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Summary paragraph 
 
Allosteric communication between distant sites in proteins is central to biological regulation 
but still poorly characterised, limiting understanding, engineering and drug development1–6. An 
important reason for this is the lack of methods to comprehensively quantify allostery in diverse 
proteins. Here we address this shortcoming and present a method that uses deep mutational 
scanning to globally map allostery. The approach uses an efficient experimental design to infer 
en masse the causal biophysical effects of mutations by quantifying multiple molecular 
phenotypes—here binding and protein abundance—in multiple genetic backgrounds and 
fitting thermodynamic models using neural networks. We apply the approach to two of the 
most common human protein interaction domains, an SH3 domain and a PDZ domain, to 
produce comprehensive atlases of allosteric communication.  Allosteric mutations are 
abundant with a large mutational target space of network-altering ‘edgetic’ variants. Mutations 
are more likely to be allosteric closer to binding interfaces, at Glycines and in specific residues 
connecting to an opposite surface in the PDZ domain. This general approach of quantifying 
mutational effects for multiple molecular phenotypes and in multiple genetic backgrounds 
should allow the energetic and allosteric landscapes of many proteins to be rapidly and 
comprehensively mapped. 
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Main text 
 
Proteins with important functions are usually ‘switchable’, with their activities modulated by the 
binding of other molecules, covalent modifications or mutations outside of their active sites. 
This transmission of information spatially from one site to another in a protein is termed 
allostery, which Monod famously referred to as ‘the second secret of life’7,8. Allosteric 
regulation is central to nearly all of biology, including signal transduction, transcriptional 
regulation, and metabolic control. Many disease-causing mutations, including numerous 
cancer driver mutations, are pathological because of their allosteric effects1. Conversely, many 
of the most effective therapeutic agents do not directly inhibit the active sites of proteins but 
modify their activities by binding to allosteric sites. Amongst other benefits, allosteric drugs 
often have higher specificity than orthosteric drugs that bind active sites conserved in protein 
families2,3.  
 
Allosteric sites are difficult to predict, even for highly studied proteins with known active and 
inactive states4. Individual proteins may contain a limited number of allosteric sites, which 
would be consistent with their physiological regulation by a limited number of ligands and 
modifications. Alternatively, as has been suggested by theoretical work, allostery might be 
quite widely distributed throughout protein domains3,4,9. This distinction between ‘sparse’ and 
‘abundant’ allosteric sites has important implications: abundant allosteric sites would both 
facilitate the evolution of allosteric control5 and increase the likelihood of identifying therapeutic 
molecules that can bind a target protein and regulate its activity6. Most known allosteric sites 
are involved in physiological regulation but ‘orphan’ or ‘serendipitous’ sites without any 
understood physiological role have been identified for some proteins. Moreover, domain-
insertion and mutagenesis also suggest quite extensive long-range communication in protein 
interaction domains10, enzymes11–14, transcription factors15,16 and receptors17. 
 
Physical interactions between proteins are critical to most biological processes and represent 
a potentially vast therapeutic target space2. However, allosteric sites are not known for most 
protein-protein interactions (PPIs), a comprehensive map of allosteric sites has not been 
produced for any protein interaction domain, and generic methods to identify allosteric sites 
regulating PPIs do not exist.  
 
Global maps of allosteric communication could be generated for protein binding domains if the 
effects of all mutations on binding affinity could be quantified: any mutation altering binding 
affinity but not directly contacting a ligand must be having an allosteric effect.  However, 
changes in affinity cannot be inferred simply by quantifying changes in binding to an interaction 
partner; even in the simplest genotype-to-phenotype (energy) landscapes, ‘biophysical 
ambiguities’18 exist, meaning that changes in a molecular phenotype (e.g. binding to an 
interaction partner) can be caused by many different changes in the underlying biophysical 
properties (e.g. folding or binding affinity)18,19. To quantify the effects of mutations on binding 
affinity and so globally map allosteric communication, these ambiguities must be resolved.  
 
Here we present an approach to achieve this for PPIs, allowing us to globally map the 
energetic and allosteric landscapes of protein interaction domains. The approach takes 
advantage of the massively parallel nature of deep mutational scanning (DMS) to quantify the 
phenotypic effects of thousands of perturbations20. We use an experimentally efficient strategy 
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that we refer to as ‘multidimensional mutagenesis’ whereby the effects of mutations are 
quantified for multiple molecular phenotypes and in multiple genetic backgrounds. This 
method resolves ambiguities where a number of causal biophysical changes could account 
for an observed mutational effect18,19 and allows the inference of the in vivo biophysical effects 
of mutations. We harness the flexibility of neural networks to fit thermodynamic models to 
these experimental measurements, thereby accurately inferring the underlying causal 
changes in free energy. Applied to two protein domains, the method provides near complete 
views of their free energy landscapes and the first global maps of allosteric mutations. 

ddPCA quantifies abundance and binding 

The binding of a protein to an interaction partner depends on both its affinity and the 
concentration of the active folded state. Existing methods that quantify how a perturbation 
changes the amount of protein bound to an interaction partner21 are inadequate for the 
identification of allosteric sites, because they do not distinguish between mutational effects on 
binding affinity versus protein abundance22. In this situation, they would lead to false positives 
where changes in binding are caused by changes in concentration and false negatives where 
changes in affinity are masked by changes in abundance. 
 
We therefore developed a strategy that uses two separate selection assays based on protein 
fragment complementation (PCA) to quantify the effects of mutations on both the abundance 
of a protein and its binding to an interaction partner (Fig. 1a). As perturbations to probe the 
potential for allosteric regulation we use mutations which are a convenient method to introduce 
diverse changes in chemistry at all sites in a protein20,23. In the first assay, bindingPCA, the 
binding between two proteins is quantified by fusing them to different fragments of a reporter 
enzyme, dihydrofolate reductase (DHFR). Interaction between the proteins brings the DHFR 
fragments in close proximity allowing them to form a functional enzyme whose activity as 
measured by cellular growth in selective conditions is proportional to the intracellular 
concentration of the protein complex24. In the second assay, abundancePCA, only one protein 
is expressed and fused to a DHFR fragment with the other DHFR fragment highly expressed. 
Functional DHFR is now reconstituted by random encounters and growth is proportional to the 
intracellular concentration of the first protein over >3 orders of magnitude, as validated by 
applying the assay to >2000 yeast proteins25. We refer to the combination of these two assays 
as DoubleDeepPCA (ddPCA), a high-throughput method that quantifies the effects of 
mutations on both the abundance of a protein and its binding to one or more interaction 
partners. ddPCA builds on and extends prior work using PCA to probe the effects of mutations 
on protein binding and stability26,27. 
 
We applied ddPCA to examples of two of the most common protein interaction domains 
encoded in the human genome: the C-terminal SH3 domain of the human growth factor 
receptor-bound protein 2 (GRB2), which binds a proline-rich linear peptide of GRB2 
associated-binding protein 2 (GAB2), and the third PDZ domain from the adaptor protein 
PSD95/DLG4, which binds to the C-terminus of the protein CRIPT (Fig. 1d, Methods).  
 
There are two key principles of the ddPCA approach, which we refer to as ‘multidimensional 
mutagenesis’. First, the effects of mutations on two molecular phenotypes—binding and 
abundance—are quantified, and second, mutational effects are quantified starting from 
multiple genetic backgrounds. Both of these strategies are important for correctly inferring 
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(disentangling) the underlying causal free energy changes from the measured mutational 
effects: many different free energy changes can generate the same change in phenotype18 
and quantifying how mutations interact in double mutants18,19,24, as well as their effects on two 
different molecular traits, serves to resolve these biophysical ambiguities (Fig. 2c). Moreover, 
the relationships between the free energies and folding and binding 
phenotypes/measurements are nonlinear and plateau at high and low energies28 (Fig. 2f); 
quantifying the effects of mutations from different starting genotypes therefore serves to 
expand the effective dynamic range of individual measured mutational effects. 
 
We generated mutagenesis libraries of the GRB2-SH3 and PSD95-PDZ3 domains containing 
both single and double amino acid (AA) substitutions (Extended Data Fig. 1a) and quantified 
their effects on binding to GAB2 and CRIPT, respectively, using bindingPCA, and on the 
intracellular concentration of the free domains using abundancePCA. All experiments were 
performed in biological triplicate, with deep sequencing used to quantify relative changes in 
binding and abundance in pooled selection assays (Fig. 1b). We calculated abundance and 
binding fitness scores and associated errors using DiMSum (Methods). Binding and 
abundance fitness scores were highly reproducible between replicates (Fig. 1b, Pearson’s r = 
0.87-0.92). Mutational effects also agreed very well with individual growth measurements 
(Pearson’s r = 0.94, n = 14; P = 5e-7, Fig. 1c).  
 
The distributions of mutational effects corresponding to both binding and abundance are 
bimodal for both domains, with, for example, 28% of single AA substitutions strongly affecting 
binding of the PDZ domain and 46% having nearly neutral or mild effects (bindingPCA fitness 
within the lower peak < -0.75 and upper peak > -0.25 respectively, Fig. 1e). The mutational 
effect matrices for binding reveal that mutations with large effects on binding are distributed 
throughout both domains (Fig. 1f-g). Similarly, the mutational effect matrices for abundance 
show that mutations throughout both domains also have large effects on protein concentration 
(Fig. 1f-g). Indeed, plotting the changes in binding against the changes in abundance reveals 
that most mutations altering binding also alter the concentration of the isolated domains (Fig. 
1h), consistent with the expectation that changes in protein stability are a major cause of 
mutational effects on binding29.  

Inference of free energy changes 

We used a neural network formulation that relies on the Boltzmann distribution to fit 
thermodynamic models to the experimental data obtained using ddPCA, thereby inferring the 
underlying causal free energy changes from the effects of each single AA substitution on these 
two molecular phenotypes (Fig. 2a,b). Protein binding can be most simply modelled as a three-
state equilibrium with unfolded, folded and bound energetic states (Fig. 2a). In this genotype-
phenotype model, mutations alter the free energy of folding (∆Gf) and/or binding (∆Gb), and 
changes in free energy combine additively in double AA substitutions. The relationship 
between the fraction of folded or folded+bound protein and the respective measured 
phenotypes (abundancePCA and bindingPCA fitness) is assumed to be linear19,24 (Fig. 2b; 
Methods).  
 
The three-state model provides an excellent quantitative fit to the data for both domains (Fig. 
2d, R2 = 0.84-0.91, see Extended Data Fig. 1b-g for similar comparisons shown separately for 
single and double AA substitutions, as well as for validation data held out during model fitting), 
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strongly supporting the assumption that most changes in the free energy of both folding and 
binding are additive in double AA substitutions23,30. Training models using data corresponding 
to only one molecular phenotype (binding, Extended Data Fig. 2a), or two molecular 
phenotypes but only fitness effects from single AA substitutions (Extended Data Fig. 2b), 
results in worse fits to the data (R2 = 0.05-0.92 and R2 = 0.77-0.83 respectively). The number 
of double AA substitutions for each single AA substitution varies across the four datasets, with 
the relatively few double AA substitutions in the PSD95-PDZ3 libraries (median = 5 and 4 in 
the binding and abundance libraries respectively, Extended Data Fig. 1a) still sufficient to infer 
the underlying free energy changes. Downsampling double mutant data in both datasets 
illustrates how increasing the number of double mutants improves the model fit (Extended 
Data Fig. 3a). 
 
To evaluate the quality of the inferred free energy changes upon mutation, we compared them 
to in vitro measurements for the PDZ domain. We find excellent agreement between inferred 
free energies of folding relative to the wild-type (∆∆Gf) and those corresponding to single AA 
substitutions determined in vitro for PSD95-PDZ3 (F337W background)31 (Fig. 2e, Pearson’s 
r = 0.79, n = 30; P = 2e-7). Consistent with previous assessments32,33, computational 
predictions of mutation effects on protein stability or function only partially explain inferred 
folding free energy changes (Pearson’s r = 0.2-0.7, Extended Data Fig. 4). Binding free energy 
changes similarly agree with those measured by stopped-flow experiments for the PSD95-
PDZ3:CRIPT interaction34 (Fig. 2e, Pearson’s r = 0.91, n = 26; P = 8e-11; see Extended Data 
Fig. 3b for additional comparisons to smaller-scale in vitro validation datasets). Using only the 
binding or only single AA substitutions data results in worse agreement with the in vitro binding 
and folding free energy changes (Extended Data Fig. 2c,d), as does reducing the number of 
double mutants used to fit the model (Extended Data Fig. 3a). As a further validation of our 
method to infer free energy changes from molecular phenotypes, we fit the same three-state 
model to previously published in vitro mutagenesis data for the binding of nearly all single and 
double AA substitutions of protein G domain B1 to IgG-Fc35 (Extended Data Fig. 1b,e). Even 
in the absence of multiple measured phenotypes (binding only), with this depth of double 
mutant data we find excellent agreement between inferred free energy changes of folding and 
in vitro measurements33,35 (Fig. 2e, Pearson’s r = 0.8-0.91, n = 685 and 80; P < 2.2e-16), 
similar to a previous analysis19. These comparisons further demonstrate the validity of our 
inferences and the general flexibility of the approach. 

Free energy landscapes of SH3 and PDZ 

Free energy landscapes of mutational effects (Fig. 3a,b) have important advantages over 
maps of phenotypic effects (Fig. 1f,g), converting mutational effects to the underlying additive 
biophysical traits and allowing accurate genetic prediction when mutations are combined in 
pairs and larger combinations18. Furthermore, the free energy landscapes are more complete, 
as single mutant free energies can be inferred by their effects in different backgrounds (e.g. 
double AA substitutions) or their effects on a related phenotype (e.g. folding energies from 
binding phenotype) despite missing single mutant phenotypes.  
 
In general, mutations act asymmetrically on the two inferred biophysical traits, with mutations 
tending to have stronger effects on the free energy of folding than binding (Fig. 3a,b,d, 
Extended Data Fig. 5a,b,d). This is less evident in comparisons at the phenotypic level where 
the fraction of bound protein complex is a nonlinear function of both underlying biophysical 
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traits (Fig. 1f,g). Mutations that affect folding are also more numerous and more widely 
distributed throughout the domains, with many positions sensitive to perturbation. Effects on 
binding affinity on the other hand are comparatively less frequent and enriched in residues 
proximal to the ligand i.e. in the binding interface (Fig. 3a,b, Extended Data Fig. 5a,b, black 
boxes). Thus, changes in protein binding (change in bindingPCA fitness) are predominantly 
driven by changes in protein stability, especially for mild and intermediate fitness effects 
(Extended Data Fig. 5f). 
 
Directly comparing free energies stratified by the position of the mutated residues reveals that 
mutations in core residues (relative solvent accessible surface area, RSASA < 0.25) have the 
largest effects on folding, whereas mutations in the binding interface (ligand distance < 5 Å) 
have the strongest effects on binding affinity (Fig. 3c, Extended Data Fig. 5c). Surface residues 
(RSASA ≥ 0.25) are more tolerant to mutations (Fig. 3c, Extended Data Fig. 5c). 
 
The bimodality of phenotypic effects (Fig. 1e) is much reduced in distributions of relative free 
energy changes, particularly in the case of binding free energies, whose mode is centred on 
∆∆G = 0 i.e. no difference from wild-type (Fig. 3d, Extended Data Fig. 5d). The distribution of 
folding free energies has a positive mode (∆∆G > 0) and a heavy right tail indicating that most 
single AA substitutions have destabilising effects and many substitutions are strongly 
destabilising (Fig. 3d, Extended Data Fig. 5d). 

Extensive biophysical pleiotropy  

Comprehensively quantifying the effects of mutations on both folding and binding provides the 
first opportunity to assess the extent to which mutations affect multiple biophysical properties 
i.e. biophysical pleiotropy18. Overall, more than two thirds of all mutations altering binding are 
biophysically pleiotropic (86% and 67% increasing binding and 80% and 77% of mutations 
decreasing it are biophysically pleiotropic in GRB2-SH3 and PSD95-PDZ, respectively). In 
both domains, mutations that disrupt binding most often show synergistic pleiotropy, reducing 
both binding and folding stability (Fig. 3e, Extended Data Fig. 5e). In contrast, mutations that 
increase binding tend to display antagonistic pleiotropy with the effects on binding and folding 
free energies in opposing directions (Fig. 3e, Extended Data Fig. 5e). The proportion of 
different kinds of pleiotropic mutations differs depending on the region of the domain 
(Extended Data Fig. 5g). For instance in GRB2-SH3 and PSD95-PDZ, compared to core or 
surface residues, binding interface positions harbour a higher proportion of mutations that 
disrupt binding despite antagonistic effects on the free energy of folding (see below), 
consistent with the hypothesis that residues of proteins involved in substrate binding or 
catalysis are not optimized for stability36. 
 
This extensive biophysical pleiotropy further emphasises the importance of determining the 
biophysical effects of mutations. For both genetic prediction and protein engineering, the 
outcome when combining mutations is often only predictable if the causal biophysical effects 
can be measured or inferred: combining mutations with the same phenotypic outcomes but 
different biophysical causes often results in different phenotypic consequences18.  
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Surfaces suboptimal for stability 

Overlaying the mean folding free energy changes per residue on the domain structures further 
illustrates that solvent exposed (surface or binding interface) residues tend to be less sensitive 
to mutations than those that constitute the buried core of the structure (Fig. 4a,b, Extended 
Data Fig. 6a,b), with per-residue mean folding energies anti-correlated with residue burial 
(RSASA; Fig. 4c, Extended Data Fig. 6c).  
 
Although mutations overwhelmingly destabilise folding, a small subset of residues are 
enriched for mutations that increase stability (∆∆G < 0). We find nine residues in GRB2-SH3 
and three residues in PSD95-PDZ3 where at least five distinct single AA substitutions are 
observed to decrease the free energy of folding compared to the wild-type, none of which are 
classified as core residues (Fig. 4d). That AAs unfavourable for stability have been retained 
by evolution suggests selective constraints other than stability acting on these sites36. 
Consistent with this, 4/9 destabilising residues in GRB2-SH3 and 1/3 destabilising residues in 
PSD95-PDZ3 are in the binding interface (ligand distance < 5 Å).  
 
The remaining 7 surface destabilising residues are either highly evolutionarily conserved or 
uncharacteristically hydrophobic compared to other surface residues (Extended Data Fig. 
6e,f), suggesting that they are involved in additional molecular functions or interactions. 
Indeed, three of these residues in GRB2-SH3 occur within the homodimer interface of the full-
length protein and two in PSD95-PDZ3 are involved in extra-domain interactions (Extended 
Data Fig. 6g).   
 
This illustrates how abundancePCA data can help identify functionally important surface sites, 
even when interaction partners and functions are unknown. Moreover, in general, identifying 
surface sites that are suboptimal for stability (but otherwise functionally neutral) has 
therapeutic implications, predicting where the binding of small molecules or biologics may help 
stabilise proteins carrying disease-causing destabilising mutations37.  

Binding interface identification 

Overlaying the mean absolute binding free energy changes per residue on the domain 
structures shows a strong enrichment for the largest mutational effects in the binding interface 
(ligand distance < 5 Å, Fig. 5a, Extended Data Fig. 7a). Indeed, the inferred binding free energy 
changes alone accurately predict binding interface residues (area under the ROC curve, AUC 
= 0.83-0.94, Extended Data Fig. 7d). Furthermore, the effects of individual mutations at key 
ligand-contacting residues are consistent with structural information at those positions 
(Extended Data Fig. 7e). This illustrates how quantifying the effects of mutations on binding 
and abundance (but neither of these phenotypes alone, Extended Data Fig. 7f) can identify 
binding interfaces, which may be useful for identifying the interfaces of the very large number 
of protein interactions without any structural information38. 

Comprehensive maps of allostery 

We next asked whether any residues outside the binding interface are also enriched for 
mutations that modulate binding affinity. We identified two sites in GRB2-SH3 (G15 and G45) 
and 8 sites in PSD95-PDZ3 (R312, R318, G329, G330, I336, D357, E373 and A375) with 



9 

mean absolute change in binding free energy greater than that of mutations in the binding 
interface (Fig. 5b,c, Extended Data Fig. 8a,b). We refer to these ligand-distal residues at which 
many mutations have strong effects on binding affinity as major allosteric sites (see Extended 
Data Fig. 7b,c for the GB1 domain).  
 
A previous study identified 9 residues within PDS95-PDZ3 at which AA substitutions have the 
capacity to switch PSD95-PDZ3 ligand binding class specificity—an observation that can only 
be explained by an underlying causal change in binding affinity39. 6/9 of these class-switching 
residues (two within and four outside the binding interface) are identified as major allosteric 
sites by our definition. Moreover, the remaining three class-switching residues (G322, V362 
and L379) are enriched for mutations with strong (albeit low confidence) binding free energy 
changes compared to other residues not classified as major allosteric sites (AUC = 0.76, n = 
1,305; P = 1e-10, two-sided Mann-Whitney U test). This identification of previously described 
specificity-determining residues as major allosteric sites further validates our approach. 
 
The two major allosteric sites in GRB2-SH3 and 6/8 in PSD95-PDZ3 (R318, G329, G330, 
I336, E373, A375) are either in direct physical contact with binding interface residues (i.e. 
second shell sites) or immediately adjacent to them in the linear AA sequence (i.e. backbone-
backbone contacts; see asterisks in Fig. 3a,b). However, two sites in PSD95-PDZ3 (R312 and 
D357) are on the opposite surface of the domain, with distances of 11-14Å to the closest ligand 
residue. These sites form a near-contiguous “chain” of residues linking the N-terminal beta 
strand to the binding interface via a salt bridge formed by residues R312 and D357, where the 
latter is in close proximity to the second-shell class-switching residue I336 located in the 
adjacent beta sheet strand (minimum backbone atom distance = 4.1 Å). Thus, whilst the sites 
most enriched for mutations affecting binding affinity are mostly proximal to the binding 
interface, in the PDZ domain they also extend throughout the domain to the opposite surface. 

Allosteric mutations are abundant 

Although these 10 residues are the positions most enriched for allosteric effects, mutations 
affecting binding affinity actually occur throughout both protein domains (Fig. 3a,b). Defining 
allosteric mutations as those with effects at least as large as the mean absolute binding free 
energy change of mutations in the binding interface, we find a total of 55 allosteric mutations 
in 24 distinct residues in GRB2-SH3 (33 core, 22 surface) and 152 allosteric mutations in 49 
residues in PSD95-PDZ3 (83 core, 69 surface). 40% (12/30) and 55% (24/44) of all surface 
residues have at least one allosteric mutation in GRB2-SH3 and PSD95-PDZ3 respectively 
(Fig. 6a,b, Extended Data Fig. 8c,d, Extended Data Fig. 9a,b). These results suggest that 
allosteric mutations are abundant in the core of proteins and also in solvent accessible regions. 
Moreover, similar to their sub-optimality for folding, surface sites are also often suboptimal for 
binding at a distal interface. 
 
In addition to the average absolute change in the free energy of binding being higher within 
residues comprising the ‘sector’ defined by 20 coevolving residues in PSD95-PDZ39,39 (AUC 
= 0.78, n = 84; P = 2e-4, two-sided Mann-Whitney U test), allosteric mutations themselves are 
highly enriched at these sites (odds ratio = 8.3, n = 1,033; P < 2.2e-16, two-sided Fisher’s 
Exact Test, Extended Data Fig. 9e), indicating that this network of physically proximal sites 
partially identifies the patterns of allostery described here. We also find that the probability that 
a mutation outside the binding interface will be allosteric significantly depends on its distance 
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to the ligand in GRB2-SH3 and PSD-PDZ3 (Spearman’s ρ = -0.3 and -0.58 respectively, Fig. 
6c, Extended Data Fig. 9c), further suggesting the propagation of local perturbations to 
neighbouring residues as an important cause of allosteric effects observed in these domains. 
Also consistent with this, allosteric coupling scores estimated by a network-based perturbation 
propagation algorithm using only structural contacts40 correlate with the proportion of allosteric 
mutations per residue in both GRB2-SH3 and PSD95-PDZ3 (Spearman’s ρ = 0.51 and 0.42 
respectively, Extended Data Fig. 10a). 
 
If the disruption of local energetic couplings is indeed an important initiator of allosteric effects, 
we reasoned that the identities of the original and substituted residues in allosteric mutations 
should be enriched in specific AA types. Indeed, allosteric mutations are significantly enriched 
at Glycine residues in all three protein domains considered (odds ratio = 2.4-5.7, n = 470, 
1,033 and 740 for GRB2-SH3, PSD95-PDZ3 and GB1 respectively; P < 9e-5, two-sided 
Fisher’s Exact Test, Fig. 6c and Extended Data Fig. 9f), whose replacement would increase 
the local mass, volume and also conformational rigidity. Glycine residues also comprise two 
major allosteric sites in each domain. In fact, across all three protein domains, four out of five 
Glycines that occur in secondary structure elements (and outside the binding interface) are 
major allosteric sites (odds ratio = 20, n = 20; P = 0.01, two-sided Fisher’s Exact Test, Fig. 6c 
and Extended Data Fig. 9g). Likewise, changes to Proline are consistently the most enriched 
mutant AA in allosteric mutations (odds ratio = 2.7-5.8, n = 470, 1,033 and 740 for GRB2-SH3, 
PSD95-PDZ3 and GB1 respectively; P < 0.02, two-sided Fisher’s Exact Test, Fig. 6c and 
Extended Data Fig. 9f) with this residue’s exceptional rigidity likely to introduce both local 
structural distortion and altered dynamics, both of which may be important for allosteric 
communication3.  

Mutations for network re-wiring 

Disease-causing and evolutionarily-selected mutations have previously been conceptualised 
as perturbing cellular processes by altering either the ‘nodes’ or ‘edges’ of PPI networks41. 
However, systematic data quantifying the effects of mutations on network edges is limited to 
a small number of mutations for any individual protein42. We therefore used our data to further 
investigate the properties of ‘edgetic’41,42 network-altering mutations. 
 
We first considered changes in binding affinity as the trait of interest. Mutations in ligand-
contacting sites are very biased towards disruption (Fig. 3a-c, Extended Data Fig. 10b) with 
many fewer mutations increasing rather than decreasing binding affinity. This is consistent 
with the binding interface residues being near optimal for this function. Mutations at ligand-
distal surface positions tend to have milder effects on the free energy of binding than those at 
ligand-proximal sites, but their total number is greater and their direction less biased (Extended 
Data Fig. 10b). Indeed, the number of mutations at surface residues increasing binding affinity 
is greater than the number of disrupting mutations in the binding interface (110 vs. 91 and 143 
vs. 126 for GRB2-SH3 and PSD95-PDZ3 respectively).  
 
We next considered changes in the fraction of bound protein complex as the phenotype of 
interest i.e. regardless of whether the underlying biophysical mechanism involves a change in 
binding or folding energy or both (Fig. 6d, Extended Data Fig. 9d). Mutations in the protein 
core frequently and strongly reduce the fraction of bound protein complex, with those in 
PSD95-PDZ3 far outnumbering mutations in the binding interface and surface of similar effect 
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size. Finally, we considered mutations that alter binding affinity without a significant change in 
abundance (Fig. 6e). These mutations are comparatively rare in the protein core and indeed 
appear to be totally absent in GRB2-SH3. Unsurprisingly, mutations in the binding interface 
have strongly disruptive effects on binding. However, mutations in solvent exposed surface 
positions are particular in that they are both numerous and, especially in PSD95-PDZ3, can 
fine tune binding affinity in both directions without disrupting stability. 
 
In summary, the high density of allosteric mutations throughout these domains suggests a 
larger mutational target space for ‘edgetic’ network-altering genetic variants than has been 
previously appreciated: many mutations outside of interaction interfaces should be expected 
to alter not just protein stability but also the affinities of proteins for their interaction partners. 

Discussion 

We have presented here a general approach—multidimensional mutagenesis—to infer the in 
vivo biophysical effects of mutations and used a specific implementation of it—ddPCA—to 
produce the first global maps of allosteric mutations for any proteins.  
 
The approach of fitting additive thermodynamic models to mutation scanning data is 
conceptually similar to previous pioneering work inferring the energetic effects of mutations in 
regulatory elements from combinatorial mutants43–45 and antibody affinities using ligand 
titrations46. Combined with a diversity of selection methods23,47, multidimensional mutagenesis 
strategies including ddPCA should facilitate the rapid and comprehensive mapping of the in 
vivo biophysical effects of mutations and the generation of free energy landscapes for diverse 
macromolecules, interactions and pathways. 
 
As implemented here, ddPCA can likely be applied to many intracellular proteins, but 
alternative assays will be needed for secreted proteins and those that do not express in yeast.  
In addition, active degradation signals and aggregation may necessitate different models and 
additional measurements to be made. 
 
The comprehensive energetic and allosteric landscapes presented here provide a number of 
important insights into protein function and evolution. First, allosteric mutations are common 
and their frequency increases closer to binding interfaces, suggesting local propagation of 
perturbations as an important molecular mechanism. The abundance of mutations that alter 
binding affinity represents a rich genotypic space for both evolutionary innovation of allosteric 
control mechanisms and potential therapeutic exploitation. Second, allosteric mutations are 
strongly enriched for certain AA changes, with mutations at Glycine residues in secondary 
structure elements particularly likely to be allosteric and mutations to Proline also frequently 
having allosteric effects. Third, mutations are frequently pleiotropic, affecting both stability (PPI 
network node) and affinity (PPI network edge). Fourth, mutations in both protein cores and 
surfaces can tune stability and affinity, suggesting high evolvability for new regulatory 
mechanisms and diverse opportunities for the modulation of protein abundance and 
interactions via drug binding.  
 
The application of ddPCA and related methods should help accelerate allosteric drug 
discovery by producing global allosteric maps for therapeutic target proteins, including those 
currently considered ‘undruggable’48. Moreover, systematic maps of spatial information 
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transfer in proteins—and selection experiments using different protein family members, 
ligands or modifiers of this transfer11,15,16—should provide fundamental insights into allosteric 
mechanisms, evolution, specificity  and the bidirectionality of allosteric regulation.  
 
Understanding, predicting and engineering the encoding of biophysical properties by amino 
acid sequences is one of the most fundamental problems in molecular biology. That such a 
central problem remains unresolved after decades of research is, we would argue, primarily 
due to a lack of systematic and unbiased data quantifying how changes in sequence alter the 
biophysical properties of proteins. For fundamental problems where very large quantitative 
datasets already exist, dramatic recent progress has been made using deep learning, 
allowing, for example, the accurate prediction of protein structures from sequence49. However, 
for many other core problems of molecular biology, suitably diverse and quantitative training 
datasets do not yet exist: we still need to generate them. A key advantage of a general method 
such as ddPCA is that it can be potentially used to quantify the effects of millions of mutations 
on the biophysical properties of thousands of proteins, allowing three of the fundamental 
encoding problems of biology – protein folding (sequence-to-stability), binding (sequence-to-
affinity) and allostery to be addressed using massive-scale perturbation experiments. We 
envisage that such large, quantitative datasets will allow machine learning approaches to be 
effectively brought to bear on the generative functions of molecular biology, including 
predicting macromolecular stability, affinity, specificity and allostery from sequence. If 
successful, this combination of brute force experimentation and machine learning will usher in 
a new era of predictive molecular biology, where the biophysical properties of proteins can be 
accurately determined and engineered. Such predictive ability would open up unprecedented 
possibilities in industrial, agricultural and environmental biotechnology, and would 
revolutionise clinical genetics and the development of therapeutics. 
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Figure legends 
Fig. 1. ddPCA quantifies the effects of mutations on protein abundance and binding. 
a, Overview of ddPCA. b, Reproducibility of fitness estimates from ddPCA. c, Comparison of individually 
measured growth rates to those inferred from deep sequencing for selected GRB2-SH3 variants 
covering a wide range of effects. The red line corresponds to the linear regression model. d, 3D 
structures of GRB2-SH3 bound to GAB2 (PDB entry 2VWF) and PSD95-PDZ3 bound to CRIPT (PDB 
entry 1BE9). e, Fitness density distributions. Total number of singles and doubles are indicated. Vertical 
continuous and dashed lines indicate the median fitness of the synonymous WT variants and of STOP 
codon mutations in the central 50% of the coding sequence, respectively. f-g, Heatmaps of fitness 
effects of single AA substitutions for GRB2-SH3 (f) and PSD95-PDZ3 (g) from bindingPCA (upper 
panel) and abundancePCA (lower panel) assays. Fitness values more extreme than ±1.5 were set to 
this limit. PDB residue numbering differs from UniProt for GRB2-SH3. h. Scatterplots comparing 
abundance and binding fitness of single AA substitutions. r = Pearson correlation coefficient. 
 
Fig. 2. From molecular phenotypes to free energy changes.  
a, Three-state equilibrium and corresponding thermodynamic model. b, Neural network architecture 
used to fit the thermodynamic model to the ddPCA data (target/output data; bottom), thereby inferring 
the causal changes in free energy of folding and binding associated with single AA substitutions (input 
values; top). c, Combinations of ΔG of binding and folding and the resulting fraction of bound protein 
complex (colour scale) illustrate how biophysical ambiguities (left) can be resolved by measuring more 
than one phenotype (middle) or by quantifying the effects of mutations in multiple starting genetic 
backgrounds (right). d, Performance of models fit to ddPCA data. R2 = proportion variance explained. 
e, Comparisons of the confident model-inferred free energy changes to previously reported in vitro 
measurements. r = Pearson correlation coefficient. Free energies are from a single model; error bars 
indicate 95%CI from a Monte Carlo simulation approach (n = 10 experiments). f, Non-linear 
relationships (global epistasis) between observed abundancePCA fitness and changes in free energy 
of folding (top panels) or bindingPCA fitness and both free energies of binding and folding (bottom 
panels). Thermodynamic model fit shown in red. Free energy changes outside the interval [-2,7] are not 
shown. 
 
Fig. 3. Binding and folding free energy landscapes of the SH3 and PDZ domains.  
a-b, Heatmaps showing inferred changes in free energies of binding and folding for GRB2-SH3 (a) and 
PSD95-PDZ3 (b), Free energy changes of ligand-proximal residues are boxed and asterisks indicate 
major allosteric positions. Lower confidence estimates are indicated with dots (95%CI ≥ 1 kcal/mol). 
Free energy changes more extreme than ± 2.5 kcal/mol were set to this limit. c, Scatterplots comparing 
confident binding and folding free energy changes. Contours indicate estimates of 2D densities using 6 
contour bins. Axis limits were adjusted to include the largest contour bin (more extreme data points are 
not shown). d, Distributions of confident binding and folding free energy changes. X-axis limits were 
adjusted to match those in panel c. e, Percentage of mutations that significantly decrease (top) or 
increase (bottom) fitness in the binding assay (FDR = 0.05) categorised by their biophysical mechanism. 
Pleiotropic mutations have significant changes in free energies of both folding and binding (FDR = 0.05) 
and are classified as either synergistic or antagonistic depending on whether their effects are in the 
same or different direction respectively. See Extended Data Fig. 5a-e for the GB1 domain. 
 
Fig. 4. Mutational effects on protein stability.  
a, 3D structures of the GRB2-SH3 and PSD95-PDZ3 domains where residue atoms are colored by the 
position-wise average change in the free energy of folding. b, Violin plots indicating distributions of 
confident changes in free energy of folding (n = 1,025 and n = 1,148 for GRB2-SH3 and PSD95-PDZ3 
respectively; ***P < 2.2e-16, two-sided Mann-Whitney U test comparing mutations in the core versus 
the remainder for both protein domains). c, Anti-correlation between the position-wise average change 
in free energy of folding and the solvent exposure of the corresponding residue (RSASA). r = Pearson 
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correlation coefficient. Error bars indicate 95%CI (n = 11-19 for GRB2-SH3; n = 18-19 for PSD95-
PDZ3). d, Percentage of core, surface or binding interface residues shown separately for de-stabilising 
residues (positions with ≥ 5 stabilising mutations, folding ∆∆G < 0, FDR = 0.05) and the remainder. Inset 
numbers are total counts. See Extended Data Fig. 6a-d for the GB1 domain. 
 
Fig. 5. Major allosteric sites in protein binding domains.  
a, Domain 3D structures where residue atoms are colored by the position-wise average absolute 
change in the free energy of binding. b, Domain structures with orthosteric and major allosteric site 
residues highlighted. c, Relationship between the position-wise average absolute change in free energy 
of binding and the minimal side chain heavy atom distance to the ligand. Major allosteric sites are 
defined as non-binding interface residues with weighted average absolute change in free energy of 
binding higher than the average of binding interface residue mutations. Class-switching residues in 
PSD95-PDZ3 are those that favour a change in specificity for a T-2F ligand defined in McLaughlin et 
al. 201239. Error bars indicate 95%CI (n = 10-17 for GRB2-SH3; n = 17-19 for PSD95-PDZ3). See 
Extended Data Fig. 7a-c for the GB1 domain. 
 
Fig. 6. Protein surfaces are frequent sites of binding affinity modulation. 
a, Domain structures with highlighted surface allosteric sites and surface residues with allosteric 
mutations. b, Scatterplot showing the binding free energy changes of all mutations coloured according 
to residue position. c, Percentage of allosteric mutations per residue versus ligand proximity, excluding 
sites within the binding interface. ρ = Spearman rank correlation coefficient. Inset: enrichment (log2 
odds ratio) of allosteric mutations at WT (or introducing mutant, Mut.) Glycines and Prolines in positions 
outside the binding interface or further restricted to those in secondary structure elements. The 
associated P value from a two-sided Fisher’s Exact Test is indicated (*P < 0.05, ***P < 0.001). Also see 
Extended Data Fig. 9f,g. d, Total numbers of mutations decreasing or increasing bindingPCA fitness 
(i.e. the fraction of bound protein complex) beyond the indicated minimum or maximum thresholds (x-
axis; two-sided Z-test P < 0.05) respectively. e, Similar to (d) except only mutations without significant 
effects on abundancePCA fitness are shown. See Extended Data Fig. 9a-d for the GB1 domain. 
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Extended Data 
Extended Data Fig. 1. Performance of thermodynamic models. 
a, Distribution of the number of double AA substitutions comprising the same single AA 
substitution in the abundancePCA (blue) or bindingPCA (red) assays for the GRB2-SH3 (left) 
and PSD95-PDZ3  (right) protein domains. Median indicated with a dashed line and text label. 
b-d, 2d density plots comparing the ddPCA observed fitness and the model predicted fitness 
of single (left panels) and double AA substitutions (right panels) for the binding (top panels) 
and when existing, folding assays (bottom panels) of the GB1 (b), GRB2-SH3 (c) and PSD95-
PDZ3 (d) domains. R2 = proportion variance explained. e-g, Same as (b-d) but using validation 
data comprising 10% of double mutants held out during model fitting. 
 
Extended Data Fig. 2. Performance of thermodynamic models after restricting data to 
a single phenotype or a single genetic background. 
a, 2d density plots comparing the observed and predicted fitness of the binding (top panels) 
and abundance (bottom panels) assays when only the bindingPCA data is used for training 
the model for the GRB2-SH3 (left panels) and PSD95-PDZ3 (right panels). b, Same as in (a), 
but only using single mutant data from both binding and abundance assays to fit the models. 
R2 = proportion variance explained. c-d, Comparisons of inferred free energy changes to 
previously reported PSD95-PDZ3 mutant in vitro measurements where only bindingPCA data 
(c) or single mutants (d) were used to fit thermodynamic models. Free energies are from a 
single model; error bars indicate 95%CI from a Monte Carlo simulation approach (n = 10 
experiments) and the regression error bands indicate 95%CI for predictions from a linear 
model (panel c top: n = 22, bottom: n = 25, panel d top: n = 32, bottom: n = 29). r = Pearson 
correlation coefficient. 
 
Extended Data Fig. 3. Performance of thermodynamic models after downsampling and 
comparisons of inferred free energy changes to smaller-scale datasets of in vitro 
measurements. 
a, Dashed lines indicate the relationship between the percentage of fitness variance explained 
by model predictions with respect to held out validation data (10% of doubles) and the 
percentage of randomly retained double AA mutants used to train the model in the abundance 
(blue) or binding (red) assay. Results are shown separately for all protein domains. Solid lines 
indicate the relationship between the percentage variance explained by inferred free energies 
with respect to previously reported in vitro measurements for GB1 (Nisthal et al. 201933) and 
PSD95-PDZ3 (Laursen et al. 202034 for ΔΔG binding, red; Calosci et al. 200831 for ΔΔG 
folding, blue), where models were trained using varying fractions of randomly downsampled 
double mutants (x-axis). The top scale indicates the median number of double AA mutants per 
single AA mutant in the full dataset. b, Comparisons of the model-inferred free energy changes 
to previously reported in vitro measurements for GRB2-SH3 (Malagrino et al. 201956 for ΔΔG 
binding and Troilo et al. 201857 for ΔΔG folding) and PSD95-PDZ3 (Chi et al. 200858). Note 
the modest effect sizes of variants assayed in Malagrino et al. 2019. Free energies are from 
a single model; error bars indicate 95%CI from a Monte Carlo simulation approach (n = 10 
experiments,in vitro error measurement not provided) and the regression error bands indicate 
95%CI for predictions from a linear model (top left: n = 11, bottom left: n = 15, top right: n = 
11, bottom right: n = 12). r = Pearson correlation coefficient. 
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Extended Data Fig. 4. Correlation of folding free energy changes with computational 
predictions of mutational effects. 
a, High confidence inferred folding free energy changes versus corresponding FoldX59 
predictions upon mutation (“PositionScan” command), excluding substitutions involving 
potentially large increases in mass/volume (at wild-type Glycine, Alanine, Valine) or the 
replacement of Histidine (whose charge depends on the pH and local chemical environment). 
b, High confidence inferred folding free energy changes versus corresponding PolyPhen260 
predictions for amino acid substitutions reachable by single nucleotide substitutions (SNPs). 
c, High confidence inferred folding free energy changes versus corresponding EVE 
pathogenicity scores61. d, Same as in (c), but scores are based on evolutionary couplings62. r 
= Pearson correlation coefficient. 
 
Extended Data Fig. 5. Binding and folding free energy landscapes of the GB1 domain 
and biophysical mechanism of mutations that affect binding. 
a-b, Heatmaps showing inferred changes in free energies of binding (a) and folding (b) for the 
GB1 domain. The final row in each heatmap indicates the minimal distance to the ligand 
(considering the side chain heavy atoms or the alpha carbon atoms in the case of glycine).  
Free energy changes of ligand-proximal residues (ligand distance < 5 Å) are boxed. Low 
confidence estimates are indicated with dots (95%CI ≥ 1 kcal/mol). Free energy changes more 
extreme than ±2.5 were set to this limit. c, Scatterplot comparing binding and folding free 
energy changes of mutations in the core, surface and binding interface. Contours indicate 
estimates of 2D densities with 6 contour bins. d, Distribution of binding (red) and folding (blue) 
free energy changes. e, Percentage of mutations that significantly decrease (top) or increase 
(bottom) fitness in the binding assay (FDR < 0.05) categorised by their biophysical 
mechanism. Pleiotropic mutations have significant changes in free energies of both folding 
and binding (FDR < 0.05) and are classified as either synergistic or antagonistic depending 
on whether their effects are in the same or different direction respectively. f, Changes in free 
energy of binding (blue) or folding (red) of single AA substitutions with different fitness effects 
in the binding assay for the three protein domains. g, Percentage of core, surface or ligand 
binding mutations that significantly decrease (top) or increase (bottom) fitness in the binding 
assay (FDR < 0.05) categorised by their biophysical mechanism. Pleiotropic mutations have 
significant changes in free energies of both folding and binding (FDR < 0.05) and are classified 
as either synergistic or antagonistic depending on whether their effects are in the same or 
different direction respectively. 
 
Extended Data Fig. 6. GB1 mutational effects on protein stability and characterisation 
of surface de-stabilising residues. 
a, 3D structure of GB1 (PDB entry 1FCC) where residue atoms are coloured by the position-
wise average change in the free energy of folding. The FC domain of the human 
Immunoglobulin G is shown as black sticks. b, Violin plots indicating distributions of confident 
changes in free energy of folding (n = 898; ***P < 2.2e-16, two-sided Mann-Whitney U test 
comparing mutations in the core versus the remainder). c, Anti-correlation between the 
position-wise average change in free energy of folding and the solvent exposure of the 
corresponding residue (RSASA) in GB1. Error bars indicate 95%CI (n = 19). r = Pearson 
correlation coefficient. d, Percentage of core, surface or binding interface residues in GB1 
shown separately for de-stabilising residues (positions with ≥ 5 stabilising mutations, folding 
∆∆G < 0, FDR < 0.05) and the remainder. Inset numbers are total counts. e, Violin plots 
indicating evolutionary conservation scores (from a multiple sequence alignment of 185, 
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8,852, 276,481 homologous sequences of the GB1, GRB2-SH3 and PSD95-PDZ3 domains, 
respectively) shown separately for surface de-stabilising residues and remaining surface or 
core residues. f, Violin plots indicating hydrophobicity score distributions shown separately for 
surface de-stabilising residues and remaining surface or core residues. g, 3D structures of the 
GRB2-SH3 and PSD95-PDZ3 domains (grey cartoons) with the side-chains of surface de-
stabilising residues highlighted in green sticks. Ligands are shown as black sticks. In the 
insets, in yellow is shown the SH2 domains of the second monomer of GRB2 when found in 
dimeric form (left, PDB entry 1GRI)63, and relevant proximal portions of PSD95 C-terminal to 
the PDZ3 domain (middle and right, PDB entry 1BE9 and AlphaFold Protein Structure 
Database entry P78352). 
 
Extended Data Fig. 7. Major allosteric sites in the GB1 domain and changes in free 
energy of binding in ligand binding interfaces. 
a, 3D structures of the protein G B1 domain where residue atoms are coloured by the position-
wise average absolute change in the free energy of binding. The FC domain of the human 
Immunoglobulin G is shown as black sticks. b, GB1 domain structure with binding interface 
residues (ligand distance < 5 Å) highlighted in red spheres and major allosteric site residues 
highlighted in orange spheres c, Relationship between the position-wise average absolute 
change in free energy of binding and the distance to the ligand (minimal side chain heavy 
atom distance) in the GB1 domain. Major allosteric sites (yellow) are defined as non-binding 
interface residues with weighted average absolute change in free energy of binding higher 
than the average of binding interface residue mutations (red). d, ROC curves for predicting 
ligand contacting residues (ligand distance < 5 Å) using (weighted) mean absolute binding 
∆∆G considering all variants or those with confident inferred free energies (conf.). AUC = Area 
Under the Curve. e, Inferring changes in free energy of binding provides insights into the 
interactions that mediate binding between GRB2-SH3 and GAB2 peptide, and how mutations 
disrupt binding. F7 and Y51 of the GRB2-SH3 domain contact P3 and P4 of the GAB2 peptide 
through aromatic-proline interactions (left heatmap). In these two positions, only mutations to 
Y, F, Q and H, which can interact with proline through aromatic-proline or amino-aromatic 
interactions, are tolerated, while all other amino acid substitutions result in decreased binding 
affinity (positive binding ∆∆G). Residue M46 can tolerate all amino acid substitutions except 
to positively charged residues (right heatmap). The closest residue of GAB2 is a lysine, and 
so a repulsive electrostatic interaction likely occurs when a positively charged amino acid 
occupies position 46 of the SH3 domain (binding ∆∆G of 2.1 and 1.99 for M46K and M46R 
respectively). f, ROC curves for predicting ligand contacting residues using (weighted) mean 
bindingPCA or abundancePCA fitness. 
 
Extended Data Fig. 8. Changes in fitness and free energy of binding and folding of 
major allosteric sites and allosteric mutations. 
a, Scatterplots of single AA substitutions’ changes in free energy of binding and folding for the 
GB1 (left panel), GRB2-SH3 (middle panel) and PSD95-PDZ3 (right panel) protein domains. 
Variants are coloured by AA position if found in a major allosteric site. Free energies are from 
a single model; error bars indicate 95%CI from a Monte Carlo simulation approach (n = 10 
experiments). b, Scatterplots comparing abundance and binding fitness of single AA 
substitutions in the GRB2-SH3 (left panel) and PSD95-PDZ3 (right panel). Variants are 
coloured by AA position if found in a major allosteric site. Data are presented as mean values 
and error bars indicate 95%CI (n = 3 biological replicates). The red line indicates the model-
derived relationship between abundance and binding fitness in the absence of a change in the 
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free energy of binding. c, Scatterplots of single AA substitutions’ changes in free energy of 
binding and folding for the GB1 (left panel), GRB2-SH3 (middle panel) and PSD95-PDZ3 (right 
panel) protein domains. Variants are coloured by AA position if found in a major allosteric site 
(yellow) or in a position that has allosteric mutations (green). Free energies are from a single 
model; error bars indicate 95%CI from a Monte Carlo simulation approach (n = 10 
experiments). d, Scatterplots comparing abundance and binding fitness of single AA 
substitutions in the GRB2-SH3 (left panel) and PSD95-PDZ3 (right panel). Variants are 
coloured by AA position if found in a major allosteric site (yellow) or in a position that has 
allosteric mutations (green). Data are presented as mean values and error bars indicate 
95%CI (n = 3 biological replicates). The red line indicates the model-derived relationship 
between abundance and binding fitness in the absence of a change in the free energy of 
binding. 
 
Extended Data Fig. 9. Allosteric mutations in GB1 and enrichment of allosteric 
mutations in literature allosteric networks and specific residue types and classes. 
a, Domain structure of GB1 with surface allosteric sites and surface residues with allosteric 
mutations highlighted in orange and green respectively. The FC domain of the human 
Immunoglobulin G is shown as black sticks. b, Scatterplot showing the binding free energy 
changes of all mutations and coloured according to residue position: allosteric site (orange), 
orthosteric site/mutation (red), core allosteric mutation (blue), surface allosteric mutation 
(green). c, Percentage of allosteric mutations per residue versus ligand proximity, excluding 
sites within the binding interface. Points are coloured according to residue position and major 
allosteric sites are indicated (see legend). ρ = Spearman rank correlation coefficient. d. Total 
numbers of mutations decreasing or increasing binding fitness (i.e. the fraction of bound 
protein complex) beyond the indicated minimum or maximum thresholds (x-axis; two-sided Z-
test P < 0.05) respectively. e, Enrichment of allosteric mutations in sets of residues defined by 
previously reported allosteric networks in PSD95-PDZ3: Mclaughlin et al. 201239, Salinas et 
al. 201864, Gerek et al. 201165, Kumawat et al. 201766, Gianni et al. 201167, Kalescky et al. 
201568, Du et al. 201069, Kaya et al. 201370. The log2 odds ratio corresponding to a 2x2 
contingency table is shown on the x-axis and the associated P value from a two-sided Fisher’s 
Exact Test is indicated. Residues within the binding interface (ligand distance < 5 Å) were 
ignored. Original literature allosteric network sizes are shown in parentheses. f-g, Same as 
(e) except sets of residues are defined by the identity of the WT or mutant amino acid (see 
legend) or their physicochemical properties (hydrophobic i.e. A, V, I, L, M, F, Y, W or charged 
i.e. R, H, K, D, E). Results are shown for all residues outside the binding interface (f) and 
further restricted to those residues in beta strands or helices i.e. not within loops/turns (g). 
Sets are ranked by their mean effect across the three protein domains.  
 
Extended Data Fig. 10. Comparisons to computationally predicted allosteric coupling 
scores and mutational biases towards increased or decreased binding given the 
position in the domain structure. 
a, Percentage of allosteric mutations per residue versus allosteric coupling scores estimated 
by a network-based perturbation propagation algorithm40, where residues in the binding 
interface (ligand distance < 5 Å) are omitted as they represent the query set. Residues 
immediately adjacent to binding interface residues in the linear AA sequence (i.e. backbone-
backbone contacts which are disregarded by the Ohm algorithm) were given the maximum 
allosteric coupling score (1.0). Major allosteric sites (in yellow) and Spearman rank correlation 
coefficients (ρ) are indicated. b, Total numbers of mutations decreasing or increasing the free 
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energy of binding beyond the indicated minimum or maximum thresholds (x-axis; two-sided Z-
test P < 0.05) respectively, stratified by position in the structure considering all variants 
(regardless of the confidence of inferred free energies). 
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