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ABSTRACT

Music recommendation systems are commonly used for
personalized recommendations. However, there are cases
where due to privacy concerns or design decisions, there is
no user information nor collaborative filtering data avail-
able. In those cases, it is possible to use content-based sim-
ilarity spaces to retrieve the most similar tracks to be rec-
ommended based on the reference track. In this paper, we
compare the latent spaces extracted from state-of-the-art
autotagging models in terms of the similarity between lists
of retrieved nearest neighbors. We additionally study item
factors from collaborative-filtering data as a reference. We
provide insights into how much the choice of the architec-
ture, training dataset, or model layer (output vs. penulti-
mate) as well as a projection of the latent space onto 2D
changes the list of retrieved nearest neighbors. We release
the dataset of 9 content-based and 3 collaborative-filtering
latent representations of 29 275 tracks from Jamendo that
we use for the evaluation. Moreover, we perform an online
user experiment to compare the perceived track-to-track
similarity of the selected evaluated latent spaces. The re-
sults show that content-based spaces show better results
in our scenario, particularly embeddings from penultimate
layers of auto-tagging architectures.

1. INTRODUCTION

In the age of prevalent music streaming, music recommen-
dation systems are currently one of the primary ways for
people to listen and find music. While collaborative filter-
ing (CF) approaches are still within the state-of-the-art for
personalized music recommendation, pure CF falls short
at the cold-start problem and non-personalized recommen-
dations. The content-based (CB) approaches can provide
recommendations and suggestions based on item-to-item
similarity without CF data, and they are commonly used
together with CF in modern recommendation systems [1]
to solve the cold-start problem. However, when there is no
CF data available due to design decisions or privacy con-
cerns, CB approaches are the only ones that can provide
recommendations.

In the domain of music, there are different modalities to
the content that can be used for CB approaches. Apart
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from the audio signal, data that can be used is metadata,
user-defined tags, reviews, etc. In this paper, we will focus
on audio and current state-of-the-art auto-tagging models.
We are interested in how consistent are the latent spaces
extracted by auto-tagging models between each other, par-
ticularly concerning the choice of the training dataset, ar-
chitecture, or the layer of the network. These insights can
show which variable contributes to the most dissimilar re-
sults, which can inform practical decisions on the priori-
tization of models for A/B testing in an industry scenario
with limited resources.

Latent similarity spaces are also quite extensively used
in music visualization interfaces [2], where such similar-
ity spaces represent music on a 2D plane or 3D space and
facilitate exploration, discovery, and re-discovery of mu-
sic. The latent spaces usually are high-dimensional, and
part of the information is lost by performing the projec-
tion. We are interested to see how well the commonly used
projection methodologies represent and transform similar-
ity space, and how much of the nearest neighbors’ infor-
mation is preserved.

Furthermore, we investigate how CB approaches com-
pare to CF approaches in a user-less scenario, with CF
factors representing a latent similarity space. The moti-
vation is to see if different CB approaches capture more or
less of the information that comes from user interactions in
CF systems, thus resulting in more or less similar nearest
neighbor results.

2. RELATED WORK

Music similarity is a widely researched topic in music in-
formation retrieval. In MIREX (Music Information Re-
trieval Evaluation eXchange) the task of music similarity
has been active until 2015, as eventually, the performances
of the submitted systems have reached the glass ceiling
stemming from evaluation being subjective and limited
inter-rater agreement [3]. The music similarity is quite
subjective as humans use different dimensions for assess-
ing similarity: genre, moods, tempo, instrumentation, etc.
Recent work investigates the importance of inter- and intra-
rater agreement in the context of music similarity and rec-
ommendation [4] that questions the validity of experiments
on general music similarity. Thus, is it important to min-
imize the ambiguity of the evaluation process and provide
context or a scenario to allow users to provide more in-
formed answers instead of asking vague questions about
which track is more or less similar to the reference track.

In the context of music recommendation, there are many
approaches to solve the cold-start problem [1], for exam-
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ple, deep-learning and hybrid approaches [5, 6], or ones
trying to predict the CF latent factors from audio [7, 8].
They all attempt to bridge the gap between CF and CB,
thus requiring CF data to train the model. In this paper, we
consider the scenario without personalization (anonymous
user), i.e. where the system has no information about the
user and needs to consider only track-to-track similarity.

Among the visualization interfaces of music collections,
there are several commonly used techniques to reduce
the dimensionality of the original latent spaces [2]. One
of the first successful techniques is self-organizing maps
(SOM) [9] used in Islands of Music [10] and other works
that have followed and were inspired by it. In the more re-
cent works, the newer algorithms such as t-SNE [11] and
UMAP [12] gained popularity. They transform space in a
non-linear way attempting to capture the relations between
individual elements. The classic non-stochastic principal
component analysis (PCA) approach can also be used [13].
While it is not as good at capturing the individual relation-
ships between items, it captures the global structure of the
whole space.

3. SIMILARITY METRIC

We aim to compare multiple latent spaces that contain the
same set of items (music tracks). If we use one track as
a reference and retrieve the nearest neighbors to the ref-
erence, we would have several different lists of nearest
neighbors for each latent space. We introduce a simple
metric Sn to calculate the similarity between two ranked
lists of nearest neighbors L at the cutoff of n tracks that are
obtained from two music similarity spaces X and Y . To
differentiate this similarity between spaces from the music
similarity that we also talk about, we use the term NN-
similarity in this paper. We divide the number of tracks
that are common in both lists by the cutoff to obtain the
value between 0 (no common tracks) and 1 (all tracks are
the same):

Sn(X,Y ) =
|LX,n ∩ LY,n|

n
(1)

If we consider the following example of n = 5 nearest
neighbors to the track t0 in the spaces X and Y , we would
calculate the NN-similarity in the following way:

LX,5 = (t1, t2, t3, t4, t5)

LY,5 = (t2, t6, t3, t7, t8)

LX,5 ∩ LY,5 = {t2, t3}
S5(X,Y ) = 2/5 = 0.4

Sn does not take into account the ranking: t2 is ranked
higher than t3 in both LX,5 and LY,5, but even if the rel-
ative rank would be reversed for LY,5, S5(X,Y ) would
still have the same value. In reality, if the cutoff n is
much smaller than the number of tracks in the dataset
(n ∈ {5, 10, 100, 200}), the primary difference between
the lists is the number of intersected elements, not what
is the difference between their ranks. The only potential
benefit of using metrics that take ranks into account is to
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Figure 1. Baseline CF evaluation

get the finer difference between lists that have the same
amount of common tracks. We tried to use Spearman rank
correlation or rank-based overlap (RDO) [14], and these
metrics did not provide more information about the differ-
ence between pairs compared to simple Sn. 1

4. DATA

Jamendo 2 is a platform that provides royalty-free music
for commercial and personal use, including music stream-
ing for venues or video production. In this paper, we use
the tracks that are publicly available on their platform un-
der Creative Commons (CC) licenses. In contrast to other
datasets that provide audio available under CC licenses
(FMA [15]), Jamendo ensures basic technical quality as-
sessment. It was used before in the creation of open music
datasets (MTG-Jamendo [16]).

4.1 Collaborative Filtering Features

The collaborative filtering data was provided as part of the
collaboration with Jamendo and included 2.2 million inter-
action events (including plays, skips, etc.) that have asso-
ciated numeric values assigned via an internal system for
170K tracks and 60K users. We pre-process the data by
filtering out the tracks and users that had too few interac-
tions (less than 5) and the top outliers, what results in 31K
tracks and 27K users.

We do a pre-analysis of the data to determine the num-
ber of factors to be used for the matrix factorization. We
use alternating least squares (ALS) algorithm [17] which is
one of the SOTA matrix factorization algorithms. 3 Using
a stratified split with a test ratio of 0.2 we evaluate dif-
ferent numbers of factors in terms of the performance us-
ing normalized discounted cumulative gain (NDCG) and
mean average precision (MAP). The results are shown in
Figure 1 with 96 factors providing the highest overall per-
formance. We also consider 64 and 128 factors to compare
the consistency of several CF spaces.

1 See additional materials at the companion website
philtgun.me/deep-neighbors for reports on other metrics.

2 jamendo.com
3 Implementation from github.com/benfred/implicit
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Dataset Architecture Layer Dim

MSD
×

MusiCNN
Embeddings 200

Taggrams 50

MTAT VGG
Embeddings 256

Taggrams 50

AudioSet VGGish Embeddings 128

Table 1. Dimensions of latent spaces

4.2 Content-based Features

To extract content-based features we use the Essentia li-
brary [18] and the following music auto-tagging models
[19]:

• MusiCNN [20] is a convolutional neural network
(CNN) with vertical and horizontal convolutional fil-
ter shapes motivated by the music domain. It con-
tains 6 layers and 787 000 trainable parameters.

• VGG is an architecture from computer vision [21]
based on a deep stack of 3 × 3 convolutional filters
that had been adapted for audio [22]. It contains 5
layers and 605 000 trainable parameters.

• VGGish is the original implementation of VGG ar-
chitecture [21] with the number of output units is set
to 3087 [23]. The number of trainable parameters is
62 million.

The models provided were pre-trained on several
datasets. MusiCNN and VGG have been trained on top 50
tags from Million Song Dataset (MSD) [24] and MagnaTa-
gATune (MTAT) [25]. These datasets contain music and
are focused on the music auto-tagging. VGGish has been
trained on AudioSet [26] which is an audio event recog-
nition dataset that also includes music. This allows us to
compare different architectures that have been trained on
the same dataset and the same architecture trained on dif-
ferent datasets.

For the MusiCNN and VGG architectures, we consider
the latent spaces constructed by the output layer (taggrams)
and penultimate layer (embeddings). VGGish model only
provides embeddings. The number of dimensions for the
layers is summarized in Table 1. Thus, in total, we extract
9 content-based (CB) feature vectors.

We attempted to process the 31K tracks that we obtained
from CF data, but due to some tracks being no longer avail-
able or corrupted, this number decreased to 29K.

4.3 Final Dataset

The final large dataset contains 29 275 tracks with suc-
cessfully extracted CB features. We repeated the matrix
factorization on the collaborative filtering data containing
only those tracks (29 275 tracks × 27 235 users, 793 963
non-zero values) with the number of factors of 64, 96, and
128 to obtain the CF features. We release this final dataset
with 3 CF and 9 CB representations publicly.

We create a smaller subset of the final dataset that is ob-
tained by intersection with MTG-Jamendo [16] test set of
split-0 which resulted in 1 372 tracks, which is comparable
to a small music collection. We present the experiments on

Cutoff 5 10 100 200

Dataset (MSD vs. MTAT) .26 .26 .46 .56
Arch. (MusiCNN vs. VGG) .35 .36 .57 .65

Layer (emb. vs. tag.) .50 .51 .68 .74

Table 2. Average NN-similarity along the variable

this small dataset, as it visualizes the relative differences
between spaces better. 4

5. OFFLINE EXPERIMENTS

5.1 Latent Spaces

We compare the collaborative filtering and content-based
spaces that are introduced in Section 4 in terms of NN-
similarity Sn that was introduced in Section 3. We present
the results using cosine distance to calculate nearest neigh-
bors in Figure 2. Euclidean 5 and cosine distances produce
very similar results, except that NN-similarity between CF
rankings using Euclidean distance is lower.

The first thing that stands out in Figure 2 is that the CF
spaces are quite dissimilar in terms of NN-similarity from
CB spaces, as all pairs of rankings that include CF and CB
spaces have the lowest values. This indicates that the music
similarity captured by CF and CB spaces is noticeably dif-
ferent. The NN-similarity values between CF spaces stays
consistent and is among the highest observed overall at all
cutoffs. However, there is enough difference between CF
spaces (e.g. max S5 is 0.66 which means that 2 out of top-5
tracks will be different) to make the number of CF factors
an important design decision.

Related to CB embeddings, at smaller cutoffs there
is much more variability in the nearest-neighbors lists.
Therefore, the choice of the latent space leads to signif-
icantly different outcomes in the use-cases that rely on
the small number of nearest neighbors. For example, S10

varies between 0.16 to 0.58 which means that 4 to 9 tracks
will be different between any two CB spaces. At larger
cutoffs (100, 200) the NN-similarity between CB spaces is
higher (S200 ranges from 0.46 to 0.77 between CB spaces).

We can calculate what choice impacts the NN-similarity
more: dataset, architecture, or layer. To analyze this, we
can fix two out of three variables and calculate the aver-
age NN-similarity between the pairs that come from com-
paring the third variable. For example, to determine how
much the choice of dataset contributes to NN-similarity,
we average the S values of MSD vs. MTAT for MusiCNN
embeddings, taggrams, VGG embeddings, and taggrams.
As we calculate those for a cutoff value of 5, we get that
the average NN-similarity for choice of the dataset is 0.26,
which means that if we change the training dataset, roughly
only 0.26 × 5 ≈ 1 track will be the same in the list of
5 nearest neighbors. The values for all cutoff values are
presented in Table 2. According to the computed average
NN-similarity, latent spaces produced by models trained

4 The results on the large dataset are available on the companion web-
site.

5 More figures available on the companion website.
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Figure 2. Nearest neighbor similarity (Sn) of CB vs. CF spaces

on different datasets (MSD vs. MTAT) are more dissimilar
than the ones using different architectures (MusiCNN vs.
VGG). Indeed MusiCNN and VGG are both CNN-based
and share some similarities.

Regarding the choice of the layer (taggrams vs. embed-
dings), we can observe the highest NN-similarity when
comparing spaces generated by the same model (same
dataset and architecture). At the same time, taggram
spaces are dissimilar to other CB spaces. That makes
sense for spaces from different datasets, as the resulting
tag spaces have different vocabulary and semantics. Inter-
estingly enough, it also holds for different architectures on
MSD (e.g. MSD MusiCNN vs. VGG taggrams S5 = 0.18
which is close to MSD vs. MTAT MusiCNN taggrams:
S5 = 0.19). However, the NN-similarity is much higher
for MTAT MusiCNN vs. VGG taggrams: S5 = 0.40.

Overall the MTAT dataset seems to produce spaces that
are in general more similar to each other compared to
MSD. It can be attributed to the smaller size of MTAT,
where the difference between architectures cannot be as
pronounced. However, if the tag predictions produced by

different architectures on the same dataset are close to each
other, that might indicate the quality of annotations. While
MSD annotations come from Last.fm folksonomy (every
user can assign any tag), MTAT annotations come from
the gamified system, where the annotators are encouraged
to assign tags that might be similar to ones used by the
other people [25].

Another interesting observation is that embeddings of dif-
ferent datasets and architectures, despite having higher di-
mensionality produce lists of nearest neighbors that are
quite similar to each other (minimum values between CB
embedding spaces: S5 = 0.30, S10 = 0.29, S100 = 0.46,
and S200 = 0.53). This is especially prominent at lower
cutoff values (5, 10).

In the context of online evaluation with limited resources,
it may be necessary to select a subset of latent spaces.
Based on the results from Table 2, it makes sense to pri-
oritize models trained on the different datasets rather than
different architectures.
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Figure 3. Nearest neighbor similarity (Sn) of different projections of MSD MusiCNN embeddings and taggrams

5.2 Projections

One of the applications of the latent spaces is to visualize
the similarity between tracks. Hence, we want to use the
same methodology to compare how well the NN-similarity
is preserved while being projected on a 2D plane. Al-
though some exploration interfaces use 3D planes, for con-
sistency with previous research on music exploration [27]
we only consider 2D. We consider PCA [28], t-SNE [11]
and UMAP [12]. Moreover, as t-SNE and UMAP are
stochastic, we consider two different seeds for each to mea-
sure the robustness. From previously obtained results it
doesn’t make sense to compare projections for different
datasets or architectures, however, as embeddings and tag-
grams are quite similar to each other we consider both of
them. Figure 3 shows the results for MSD MusiCNN em-
beddings and taggrams using Euclidean distance to calcu-
late nearest neighbors, as it firstly, makes more sense to
use in 2D, and secondly, cosine distance similarity is sig-
nificantly lower for most pairs. 6

Comparing different projections, it is evident from Fig-
ure 3 that t-SNE exhibits the highest NN-similarity to the
original spaces. Nevertheless, this projection leads to no-
ticeable changes in rankings (e.g. S10 = 0.42 for em-

6 Figures of cosine distance is available at companion website.

beddings means that 6 tracks in the top-10 list will be dif-
ferent on average). UMAP is the second-best projection,
with PCA being the poorest at preserving NN-similarity.
The NN-similarity between different seeds for t-SNE is
quite close to 1.0, which means that it is also more robust
than UMAP. In general, at larger cutoff values the NN-
similarity values are closer to each other. As PCA is a
linear projection that works well in preserving the global
structure of data without much consideration for nearest
neighbors, its NN-similarity is quite low for small cutoff
values (5, 10).

From a practical perspective, we see that using t-SNE
for projection provides the best results and preserves more
than 40% of nearest neighbors for small cutoffs. That
means that in the visualization interface, among the 5 clos-
est tracks in projected space 2 tracks are also closest in the
original space to the reference track.

6. ONLINE EXPERIMENTS

Even if music similarity is quite subjective, it can be par-
tially alleviated by asking more specific questions to the
participants, as shown in related work in Section 2. We
use a methodology similar to [29] to evaluate which spaces
provide a better representation of music similarity for mu-
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Figure 4. Online experiment interface

sic recommendation. The difference with other studies is
that this methodology evaluates the perception of playlists
of top-N similar tracks, instead of individual comparisons
of pairs of tracks. This approach is better aligned with
tasks of music exploration and playlist generation.

We use the same small dataset for this experiment for
consistency with offline experiments. The participants
are presented with a reference track and several candidate
playlists containing the nearest neighbors (ordered by their
similarity to the reference) for each latent space. They are
asked to rate the similarity of each playlist to the reference
track in the hypothetical scenario of music recommenda-
tion: ªIf you liked how this track sounds, you might like
these other tracksº. The order of reference tracks is the
same for all participants, while the playlists are presented
in random order.

As the number of choices that can be presented to partici-
pants is limited by possible cognitive overload, we selected
the 5 most dissimilar latent spaces: CF 96, MSD VGG tag-
grams, MSD MusiCNN taggrams, MTAT MusiCNN em-
beddings, and VGGish embeddings. We randomly select
4 reference tracks ensuring that they are quite different
from each other and span several genres. In the interest
of keeping the time to complete one instance of the exper-
iment as low as possible while providing enough informa-
tion to the participants, we decided to include 4 tracks in
each playlist making it 21 tracks per reference track (in-
cluding the latter) and 84 tracks in total. Because asking
participants to listen to each track completely is unreason-
able, by default we present the participant with a segment
of 15 seconds that starts at 0:30 and ends at 0:45. How-
ever, the participants can use the controls of each player to
play more different sections of the track if they feel that
they need more information. Participants are encouraged
to not spend much time on each track and use their intu-
ition to rate the similarity, what is communicated explic-
itly in the instructions to the experiment. To measure the
perceived similarity we provide a slider that uses a 4-point
Likert scale: 0 - not similar, 1 - somewhat similar, 2 - quite
similar, and 3 - very similar. We specifically avoided the
neutral option to force participants to give their opinion.
The interface of the experiment is shown in Figure 4.

We provide introductory text that explains the experi-
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Figure 5. Online experiment results

ment, interface, purpose and allows the participants to con-
tinue with the experiment once they give their explicit con-
sent. After circulating the link to the experiment 7 in the
relevant communities (mailing lists, Twitter, subreddits 8 )
we obtained data from 39 participants. We asked optional
general demographic questions to verify coverage of dif-
ferent demographic groups. All participants are aged from
14±64 with the majority (53%) falling into the age group
of 25±34. 55% of participants identify themselves as men,
33% as women, 9% non-binary and 3% preferred not to
say. Concerning music background, 18% don’t have any
music training, 42% have some, 37% are hobbyists, and
3% (1) are professional musicians. The majority of partic-
ipants (52%) listen to music on average 2±3 hours per day
with the whole population listening from less than 1 hour
up to 6±7 hours per day.

We use the Shapiro test (p-value<0.001) to verify the as-
sumptions for the ANOVA test. We perform ANOVA (p-
value<0.001) and Kruskal-Wallis (p-value<0.001) tests to
verify if the choice of the latent space makes the similar-
ity results significantly different. Subsequently, we use
Tukey’s honestly significantly differenced (HSD) test to
identify which pairs of latent spaces are significantly dif-
ferent. The only pair of spaces where the difference is not
significant is AudioSet VGGish vs. MTAT MusiCNN em-
beddings (p-value of 0.07).

Figure 5 shows the average ranking performance of each
latent space with the standard deviation represented as a
vertical line. We can see as both embedding spaces (Au-
dioSet VGGish, MTAT MusiCNN) that we have chosen
for the online experiment perform the best, with no statisti-
cal difference between them. An interesting observation is
that AudioSet is a generic audio event recognition dataset,
and the VGGish model trained on it performs compara-
bly to the embeddings from the music auto-tagging dataset
MTAT. MSD MusiCNN taggram space has a worse aver-
age similarity rating, with MSD VGG taggrams following

7 philtgun.me/similarity-experiment
8 reddit.com/r/samplesize
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it. The poor performance of CF factors space can be at-
tributed to the mismatch of the use-case, as it is intended
to be used in conjunction with the user factors, not as a
latent space. It is also possible that the small size of the
dataset impacted the poor performance of CF factors.

The results show that content-based latent spaces can
power the anonymous recommendation systems with a
similarity that is rated at least as quite similar. This is
a positive takeaway for exploration and visualization sys-
tems that can be built on top of similarity latent spaces.

7. CONCLUSIONS

We compared different collaborative filtering and content-
based latent spaces in terms of the nearest-neighbor simi-
larity. We observed that nearest neighbors obtained from
CF spaces are very dissimilar to nearest neighbors ob-
tained from CB approaches. Focusing on CB spaces, we
identified that the choice of the training dataset (MSD vs.
MTAT) tends to produce the most dissimilar spaces, fol-
lowed by the architecture, and then layer. We observed
that taggram spaces tend to be dissimilar across different
datasets and architecture, while embedding spaces tend to
be more similar. Interestingly, the consistency of CB la-
tent spaces derived from a dataset may differ in terms of
their nearest-neighbors similarity, as we observed on the
example of the MTAT vs. MSD datasets. In the context of
2D visualization of latent spaces, t-SNE exhibits the high-
est nearest-neighbors similarity between original and pro-
jected spaces.

We performed an online experiment to evaluate a selec-
tion of dissimilar latent spaces in the context of music simi-
larity for music recommendation. The results show that the
CB spaces can be successfully used in music recommen-
dation/exploration scenarios where user-generated data is
absent due to design decisions. We observe that embed-
ding spaces (AudioSet VGGish, MTAT MusiCNN) per-
form significantly better than taggram spaces (MSD Mu-
siCNN, MSD VGG).

All analysis 9 and experiment interface 10 code is pub-
licly available on GitHub, under Apache 2.0 license. The
latent spaces are published on Zenodo 11 under CC BY-
NC-SA 4.0 license, and the audio for the small dataset is
available in MTG-Jamendo dataset. 12
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