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Abstract

Isogenic cells cultured together show heterogeneity in their proliferation rate. To determine

the differences between fast and slow-proliferating cells, we developed a method to sort

cells by proliferation rate, and performed RNA-seq on slow and fast proliferating subpopula-

tions of pluripotent mouse embryonic stem cells (mESCs) and mouse fibroblasts. We found

that slowly proliferating mESCs have a more naïve pluripotent character. We identified an

evolutionarily conserved proliferation-correlated transcriptomic signature that is common to

all eukaryotes: fast cells have higher expression of genes for protein synthesis and protein

degradation. This signature accurately predicted growth rate in yeast and cancer cells, and

identified lineage-specific proliferation dynamics during development, using C. elegans

scRNA-seq data. In contrast, sorting by mitochondria membrane potential revealed a highly

cell-type specific mitochondria-state related transcriptome. mESCs with hyperpolarized

mitochondria are fast proliferating, while the opposite is true for fibroblasts. The mitochon-

drial electron transport chain inhibitor antimycin affected slow and fast subpopulations differ-

ently. While a major transcriptional-signature associated with cell-to-cell heterogeneity in

proliferation is conserved, the metabolic and energetic dependency of cell proliferation is

cell-type specific.

Author summary

By performing RNA sequencing on cells sorted by their proliferation rate, this study iden-

tifies a gene expression signature capable of predicting proliferation rates in diverse

eukaryotic cell types and species. This signature, applied to single-cell RNA sequencing

data from embryos of the roundworm C. elegans, reveals lineage-specific proliferation dif-

ferences during development. In contrast to the universality of the proliferation signature,

mitochondria and metabolism related genes show a high degree of cell-type specificity;

mouse pluripotent stem cells (mESCs) and differentiated cells (fibroblasts) exhibit
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opposite relations between mitochondria state and proliferation. Furthermore, we identi-

fied a slow proliferating subpopulation of mESCs with higher expression of pluripotency

genes. Finally, we show that fast and slow proliferating subpopulations are differentially

sensitive to mitochondria inhibitory drugs in different cell types.
Highlights:

1. A FACS-based method to determine the transcriptomes of fast and slow proliferating

subpopulations.

2. A universal proliferation-correlated transcriptional signature indicates high protein

synthesis and degradation in fast proliferating cells across cell types and species.

3. Applied to scRNA-seq, the expression signature predicts the global proliferation slow-

down during C. elegans development.

4. Mitochondria membrane potential predicts proliferation rate in a cell-type specific man-

ner, with ETC complex III inhibitor having distinct effects on fibroblasts vs mESCs.

Introduction

Rates of cell growth and division vary greatly, even among isogenic cells of a single cell-type,

cultured in the same optimal environment [1]. Cell-to-cell heterogeneity in proliferation rate

has important consequences for population survival in bacterial antibiotic resistance, stress

resistance in budding yeast, and chemo-resistance in cancer [2–10]. A recent study has dem-

onstrated semi-heritable cell-to-cell heterogeneity in gene expression in mammalian cells,

which is associated with drug resistance in cancer [11] and time-lapse fluorescence microscopy

has shown that cell-to-cell variability in the expression of some genes, such as p53 and p21, is

associated with cell-to-cell variability in proliferation and survival [1,12]. While microscopy

can identify dynamic relationships between gene expression and cell fate, it is limited to mea-

surements of one or two genes per cell. Single-cell RNA sequencing measures transcriptome-

level heterogeneity but does not directly link this to cell-biological heterogeneity in organelle

state, or dynamic heterogeneity in proliferation or drug resistance. Transcriptome-level

approaches for understanding within-population cell-to-cell heterogeneity in proliferation

and other dynamic processes are lacking. While the presence of intrapopulation variation in

proliferation, transcriptome, and organelle-state in both steady-state and in differentiation

populations is well established, the relationship among the three remains unclear.

One possibility is that the proliferation-correlated gene expression program is the same,

regardless of if one looks at interpopulation variation due to genetic or environmental differ-

ences, or intrapopulation heterogeneity due to epigenetic differences and expression noise.

However, in the budding yeast Saccharomyces cerevisiae, the expression program of intrapopu-

lation heterogeneity in proliferation rate only partially resembles that of cells growing at differ-

ent rates due to genetic or environmental perturbations[8]. The relation between gene

expression and proliferation rate is much less well studied in mammalian cells.

In yeast, in tumors, and in organs, genetic, environmental and developmental changes

cause changes in proliferation rate, and changes in the expression of hundreds or thousands of

genes [13–17]. Unsurprisingly, many of the genes for which changes in expression are associ-

ated with changes in proliferation rate are associated with adverse clinical outcomes in cancer

and with antibiotic and antifungal resistance [18,19]. Within a population of microbes, and
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within a single multicellular organism, the correct balance of proliferation states and rates is

essential. Yet measuring this heterogeneity is difficult, and without such data, understanding

the consequences of this heterogeneity is impossible.

Gene expression is associated with phenotype, but mRNAs themselves do not often directly

cause phenotypes. Instead, they serve as markers for cell-biological differences between cells.

Phenotypes are mostly driven by larger cell-biological differences between cells, such as differ-

ences in metabolic state. Cell-to-cell heterogeneity in mitochondria state has been linked to

differences in transcription rates, growth rates, proliferation and developmental trajectories

[20–22]. Both cancer cells and pluripotent stem cells have atypical metabolisms and use glycol-

ysis to produce much of their ATP, instead of the mitochondria-based oxidative phosphoryla-

tion, which is the predominant form of ATP-generation in differentiated cells [23]. It is

unknown if this inter-population variation in proliferation, transcriptome, and mitochondria

extends to intra-population variation among single cells within a single isogenic population.

Pluripotent stem cells exist in various states, such as naïve or primed, based on culture con-

ditions and embryonic origin [24]. Mouse embryonic stem cells (mESCs) reflect the naïve

pluripotency state of the blastocyst epiblast and can be cultured in either serum+LIF or 2i+LIF

conditions, the latter involving inhibitors of FGF/ERK and GSK3 pathways. Culture in 2i+LIF

conditions promotes a ground state more closely mirroring the in vivo situation with reduced

heterogeneity in pluripotency gene expression and different cell cycle profile when compared

to cells grown in serum+LIF [25–27]. Nevertheless, even in 2i+LIF conditions, mESCs display

a certain amount of cell-to-cell heterogeneity [28,29] and it is unclear, how this relates to het-

erogeneity in differentiated cell types when it comes to gene expression and its link to prolifer-

ation rate.

To understand the relation between intra-population transcriptome heterogeneity and het-

erogeneity in proliferation, we developed a FACS-based method to sort cells by proliferation

rate. We applied this method to mouse immortalized fibroblasts and mESCs and performed

RNA-seq on fast, medium and slow proliferating cell sub-populations. We identified a “prolifera-

tion signature”, mostly consisting of ribosome-biogenesis (protein synthesis) and proteasome-

related (protein degradation) genes that are highly expressed in fast proliferating fibroblasts and

ESCs. Moreover, the proliferation signature is conserved across cell-type and species, from yeast

to cancer cells, allowing us to predict the relative proliferation rate from the transcriptome. We

used this gene expression signature to predict proliferation rates in single cells from scRNA-seq

data of C. elegans development. Unlike previous models to predict growth rate from gene expres-

sion [30], this model has no free parameters other than the set of genes, and does not suffer from

overfitting–it can predict differences in growth rate in yeast, cancer cells and C. elegans, despite

no data from either species going into the initial model. When applied to scRNA-seq data from

developing C. elegans, this model identified a global slowdown in proliferation rate during devel-

opment, with lineage-specific exceptions where some lineages maintain constant proliferation

scores, and others even increase proliferation rate. In contrast to the universality of this main

transcriptional signature, many mitochondria-related genes were upregulated in fast proliferat-

ing fibroblasts, yet down-regulated in fast-proliferating mESCs. Consistent with this, we found

that a high mitochondria membrane potential is indicative of slow proliferating fibroblasts,

while in mESCs this is a property of fast proliferating cells. And the mitochondrial electron

transport chain complex III inhibitor antimycin treatment causes opposite effects on the prolif-

eration of fibroblasts and ESCs. Fast, but not slow proliferating fibroblasts are particularly sensi-

tive to the ATP synthase inhibitor oligomycin. Taken together, these results show the existence

of a core protein-synthesis and protein-degradation expression program that is conserved across

cell types and species, from yeast to mice, and a metabolic and energy-production program that
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is highly cell-type specific, with cell-type and proliferation-rate specific consequences on the

effects of mitochondria inhibitors.

Results

A method to sort single mammalian cells by semi-heritable cell-to-cell

heterogeneity in proliferation rate

To understand the causes and consequences of intrapopulation cell-to-cell heterogeneity in prolif-

eration rate in mammalian cells we developed a method for sorting single mammalian cells by

their proliferation rate (Figs 1 and S1). The cell-permeable dye carboxyfluorescein succinimidyl

ester (CFSE) covalently binds free amines within cells, thus staining most intracellular proteins at

lysine residues. In cell types that divide symmetrically, such as embryonic stem cells and immor-

talized fibroblasts [31], the equal dilution of CFSE into the two daughter cells enables counting of

the number of divisions that each cell has undergone. This method is commonly used to differen-

tiate proliferating from nonproliferating cells, and to count discrete numbers of cell division, such

as in the study of T- and B-cell proliferation following antigen stimulation [32]. To eliminate con-

founding effects due to differences in initial staining we used fluorescence-activated cell sorting

(FACS) to obtain an initially homogeneous cell population of cells with identical CFSE signals

(Figs 1, S1A and S1B). Thus, the initial CFSE signal is independent of initial cell-to-cell variation

in dye uptake or protein content, as the initial distribution is determined by the FACS gate.

CFSECFR2 conjugates are stable and unable to exit the cell [33]; the dye signal is stable for over

eight weeks in non-dividing lymphocytes [34]. The measured CFSE signal should be relatively

insensitive to cell-to-cell variation in protein degradation. We cultured this sorted starting cell

population for several generations, during which time the CFSE signal decreases with each cell

division (Fig 1B). Consistent with the decrease in CFSE being mostly due to cell division, the pop-

ulation-level doubling time of each cell type can be calculated based on the decrease in CFSE sig-

nal over time (Fig 1C and 1D), and these doubling times (19–21 hours for fibroblasts and 10–12

hours for mESCs) are consistent with those reported by other methods [35,36].

To test if the intrapopulation heterogeneity in CFSE that develops after a few doublings cor-

responds to intrapopulation heterogeneity in proliferation rates, we stained cells with CFSE,

isolated a homogenous population by FACS, grew ESCs or fibroblasts for 24h or 48h respec-

tively, and used FACS to isolate the 20% of cells with the highest and lowest CFSE signal, and

measured both viability and the fraction of cells in S phase (S1C and S1D Fig). We found that

fast proliferating (low CFSE) subpopulations maintain higher proliferation rates for at least

three days (Figs 1E, 1F, S1E and S1F), and found no differences in viability between CFSE

subpopulations (S1 Table). Thus, intrapopulation differences in CFSE correspond to semi-

heritable differences in proliferation rates.

To identify genes whose expression is positively or negatively correlated with proliferation

rate within a single population we grew fibroblasts in MEF (mouse embryonic fibroblast)

medium and mouse ESCs in pluripotent ground-state promoting 2i+LIF medium [37], stained

cells with CFSE, performed the initial sort to isolate cells with the same CFSE signal, and then

grew fibroblasts for five days, and ESCs for three days. We then used FACS to isolate cells with

high, medium, and low CFSE signal, and performed RNA-seq on each sub-population (Fig 1G).

Slow-proliferating ESCs are of more naïve pluripotent character than fast-

proliferating ESCs

Embryonic stem cells exhibit cell-to-cell heterogeneity in the expression of naïve pluripotency

marker genes such as Nanog, Stella (Dppa3) or Rex1 (Zfp42) [38–40]. Although this
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Fig 1. A CFSE-based method to sort mammalian cells by proliferation rate. (A) Cells were stained with CFSE and a subpopulation of cells

with identical CFSE levels was collected by FACS. Growth for several generations resulted in a heterogeneous cell population with a broad CFSE

distribution, and cells with high, medium, and low CFSE signal (slow, medium and fast proliferation, respectively) were sorted by FACS for

RNA-sequencing. (B) The change in the CFSE distribution over time, for fibroblasts and ESCs. (C, D) The population-level doubling time can be

calculated by fitting a line to the median of the log2(CFSE) signal. We discard data from time 0, cells immediately after the sort, because the CFSE
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heterogeneity is most apparent in ESCs cultured in serum+LIF, even when cultured in ground

state-pluripotency-promoting 2i+LIF conditions, the sub-population of ESCs with low

NANOG-levels displays a propensity for lineage-priming and differentiation [28,29]. To deter-

mine if cell-to-cell variation in proliferation rate was caused by a sub-population of mESCs ini-

tiating a differentiation program, we determined the fold-change in expression between slow

and fast proliferating sub-populations for a set of genes that are upregulated during lineage

commitment (see “Differential expression of pluripotency. . .” in Materials and Methods). We

found no consistent enrichment of these differentiation genes in fast versus slow proliferating

cells, as they could be found to be expressed in either population (Fig 2A). However, the slow

proliferating subpopulation did have higher expression of genes that are upregulated in naïve

pluripotent cells, and in 2-cell(2C)-like state stem cells (Fig 2B and 2C), suggesting that slow

proliferating mESCs are in a more naïve pluripotent cell state than their fast proliferating

counterparts.

Identification of biological processes correlated with proliferation rate that

are conserved across cell-types and species, and within single populations

To identify functional groups of genes that are differentially expressed between fast and slow

proliferating cells within a single population we performed gene set enrichment analysis

(GSEA)[41,42] (Figs 3A, 3B, S2A and S2B) on mRNA-seq data from fast and slow proliferat-

ing subpopulations. We found that in both fibroblasts and ESCs, as well as for intrapopulation

variability in budding yeast FACS-sorted by proliferation rate (data from van Dijk et al. [8]),

genes involved in ribosome-biogenesis and the proteasome are more highly expressed in fast

proliferating cells (Fig 3C and 3D and S2 Table). High expression of ribosomal genes is a

common signature for fast proliferating cells [13,43,44], and cancer cells often exhibit high

signal decreases in the initial hours, even in the absence of cell division, likely due to efflux pumps. (E, F) Bromodeoxyuridine (BrdU) was used to

measure the % of cells in S-phase for FACS-sorted fast and slow proliferating subpopulations. Fibroblasts: 4 replicates, p = 0.0002441. ESCs: 3

replicates for ESCs, p = 0.001953. p-values are for binomial tests across all biological replicates that the two populations have the same percentage

of cells in S-phase. (G) Examples of genes whose expression positively or negatively correlated with proliferation rate. Each line is one biological

replicate, and the error bars are 95% confidence intervals for each expression value.

https://doi.org/10.1371/journal.pcbi.1009582.g001

Fig 2. Slow-proliferating ESCs display a more naive pluripotent stemness character than fast-proliferating ESCs. (A) Comparison of lineage commitment-related

gene expression between fast and slow proliferating subpopulations. (B) Comparison of pluripotency-associated gene expression between fast and slow proliferating

subpopulations. (C) Comparison of 2C-like state markers expression between fast proliferating subpopulation and slow proliferating sub-population. Dashed lines

separate genes expressed preferentially in slow- (left of dashed line) or in fast-proliferating (right of dashed line) ESCs. P-values are from binomial tests, testing if genes are

more often highly expressed in slow cells than would be expected by chance (53.5% of all genes are more highly expressed in slow cells).

https://doi.org/10.1371/journal.pcbi.1009582.g002
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proteasome expression [45–47], and the work of Geiler-Samerotte et al. showed that growth-

predictive proteins are components of the cytosolic unfolded protein response [48], However,

it is not clear if this is related to proliferation in-and-of-itself or due to aneuploidy and other

Fig 3. Functional pathways for which cell-to-cell heterogeneity in expression correlates with proliferation rate across cell

types and species. (A) In Gene Set Enrichment Analysis, genes are sorted by their fast/slow expression value (left panel,

bottom), and each gene is represented by a single black line (left panel middle). The enrichment score is calculated as follows:

for each gene not in the GO preribosome gene set, the value of the green line decreases, and for each gene in the gene set, the

value of the green line increases. The ES score will be near zero if the genes in a gene set are randomly distributed across the

sorted list of genes, positive if most genes are to the left, and negative if most genes are to the right. (B) The heatmap (right

panel) shows the expression (z-scored read counts) of preribosome genes in fibroblasts across four biological replicates of the

CFSE sorting experiment. (C) Gene sets enriched (FDR<0.1) in both fibroblasts and ESCs were mapped as a network of gene

sets (nodes) related by mutual overlap (edges), where the color (red or blue) indicates if the gene set is more highly expressed in

fast (red) or slow (blue) proliferating cells. Node size is proportional to the total number of genes in each set and edge thickness

represents the number of overlapping genes between sets. (D) GSEA results (FDR<0.1) of S. cerevisiae [8] that sorted by cell-to-

cell heterogeneity in proliferation rate. (E) Pearson correlations of mean expression (average of log2(TPM+1)) of ribosome

biogenesis genes vs proteasome genes across organ developmental time courses in seven species (see also S2 Fig).

https://doi.org/10.1371/journal.pcbi.1009582.g003
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genetic alterations [49]. Our results suggest that coordinated regulation of the ribosome and

proteasome is an intrinsic signature of fast proliferating cells that is conserved across cell-types

and species.

To test if the coupling between ribosome biogenesis and proteasome expression holds

across species and in diverse cell types, we analyzed the bulk RNA-seq data across develop-

mental stages, covering multiple organs in seven species [17]. Ribosome biogenesis and protea-

some expression are highly correlated (Fig 3E). The coordinated expression change with

developmental stages between ribosome biogenesis genes and proteasome genes across organs

and species suggests that the coordination between protein synthesis and degradation is likely

to be a conserved feature across a large number of species and cell-types (S2D Fig).

In addition to ribosome-biogenesis and the proteasome, several other gene sets are differen-

tially expressed between fast and slow proliferating cells in both fibroblasts and ESCs (Fig 3C).

mTORC1 (mammalian Target Of Rapamycin Complex 1) functions as a nutrient sensor and

regulator of protein synthesis, and is regulated by nutrient and cytokine conditions that cause

differences in proliferation [50,51]. We find that, even in the absence of genetic and environ-

mental differences, mTORC1 is more active in fast proliferating cells. Activation of mTORC1

can promote ribosome-biogenesis [50,52], however, there is still controversy about the regula-

tion of proteasome activity by mTORC1 [51,53–57].

The transcription factor MYC (S2C Fig), and MYC target genes (Fig 3C and S2 Table) are

more highly expressed in fast proliferating cells. MYC is frequently amplified in cancer, regu-

lates the transcription of ~15% of all genes [58] and is a master regulator of cell proliferation

[59]. Overexpression of MYC promotes ribosome-biogenesis and cell growth rates [60,61],

and active mTORC1 can promote MYC activation [62,63]. Our data suggest that increased

expression of MYC and increased mTORC1 activity are general properties of fast-proliferating

cells, and those genetic or environmental perturbations are not necessary to cause differential

expression of these pathways.

Defining a proliferation signature to predict the growth rate across species

Expression of typical proliferation markers, such as PCNA and KI67, did not correlate with

intra-population heterogeneity in proliferation (Fig 4A). The high degree of conservation of

genes whose expression correlates with intra-proliferation heterogeneity in proliferation, from

yeast to mouse, suggests that there should be a set of genes whose expression is predictive of

growth rate across all eukaryotes. To build such a set we combined “proliferation correlated

genes”–those with a Spearman correlation of rho = 1 in both fibroblasts and ESCs (243 genes)

with genes from six ribosome biogenesis and proteasome related gene sets that are significantly

enriched in both fibroblasts and ESCs, which result in a final gene set consisting of 370 genes

(S4 Table). We then applied ssGSEA [64], a rank-based method that computes an overexpres-

sion measure for a gene set of interest relative to all other genes in the genome. The prolifera-

tion signature score is the Normalized Enrichment Score, calculated by ssGSEA, for the gene

set containing all 370 proliferation-correlated genes.

To test the ability of this proliferation signature to predict proliferation rates in new data we

used out-of-species cross-validation. While several models have been developed to predict

growth rates from gene expression [30], the performance of these models has been evaluated

using within-experiment cross validation, in which a single sample (e.g., condition or geno-

type) was held-out (excluded) and used for testing model performance. Accurate prediction of

growth rates in cells for which actual growth rates cannot be measured, such as tumors in-vivo,
or from single-cell RNA-sequencing data, would be more useful. However, models tested

using in-experiment cross-validation (also known as internal validation) are often over-fit,
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resulting in poor performance when the model is applied to new data from new experiments

[65].

To overcome this problem, we used the proliferation signature from above, which was

developed using data from mouse cells, to predict growth rate from gene expression in bud-

ding yeast. Our model has correlations of R = 0.82, 0.73 and 0.77 across three different datasets

(Figs 4B, S3B and S3C). In contrast, the model of Wytock et al. [30], which was trained on

these yeast data, has an out-of experiment predictive power of R < 0.15 (Fig S6 in Wytock

et al. [30]). The Wytock et al. model is over-fit and cannot predict proliferation rates in new

data. Similarly, our model has better performance (R = 0.65) than a cancer-specific model

[66], which was trained on cancer cell-line data and cannot predict out-of-experiment

Fig 4. A proliferation signature model can predict relative growth rates from gene expression for species and cell-types on which it was

not trained. (A) Genes and proliferation signature spearman correlation with proliferation rate (sorted by CFSE). Compare with KI67 or

PCNA, proliferation signature has a better correlation with proliferation rate. (B) Using the proliferation signature to predict growth rate in

budding yeast, we apply ssGSEA to calculate the enrichment score of proliferation signature for each sample. The Pearson correlation of

proliferation signature score with growth rate is 0.82 (p = 8.9×10−7), the grey shading is a 95% confidence band. (C) Using the proliferation

signature to predict growth rate in cancer cell lines, the Pearson correlation is 0.65 (p = 1.9×10−8), the grey shading is a 95% confidence band.

(D) Comparison of proliferation signature score between 2C-like ESC and non-2C-like ESC (paired t-test, p = 0.04669).

https://doi.org/10.1371/journal.pcbi.1009582.g004
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(Fig 4C) (Fig 4 in Waldman et al. [66]). In contrast to most published models, our prolifera-

tion signature score model performs well on data on which it has not been trained.

When run on FACS-sorted 2C-like embryonic stem cells (2C::tdTomato+) [67], our prolif-

eration signature model predicts that 2C-like mESCs proliferate slower (Fig 4D). 2-cell

embryos also have uniquely low proliferation scores (S4H Fig). These results are experimen-

tally independent of, and biologically consistent with, our observation that expression of 2C-

like cell state marker genes is higher in slow proliferating mESCs (Fig 2C). This provides fur-

ther evidence that the proliferation signature we have identified can be universally applied to

predict the proliferative state of many cell types.

Prediction of lineage-specific changes in proliferation rates during C.

elegans development by the proliferation signature

Expression of the most commonly used markers (PCNA and KI67) for measuring proliferation

rates in bulk populations are cell-cycle regulated, but the expression levels of these markers do

not measure proliferation rates in single cells. Single-cell RNA sequencing is a powerful method

for understanding development and differentiation in vivo, but it suffers from high levels of

noise at the single-gene level [68]. We reasoned that our proliferation signature model would be

ideal for measuring the proliferation rates of single cells from scRNA-sequencing data, as the

model takes into account the expression of>300 genes, most of which are highly expressed and

therefore have low levels of technical noise. To test the ability of the proliferation signature

model on scRNAseq data we used a dataset of 89,701 cells from C. elegans development [69]. We

computed the proliferation signature score for each cell and divided the cells into terminal cell

types vs preterminal cells. Non-terminally differentiated cells have a higher proliferation signa-

ture score (t-test, p = 4.9×10−41) (Fig 5A). A visual comparison of the 89,701 cells in UMAP

space, colored by either embryo age [69] or by proliferation signature score (Fig 5B), suggested

that, globally, proliferation rates in single cells decrease as development proceeds. However,

three clusters of cells did not follow this pattern: germline, intestine and M cells. To quantify the

relationship between proliferation rates of single cells and developmental time we binned all cells

with same embryo time, and calculated the correlation between proliferation score and develop-

mental time (Fig 5C). The proliferation signature score decreases as the embryo develops (rho =

-0.65, p = 9.3 ×10−19 and rho = -0.73, p = 8.7×10−24 when excluding the three outlier groups

(S4B Fig)). This conclusion from our single-cell gene expression analysis using the proliferation

signature score is therefore quantitatively consistent with lineage-tracing microscopy data from

Sulston et al. [70], showing that the rate of cell division within the developing nematode

decreases during development (S4D and S4E Fig).

To our surprise, the predicted proliferation rates increased after 650 minutes (S4C Fig). To

understand why, we grouped all cells in 650 minutes or older by lineage (Fig 5D). The three

outlier groups from UMAP space: germline, M cell and intestine, had the highest proliferation

signature among all cell types late in development. Specifically, for these three cell types, the

proliferation score did not decrease with the embryo time, but increased or maintained a high

level (Fig 5E). This can be explained by lineage-specific characteristics: the germline is the

only cell type in C. elegans that is continuously proliferating, M cells are a highly proliferative

single mesodermal blast cell, and the intestinal cells, although they do not proliferate, continue

to increase in both biomass and DNA content through endoreplication. Other cell types with

high proliferation scores, such as Z1/Z4, are also known to continue proliferation after 650

minutes [71]. The proliferation signature score decreases with embryo time for most cell types,

including body wall cell, hypodermis and ciliated amphid neuron, which are the most preva-

lent in the single-cell RNA-seq dataset (Fig 5E).
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Fig 5. Proliferation signature of cell development. (A) A cartoon showing four terminal cells, and a partial linage showing the final four generations of

preterminal cells. Comparison of single-cell proliferation signatures between preterminal cell lineage and terminal cell types (t-test, p = 4.9×10−41). (B)

UMAP projection of 89,701 cells. Cells in the left panel are colored by estimated embryo times; in the right panel by proliferation signature score. (C) To

calculate the proliferation signature score (y-axis) at each time point (x-axis) cells are binned by embryo time, and the mean proliferation signature score

for all cells in the same bin is calculated. The spearman correlations are -0.65 (p = 9.3 ×10−19) for binned data and -0.42 (p< 2.2e-16) for unbinned data.

(D) Boxplots (line shows median, boxes interquartile range) of proliferation signature score for all cells with embryo time> 650min. (E) Temporal

dynamics of proliferation scores of select cell lineages, showing the average proliferation score for all single cells in that lineage, at each time point. (F-G)

Boxplot of C. elegans (F) and human (G) proliferation signatures as a function of developmental time, from scRNAseq data.

https://doi.org/10.1371/journal.pcbi.1009582.g005
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Two cell types, hypodermis and seam cells, exhibited very low proliferation signature scores

at late time points, while intestinal cells exhibited very high proliferation scores (Figs 5E and

S4F). Both these cell types contain multinucleated cells, but these multinucleated cells arise

through very different mechanisms: hypodermis and seam cells through cell-fusion, and intes-

tine through endoreplication [71]. Thus, two cell types with seemingly similar properties have

highly divergent transcriptomes, and highly divergent mechanisms to reach their similar final

state.

Upon development to an L1 larva, a nematode has more than half of the final number of

cells present in the adult. In contrast, mammals continue to rapidly increase in cell number

even after embryonic development is complete. This difference can be seen in the change in

proliferation signature over time, which decreases in C. elegans, but increases in human (data

from Petropoulos et al. [72]) and mouse (data from Deng et al. [73]) (Figs 5F–5G and S4G

and S4H). In conclusion, our proliferation signature genes obtained from mouse fibroblast

and ESC data can predict dynamic changes in proliferation rates during the development of

various cell types and species, thereby confirming its universal applicability.

Cell-to-cell heterogeneity in mitochondria state predicts variation in

proliferation both in ESCs and fibroblasts, but in opposite directions

While the pattern of within-population proliferation-correlated expression in yeast, mouse

fibroblasts and ESCs was broadly similar with regard to genes involved in protein synthesis

and degradation, the behavior of metabolic and mitochondria-related genes in fast and slow

proliferating subpopulations was highly cell-type specific. Mitochondria membrane and respi-

ratory chain-related gene sets were more highly expressed in fast proliferating fibroblasts, but

not in fast proliferating ESCs (Table 1). These results are consistent with differential mito-

chondrial states in ESCs when compared to differentiated cells like fibroblasts [23], which sug-

gests the existence of different types of metabolism and proliferation-related heterogeneity

between pluripotent and differentiated cell-types. We also observed cell-type specific differ-

ences in glycolysis, fatty acid metabolism, and other metabolic processes, suggesting funda-

mental differences in the metabolic pathways required for fast proliferation between

pluripotent ESCs and differentiated cells like fibroblasts (Table 1).

The mitochondrial membrane potential is a major predictor of cell-to-cell heterogeneity in

proliferation rate in budding yeast [9]. Mitochondria-related genes are more highly expressed

in the fast proliferating subpopulation of fibroblasts (Table 1). In contrast, these genes are

slightly more highly expressed in the slow proliferating subpopulation of ESCs. This suggests

that the relation between cell-to-cell heterogeneity in mitochondria state and proliferation

may be different in these two cell types. To test the ability of mitochondrial membrane poten-

tial to predict proliferation rate in mammalian cells we used the mitochondria membrane

potential-specific dye tetramethylrhodamine ethyl ester (TMRE) to stain fibroblasts and ESCs,

and performed both RNA-seq and proliferation-rate assays on high and low TMRE sub-popu-

lations (Fig 6A).

Unlike the proliferation-based sort (Fig 1), sorting ESCs and fibroblasts by mitochondria-

state (Figs 6 and S5A and S5B) resulted in highly divergent expression profiles. ESCs with

high TMRE signal had high expression of ribosome-biogenesis, proteasome, MYC-targets and

mitochondrial-related genes, while in fibroblasts these gene sets are more highly expressed in

the low TMRE sub-population (Fig 6B and 6C and S5 Table). This is consistent with the

opposite behavior of mitochondria-related gene sets in proliferation-rate sorted cells from the

two cell types (Table 1). We note that the differences between high and low TMRE populations

are smaller than the difference between high and low CFSE populations (S5C and S5D Fig),
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either due to technical limitation of the dye, or because there is less heterogeneity in mitochon-

dria state than there is in proliferation rate.

These expression data make the following prediction: ESCs with high TMRE should have a

shorter doubling time, while fibroblasts with high TMRE should have a longer doubling time.

To test this, we sorted fibroblasts and ESCs by TMRE, and found that high TMRE fibroblasts

indeed do proliferate more slowly, while high TMRE ESCs proliferate more rapidly (Fig 6D).

In addition, we tested the effect of ascorbic acid (vitamin C, an antioxidant) and O2 levels

(ambient 21% atmospheric vs. low 5% physiological levels) on doubling time, but found no sig-

nificant effects (S6 Table).

To investigate additional cell types, we searched for RNA-seq data for cells sorted by mito-

chondria state, and analyzed RNA-seq data of mouse CD8+ T-lymphocytes that have been

sorted by mitochondria membrane potential (TMRM) [22]. CD8+ T cells with high TMRM

signal (high ΔCm) showed higher expression of ribosome-biogenesis and proteasome-related

genes (S7 Table), and proliferate more rapidly [22], thereby behaving similarly to ESCs.

Thus, across yeast, mouse ESCs, fibroblasts and CD8+ T cells, while mitochondria state and pro-

liferation rate co-vary within a single population, the direction of this correlation is different, with

yeast and fibroblasts behaving similarly with each other, and opposite to ESCs and CD8+ T cells.

Perturbation of mitochondria function affects fast and slow proliferating

fibroblasts and ESCs in different ways

To investigate the relationship between proliferation rate, cell type, and mitochondrial state,

we performed perturbation experiments by directly inhibiting mitochondria function. We

Table 1. Gene sets whose expression exhibits opposite correlations with growth between fibroblasts and ESCs.

Fibroblasts ESCs

Gene set name Gene set size NES FDR.q.val NES FDR.q.val

Mitochondria Inner mitochondrial membrane protein complex 101 2,52 <0.001 -0,39 >0.1

Mitochondrial membrane part 164 2,26 <0.001 -0,44 >0.1

Mitochondrial respiratory chain complex assembly 74 2,19 <0.001 -0,49 >0.1

Mitochondrial respiratory chain complex I biogenesis 54 2,12 <0.001 -0,49 >0.1

Mitochondrial matrix 404 1,97 <0.05 -0,49 >0.1

Metabolism Metabolism of proteins 377 2,47 <0.001 -0,54 >0.1

Glycolysis gluconeogenesis 60 2,03 <0.05 -1,35 >0.1

Monosaccharide biosynthetic process 52 1,94 <0.05 -0,76 >0.1

Monosaccharide catabolic process 56 1,67 <0.05 -0,93 >0.1

Hallmark fatty acid metabolism 157 1,52 <0.1 -0,71 >0.1

Differentiation Dopaminergic neuron differentiation 28 -1,66 <0.05 1,27 >0.1

Hematopoietic progenitor cell differentiation 97 -1,59 <0.1 1,09 >0.1

Regulation of cardiac muscle cell differentiation 19 -1,57 <0.1 0,92 >0.1

regulation of smooth muscle cell differentiation 20 -1,45 >0.1 1,66 <0.1

Glial cell differentiation 136 -1,00 >0.1 1,63 <0.1

Cell cycle Cell cycle G1 S phase transition 104 -1,95 <0.05 2,03 <0.05

Hallmark E2F targets 195 -2,09 <0.001 2,43 <0.001

Fischer G1 S cell cycle 177 -2,03 <0.001 1,90 <0.05

Cell cycle checkpoints 110 -0,84 >0.1 1,82 <0.05

Cell cycle phase transition 247 -1,99 <0.001 1,31 >0.1

Shown are representative gene sets whose expression is significantly correlated with proliferation in either fibroblasts or ESCs, but whose expression changes with

proliferation in opposing directions. NES>0 (higher expression in fast); NES<0 (higher expression in slow)

https://doi.org/10.1371/journal.pcbi.1009582.t001
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stained both mouse ESCs and fibroblasts with CFSE and sorted 20% of the viable cells on the

peak of the CFSE signal to have a homogeneous starting population. After culturing them for

24h or 48h respectively, two bins were sorted: the lowest 20% (fast proliferating cells) and the

highest 20% CFSE (slow proliferating cells) (Fig 7A). Next we cultured the sorted cells for 8h,

then treated with either medium containing DMSO as mock control, the mitochondrial elec-

tron transport chain complex III inhibitor antimycin, the ATP synthase inhibitor oligomycin

for 16h, washed out the drugs, and measured both viability and proliferation rate for every

24h.

Both fast fibroblasts and ESCs sorted by CFSE signal maintained a higher fraction of cells in

S-phase over two days in growth-media with DMSO, indicating that the proliferation status,

fast vs slow, is semi-heritable (Fig 7B). Interestingly, we found cell-type and proliferation-state

specific effects of mitochondria perturbation. Antimycin A, an inhibitor of complex III of the

electron transport chain, strongly decreased the fraction of slow-proliferating fibroblasts that

were in the S-phase but had a weaker effect on fast-proliferating fibroblasts (t-test, p = 0.0089)

Fig 6. Expression of proliferation-related gene sets in cells sorted by intra-population heterogeneity in

mitochondria membrane potential. (A) Cells were stained with Hoechst and CFSE and a homogenous population of

equally sized cells in G1 with equal CFSE was obtained by FACS. These cells were stained with TMRE sorted by

TMRE, and then used for RNA-seq, or allowed to proliferate to measure the doubling time of each TMRE sub-

population. (B, C) Enrichment maps of fibroblasts and ESCs sorted by TMRE. (D) Doublings times, as estimated by

the measured by the decrease in CFSE signal over time, for high, medium and low TMRE sorted cells. P-values are

from ANOVA, testing if TMRE is predictive of doubling time (see Materials and Methods).

https://doi.org/10.1371/journal.pcbi.1009582.g006
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Fig 7. Growth-rate and cell-type specific effects of mitochondria inhibitors on proliferation rate, cell viability and cell state. (A)

Schematic of the experimental setup for measuring the effects of mitochondria inhibitors on slow and fast proliferating cells. (B) Fast

proliferating Fibroblast and ESCs sorted by CFSE signal maintained a higher fraction of cells in S phase over two days of growth in

medium+DMSO. (C) Effect of antimycin treatment on fast and slow proliferating fibroblasts and ESCs (Drug effect: log2 of the fraction

of cells in S-phase when treated with DMSO divided by the fraction of cells in S-phase when treated with drug). (D) Fast fibroblasts

changed morphology after the treatment with oligomycin. Scale bars = 80 μm. (E) Immunostaining of fibroblasts for N-Cadherin and
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(Fig 7C). In ESCs, the effect of antimycin appeared somewhat stronger on fast- than on slow-

proliferating cells (although it did not differ significantly).

In contrast, fast proliferating fibroblasts were highly sensitive to oligomycin treatment,

which blocks the ATP-synthase of complex V in the electron transport chain. Specifically, we

observed a change in cell morphology upon treatment (Fig 7D). In comparison with DMSO-

treated cells, the cells lost their elongated shape and became more round and smaller. This led

us to hypothesize if that morphology change might be explained by a mesenchymal to epithe-

lial transition (MET) upon oligomycin treatment. In fact, during induced pluripotent stem cell

(iPSC) reprogramming, MET of fibroblasts is an important early reprogramming step [74,75].

In that context, oligomycin treatment has been recently shown not only to promote a meta-

bolic switch from oxidative phosphorylation to glycolysis, but also to modulate mesenchymal

markers during reprogramming [75,76]. Therefore we measured the protein levels of the regu-

lators N-cadherin (mesenchymal marker expressed in fibroblasts) and E-cadherin (epithelial

marker expressed in ESCs) with and without treatment, by both immunostaining and Western

Blot (Figs 7E, S6A and S6B). We could not detect E-cadherin in fibroblasts, but we observed

reduced expression of N-cadherin in comparison with DMSO treated-cells in particular in oli-

gomycin-treated fast cycling fibroblasts (Figs 7E, S6A and S6B). In addition to the change in

morphology, oligomycin treatment reduced cell viability specifically in fast proliferating fibro-

blasts, but not in slow fibroblasts (Fig 7F). In conclusion, although we observed both a change

in cell viability, morphology and a reduction in N-cadherin levels, oligomycin treatment did

not induce a complete mesenchymal to epithelial transition in the fast-proliferating fibroblasts

as indicated by the lack of E-cadherin upregulation. Antimycin and oligomycin interfere with

different parts of the electron transport chain of distinct functions—complex III, oxidation of

substrates and setting up membrane potential vs. complex V, reduction of membrane potential

and ATP-production. Therefore, the distinct effects of antimycin treatment on the prolifera-

tion of fibroblasts and ESCs and the subpopulation-specific effect of oligomycin on fast fibro-

blasts are in line with a differential dependency on the diverse mitochondrial functions

between the different subpopulations of fibroblasts and ESCs.

Discussion

In summary, we have developed a method to sort cells by their proliferation rate and used

these data to identify a pattern of proliferation-correlated gene expression that is conserved

among eukaryotes. We used these data to develop a model that can predict proliferation rates

from gene expression in multiple eukaryotic species and cell types, and for types of data, such

as single-cell RNA sequencing in a developing organism, for which proliferation rates cannot

be measured experimentally.

While the CFSE signal is not a measure of the instantaneous proliferation rate, but instead

determined by the average proliferation rate integrated over several days, the fact that (A) the

transcriptomes of the sorted cells are predictive of proliferation rates, and (B) the cells with

low CFSE maintain faster proliferation rates over at least three days, suggests that there are not

likely to be large differences in the instantaneous proliferation rate vs the average rate, at least

for these cell types and experimental timescales.

DAPI after drug treatment and corresponding quantifications. Fast fibroblasts lose N-Cadherin staining specifically after oligomycin

treatment. Scale bars = 15 μm. The fluorescence intensity of N-Cadherin has been quantified on the right. Medians and the 95%

confidence intervals are shown as error bars. Kruskal–Wallis test was used for statistical comparison (ns, not significant, ����

p< 0.0001). (F) Effect of oligomycin treatment on fibroblast viability. The % viable cells is measured as % trypan blue-negative cells.

https://doi.org/10.1371/journal.pcbi.1009582.g007
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We found that genes involved in protein synthesis (ribosome-biogenesis, translation initia-

tion), and in protein degradation (the proteasome and proteasome-related protein degrada-

tion) are highly expressed in fast proliferating eukaryotic cells, including mammalian,

nematode and yeast cells. Previous studies have reported that high expression of the protea-

some in fast-growing cells may be necessary in order to degrade misfolded protein, because

the fast protein synthesis in fast-growing cells produces more incorrectly folded proteins

[51,77,78]. Even with a constant translation and folding error rate, fast proliferating cells will

produce more protein, and therefore more misfolded protein that needs to be degraded.

In all non-cancer mammalian cells we investigated, we also found the mTORC1 signaling

pathway enriched in fast proliferating cells and P53-targets enriched in slow proliferating cells.

Our results show both upregulations of the mTORC1 signaling pathway and proteasome activ-

ity in fast proliferating cells, which is consistent with several previous studies [9,12–15].

Our analysis of fast versus slow proliferating ESCs cultured in 2i+LIF conditions indicated

at several levels that slow proliferating cells were of a more naïve ground state pluripotent char-

acter than fast proliferating cells. First, this was supported by the fact that they displayed a

higher expression of naïve pluripotency marker genes and markers of 2C-like cells (Fig 2B

and 2C). Second, we observed enrichment of E2F targets and genes involved in G1 S cell cycle

phase transition (Table 1) in our fast cycling ESC population, indicative of a shortened G1

phase and a shorter doubling-time, as described for ESCs cultured in serum+LIF [27]. Finally,

although we could find differentiation genes to be expressed both in fast and slow proliferating

cells (Fig 2A), we saw several differentiation pathways to be enriched specifically in fast divid-

ing ESCs (Table 1). In summary, even when ESCs are cultured in ground-state pluripotency

promoting 2i+LIF conditions, they display heterogeneity in proliferation rate, with the slow

proliferating being of more naïve pluripotent character when compared to fast dividing cells.

While we observed ESCs behave similarly to other cell types like fibroblasts or yeast when it

comes to gene expression signatures characteristic of fast proliferating cells related to protein

synthesis and turnover (Fig 3C), we found a very different behavior when it comes to regula-

tion of metabolism. Although the growth rate can be predicted by mitochondrial membrane

potential in Saccharomyces cerevisiae [23], where it is negatively correlated with proliferation

rate like in fibroblasts as we show in this study, our results show mitochondrial membrane

potential to be positively correlated with proliferation rate in ESCs (Fig 6D). This suggests

mitochondrial membrane potential has different functions in pluripotent cells when compared

to differentiated cell types or yeast. This is corroborated by our gene expression analysis of

cells with high vs. low mitochondrial membrane potential (Fig 6B and 6C), where we found

pathways linked with fast proliferating cells to be enriched in fibroblasts with low mitochon-

drial membrane potential but on the contrary, enriched in ESCs with high mitochondrial

membrane potential. Surprisingly, primed pluripotent stem cells have been described to rely

more on non-oxidative, glycolysis-based metabolism than naïve pluripotent stem cells [79–

81], which appears in contradiction with our result that our slow proliferating, mitochondria

activity low ESCs being more naïve-like. However, TMRE is not a direct measure of ATP gen-

eration by mitochondria; yeast cells that are respiring and producing all of their ATP using

their mitochondria, and yeast cells unable to respire, both have high TMRE signals [9]. Differ-

entiated cells, in general, rely more on oxidative metabolism than pluripotent cells, therefore

our fast proliferating ESCs could potentially reflect a more differentiation prone state.

In vivo, cells exhibit a great degree of variability in proliferation rates, from terminally dif-

ferentiated neurons, to slowly proliferating cancer stem cells, to rapidly proliferating embry-

onic stem cells. Many cell types, such as hematopoietic stem cells, contain both proliferating

and non-proliferating populations. The proliferation signature model, because of its applica-

bility across all tested species and cell types, provides a useful tool for understanding in vivo
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development for systems, in which precise measurements of proliferation are impossible. Our

model has been validated on scRNA-seq data, using published time-lapse microscopy of cell

lineages in C. elegans as the ground truth [70]. However, it is technically challenging to do

microscopy or to otherwise measure proliferation of individual cells inside of a developing

mouse embryo, or in a tumor in a patient. Models that can accurately predict difficult to mea-

sure properties, such as proliferation rate, from easy to measure ones, such as gene expression,

will therefore aid in our understanding of complex biological processing during tumor forma-

tion, differentiation, and development.

Materials and methods

Cell culture growth conditions

Tail tip fibroblasts (TTFs) were isolated from a female newborn mouse from aMus musculus x
Mus Castaneus cross and immortalized with SV40 large T antigen [82]. The clonal line 68-5-11

[83] was established and maintained in DMEM supplemented with 10% serum (LifeTech),

HEPES (30mM, Life Tech), Sodium Pyruvate (1mM, Life Tech), non-essential amino acids

(NEAA) (Life Tech), penicillin-streptomycin (Ibian Tech), 2-mercaptoethanol (0.1mM, Life

Tech).

The mouse embryonic stem cell (ESC) line EL16.7 (40XX, Mus musculus/M.castaneus
hybrid background [84] was maintained on gelatin coated tissue culture dishes and passaged

every 2 days by seeding around 2x106 cells in 2i+LIF medium. Accutase (Merck Chemicals

and Life Science) was regularly used for cell detachment when passaging cells. 2i+LIF medium

contains a 1:1 mixture of DMEM/F12 supplemented with N2 (LifeTech) and neurobasal

media (LifeTech) supplemented with glutamine (LifeTech), B27 (LifeTech), insulin (Sigma),

penicillin-streptomycin (Ibian Tech), 2-mercaptoethanol (LifeTech), based on previous

reports [37]. It also has additional modifications reported in Hayashi et al. [85] containing two

chemical inhibitors 0.4 μM PD032591 (Selleck Chemicals, S1036) and 3 μM CHIR99021

(SML1046, SML1046) together with 1,000 U/ml LIF (ORF Genetics, 01-A1140-0100). Both

TTFs and EL16.7 were cultured at 37˚C in 5% CO2.

Proliferation and doubling time analysis

ESCs and fibroblasts were plated on 10 cm plates at 5.3x106 and 7.3x105 concentrations,

respectively. Cells were expanded and counted for 7 days. To monitor distinct generations of

proliferating cells, carboxyfluorescein succinimidyl ester (CFSE, Thermo Fisher Scientific) was

used to stain the cells and the dilution of the dye was detected by flow cytometry every day.

CFSE was dissolved in dimethyl sulfoxide at a concentration of 5 mM as stock solution and

CFSE was added to a 1 ml cell suspension, to a final concentration of 5uM or 10uM. After the

addition of CFSE, cells were incubated at 37˚C for 20 min. Then the cells were washed twice

with complete medium and maintained on ice until use in a buffer containing PBS, 2% serum

and 1% pen-strep. Cell viability was determined by DAPI (Biogen Cientifica) staining. Dye sig-

nals were measured on an LSRII flow cytometer.

RNA-seq

To collect cells with different growth rates, cells were isolated by sorting at room temperature

according to the CFSE signal (median and high CFSE signal). ESCs and fibroblasts were sorted

into 1.5ml Eppendorf tubes containing medium and were cultured for 3 days and 5 days

respectively in specific culture conditions as described earlier. For each cell line three bins

were sorted: the lowest 10%, the median 10% and the highest 10% CFSE. Cells were sorted into
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prechilled 1.5ml Eppendorf tubes containing 200μl medium each. Cells were then centrifuged

at 1000 rpm for 5 min, the media removed and the resulting cell pellet was used for RNA

extraction. All bins were treated identically throughout the process. Cellular RNA was

extracted using the Maxwell RNA Purification Kit and processed for RNA sequencing. For

biological replicates, all experiments were repeated on three or four different days. Expression

was quantified using Kallisto v0.42.3 [86] from the raw reads (no pre-processing) using the

gencode.VM18.transcript annotations. We experimented with multiple methods for batch

effect removal using the R package SVA [87] and found that the results of the GSEA, with

regards to which gene sets were differentially expressed between fast and slow, or high and low

TMRE cell populations, did not change. We therefore used the original data.

PCA on TMRE sorted biological replicates showed that one TMRE sort was an extreme out-

lier (S5E Fig); this pair was discarded from all analysis.

BrdU Staining

Cell Proliferation was measured by the incorporation of bromodeoxyuridine (BrdU). Every

24h BrdU was added at a final concentration of 10 μM to the cells. Incubation under the

appropriate growth conditions occurred for 30 minutes for ESCs and 45 minutes for fibro-

blasts to pulse label the cells. Cells were trypsinized, spun down at 1050 rpm for 5 minutes.

After washing them in ice-cold PBS, cells were fixed overnight in ice cold Ethanol (70%) while

maintaining a gentle vortex. The following day the Ethanol fixed cells were centrifuged and the

DNA denatured by adding 2N HCl—0.5% Triton X-100 for 30min at room temperature. Then

cells were centrifuged and resuspended in 0.1 M Na2B4O7, pH 8.5 for 10 minutes at room tem-

perature. After spinning them down the cells were incubated overnight at 4˚C with PerCP/

Cy5.5 anti-BrdU (1:30 dilution) (BioLegend) in a buffer containing 0.5% Tween 20 / 1% BSA/

PBS and RNase (0.8 mg/ml). The following day cells were washed in PBS and spun down at

1050rpm for 5min at room temperature. The pellet was resuspended in PBS with DAPI

(1:1000) and analyzed in an BD LSRII flow cytometer.

Mitochondria inhibitor treatment assay

For the assessment of chemical inhibitors on membrane potential changes, cells were incu-

bated with medium containing DMSO (0.1%, mock control), antimycin A (500nM), oligomy-

cin (1 μM) for 16h. Cells with or without treatment were washed with PBS and trypsinized.

After spinning the cells for 5 minutes at 1050 rpm at room temperature, the cell pellet has been

stained with 50nM TMRE for 20 min at 37˚C. After 2 times washes with PBS, cells were resus-

pended in PBS containing DAPI and immediately analyzed by flow cytometer BD LSRII.

In order to measure cell viability the trypan blue exclusion assay has been used. Upon tryp-

sinization, an aliquot of the cell suspension has been mixed at 1:1 with trypan blue solution

(0.4%, Thermo Fisher Scientific). The mix has been loaded on the counting chamber slide and

analyzed at the automated counter (Invitrogen Countess II FL Automated Cell Counter).

Western blot

Cells were lysed in a lysis buffer (20 mM Tris-HCL, pH 8.0, 150 mM NaCl, 1% Triton X-100,

supplemented with protease inhibitors cocktail) and centrifuged for 30 minutes at 16000g. The

supernatant was boiled in SDS loading buffer. After SDS-PAGE, the samples were transferred

to a polyvinylidene difluoride membrane using a transfer apparatus according to the manufac-

turer’s protocols (Bio-Rad). After incubation with 5% nonfat milk in TBST (10 mM Tris, pH

8.0, 150 mM NaCl, 0.5% Tween 20) for 1h, the membrane was washed once with TBST and

incubated with antibodies against N-Cadherin (BD Biosciences, 1:1000), E-Cadherin (BD
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Biosciences, 1:1000), GAPDH (Santa Cruz, 1:5000), at 4˚C for 16 h. Membranes were washed

three times for 10 min and incubated with a 1:5000 dilution of Rabbit Anti-Mouse Immuno-

globulins/HRP for 1.5 h. Blots were washed with TBST three times and developed with the

ECL system (Amersham Biosciences) according to the manufacturer’s protocols.

Immunofluorescence staining

Cells were grown in 8-well Lab-Tek chamber slides (Thermo Fisher Scientific) and fixed in 4%

paraformaldehyde for 10min at room temperature. Then, washed three times in PBS. Fixed

cells were permeabilized in 0.5% Triton X-100 (Sigma-Aldrich) in PBS buffer for 10min at

room temperature. And then washed in PBST (PBS with 0.1% Tween (Sigma-Aldrich)) for

2min at RT. Then cells were incubated in a blocking solution containing 10% bovine serum

albumin (BSA, Sigma) and 0.01% Triton X-100 for 1h at room temperature. Cells were then

left at 4˚C overnight in a blocking solution containing the primary antibody: mouse E-Cad-

herin (BD Biosciences, 1:1000) and mouse N-Cadherin (BD Biosciences, 1:1000). The next

day, the cells were washed three times in PBS and then incubated with the secondary antibody

for 45min at room temperature. Goat anti-mouse IgG, (1:1000, Life Technologies) conjugated

to Alexa Fluor-555, was used as a secondary antibody. Nuclear staining was performed with

DAPI (1:1000, Biogen Cientifica). Images were taken with a Leica TCS SP8 confocal micros-

copy system and were analyzed with Fiji (ImageJ).

Differential expression of pluripotency, 2C-like state and lineage

commitment-related genes in mESCs sorted by proliferation rate (CFSE)

Pluripotent state gene markers are chosen from 4 different studies [26, 29, 88, 89], only genes

that are used as pluripotent state gene marker in at least 2 of these 4 papers are used in this

paper. Lineage commitment and 2C-like state gene markers are the same as genes in Fig 5A of

Kolodziejczyk et al. [26] and key differentiation regulators in Fig 6 of the same study. To see

the corresponding pluripotent cell state of fast and slow proliferating mESCs, we calculated the

mean expression of naïve pluripotent markers in four fast-proliferating and four slow-prolifer-

ating replicates and log2(fast/slow) was calculated to compare genes expression in fast prolifer-

ating subpopulation and slow proliferating sub-population. The same method was applied to

lineage commitment gene markers and 2C-like state gene markers.

Mitochondrial membrane potential measurements

The relative mitochondrial transmembrane potential (ΔCm) was measured using the membrane-

potential-dependent fluorescent dye TMRE (Tetramethylrhodamine, Ethyl Ester, Perchlorate)

(Molecular Probes, Thermo Fisher Scientific) [90]. For TMRE staining fibroblasts and ESCs were

grown, washed in PBS, trypsinized and resuspended in PBS with 0.1% BSA and TMRE added at a

final concentration of 50nM, from a 10μM stock dissolved in DMSO. Cells were incubated for

20min at 37˚C, washed with PBS and were analyzed by flow cytometry or sorted.

Cell sorting

Cells at 80% confluence in 10cm plates were trypsinized, centrifuged at 1000rpm for 5min and

stained with medium containing 10μM CFSE for 20min. Then cells were washed twice with

PBS and stained with DAPI as viability dye. To have a homogeneous starting population, 20%

of the viable cells were sorted according to the proliferation rate on the peak of CFSE signal

and re-plated. ESCs and fibroblasts have been cultured for 24h or 48h respectively and two

bins were sorted: the lowest 20% (fast proliferating cells) and the highest 20% CFSE (slow
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proliferating cells). Cells were sorted into prechilled 1.5-ml Eppendorf tubes containing 200 μl

medium each. Cells were then centrifuged at 1000 rpm for 5 min, the media removed and

plated in their culture medium. To monitor their proliferation rate, the dilution of the CFSE

dye was detected by flow cytometry every day up to 3 days for ESCs and 5 days for fibroblasts.

Dye signals were measured on an LSRII flow cytometer.

For the CFSE sort (no TMRE), cells were stained with CFSE and DAPI, and we used FACS

to obtain a population of viable cells with the same CFSE signal. We then grew cells for 3 or 5

days, and every 24 hours measured the CFSE signal using flow cytometry. Staining did not

have a strong effect on cell viability or proliferation (S7 Fig).

For the TMRE sort for proliferation rate, cells were stained with CFSE and TO-PRO-3, and

we used FACS to obtain a population of G1 cells with the same CFSE signal. We then grow

cells for 3 or 5 days, and every 24 hours measured the CFSE signal using flow cytometry.

In order to have a homogeneous starting population, both cell types were stained with

Hoechst (10 ug/ml, Life Technologies) to pick cells in G0/G1 phase. Within this population,

cells were selected according to the proliferation rate on the peak of CFSE signal prior to stain-

ing them with the dye. Then cells were sorted by TMRE into three bins: low, medium and high

with a BD Influx cell sorter into prechilled 1.5 ml Eppendorf tubes containing 200 μl medium

each. Cells were then centrifuged at 1000 rpm for 5 min, the cell pellet was washed with PBS

and used for RNA extraction. All bins were treated identically throughout the process. Cellular

RNA was extracted using the Maxwell RNA Purification Kit and processed for RNA sequenc-

ing. Cell viability was determined by TO-PRO-3 (Thermo Fisher Scientific) staining.

To test the effect of O2 levels and ascorbic acid/vitamin C in both cell types, sorted cells

from each bin were plated into each of the four different conditions (low O2 (5%), normal oxy-

gen growing conditions, and with or without ascorbic acid/vitamin C (25 ug/ml, Sigma-

Aldrich)) in duplicate. After one day of recovery from the sorting, the cells were washed in

PBS, were trypsinized, and counted. After seeding the same initial number, the rest of the cells

was analyzed on a BD Fortessa analyzer. Every day a sample from each condition and replicate

was taken for counting, and stained with 50 nM TMRE, up to 3 days for ESCs and 5 days for

fibroblasts, and both TMRE and CFSE were measured by flow cytometry.

Images of CFSE and TMRE stained cells are shown in S8 and S9 Figs.

Gene set enrichment analysis (GSEA)

GSEA was performed using the GSEA software and the MSigDB (Molecular Signature Database

v6.2) [41,91]. We use signal-to-noise (requires at least three replicates) or log2 ratio of classes

(for experiments with less than three replicates) to calculate the rank of each gene. The maxi-

mum number of genes in each gene set size was set to 500, the minimum to 15, and GSEA was

run with 1000 permutations. We provided all GSEA results in this study (S8 Table).

Enrichment map

Enrichment maps of this study (Figs 3C, 3D, 6B and 6C) are created using EnrichmentMap in

Cytoscape [92,93], we refer to Reimand et al’s protocol [94] for using EnrichmentMap.

We imported the output file of GSEA to EnrichmentMap and set FDR threshold as 0.1,

other parameters set as default.

Coordination of expression of ribosome biogenesis and proteasome related

genes

We first calculate the mean expression (average of log2(TPM+1)) of ribosome biogenesis

genes (genes in GO preribosome gene set) and proteasome genes (genes in GO proteasome
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complex gene set) across organ developmental time course, then we calculate the Pearson cor-

relation of ribosome biogenesis and proteasome.

Calculation of proliferation signature scores

To obtain proliferation correlated genes, we first calculate, for each gene, the Spearman corre-

lation with proliferation rate for each replicate, as measured by the decrease in CFSE signal, in

both fibroblasts and ESCs. We define “proliferation correlated genes” as genes that have a cor-

relation of 1 in all replicates (two replicates for both fibroblasts and ESCs, totally four sets of

samples) and in both fibroblasts and ESCs (243 genes). The formula to decide the genes to be

chosen as “proliferation correlated genes” is:

meanðCorðgeneðiÞ; prðiÞÞÞ ¼ 1

where gene(i) is the gene expression for all samples with different proliferation rates (slow,

medium and fast) in replicate i, pr(i) is the proliferation rate for all samples in replicate i. As

we have two replicates for each of the two cell types, which means we have four replicates, and

the mean of correlation equal to 1 means the correlations in each replicate is rho = 1.

To this set we add genes from six ribosome biogenesis and proteasome related gene sets

that are significantly enriched in both fibroblasts and ESCs, which result in a final gene set

consisting of 370 genes (S4 Table) and we called this gene set proliferation signature.

To use proliferation signature gene set to predict proliferation rate, we apply a widely used

method, ssGSEA [95], a rank-based method that computes an overexpression measure for a

gene set of interest relative to all other genes in the genome, to derive a single value for a sam-

ple, which we called proliferation signature score. We use R package GSVA to apply ssGSEA

with default settings [64]. The input gene expression matrix can be derived from next-genera-

tion sequencing or microarray.

To apply proliferation signature in other species, the R package Biomart [96,97] was used to

obtain homologous genes of other species in this study and to map across different gene nam-

ing schemes (eg: transfer Ensemble gene id to Entrez gene id). If the mapping from human to

other species is one to many, then we choose the first mapped gene. If the mapping is many to

one, then we keep all mapped genes.

Prediction of growth rates using proliferation signature

Published expression profiling data for yeasts cultured in the chemostat with controlled

growth rate from Airoldi et al. (dataset1) [98], Slavov et al. (dataset2) [99], Regenberg et al.

(dataset3) [14] and cancer cell lines with corresponding growth rate [66] were downloaded.

For each dataset, we calculated the Pearson correlation of proliferation signature score with

growth rate.

We also used another method to calculate proliferation signature score for these 3 yeast

datasets. We use the sum of genes expression for all genes in the proliferation gene set to repre-

sent proliferation signature score (S3D, S3E and S3F Fig), the result is slightly worse than the

ssGSEA method.

Proliferation score of 2C-like mESCs and non-2C-like mESCs

RNA-seq data (GSE33923) of 2C-like mESCs are from Macfarlan et al. [67], who FACS sepa-

rated 2C-like cells (high MuERVpromoter driven expression, 2C::tdTomato+) from non-2C-

like mESCs (2C::tdTomato-). We calculated the proliferation signature score for each of the six

samples, and used a paired t-test to control for differences between replicates.
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Brief description of experiments from other papers

In van Dijk et al. [8] cts1Δ histone-GFP budding yeast undergo cytokinesis to separate mother

and daughter cells, but these cells remain physically attached to each other by their cell wall.

Thus, starting from an initial population of single cells in G1, variation in proliferation rate

can be measured by variability in histone-GFP signal in physically connected clusters of cells.

Each cluster contains cells descended from the same ancestor cell.

In Dhar et al. [9] wild-type yeast were stained with TMRE, and sorted into four bins with

varying TMRE signal.

In Sukumar et al. [22] pmel-1 T cell receptor (TCR) transgenic mice were injected with

recombinant vaccinia virus encoding hgp100 (gp100-VV). Five days after vaccination, they

isolated CD8+ T cells, stained them with the lipophilic cationic dye tetramethylrhodamine

methyl ester (TMRM) (25 nm for 30 min at 37˚C) and FACS-sorted the highest and lowest

7–10% of cells for subsequent RNA-seq.

Proliferation scores of preterminal cell lineages vs terminal cell types

Preterminal cell lineage and terminal cell type pseudo-bulk RNAseq data of C. elegans were

downloaded from Murray et al. [69], specifically, gene expression profile for terminal cell types

and preterminal cell lineage is in S7 and S8 Tables in Ref. [69], annotation file for terminal cell

types and preterminal cell lineage is in S2 and S4 Tables in Ref. [69]. As there are multiple time

points for one terminal cell type, we only use the sample with maximum time point to repre-

sent the corresponding terminal cell type, processed data provided in this study (S9 Table).

For each cell we calculate proliferation signature score, and a t-test was used to compare the

mean proliferation signature score of all cells in each of the two groups.

C. elegans scRNA-seq data analysis

C. elegans scRNA-seq data was provided in R package “VisCello.celegans”. After loading the

package, type cello() to load all data into the current environment. We calculated the prolifera-

tion signature score for all single cells, then color them by proliferation signature score in

UMAP space. The calculation of proliferation signature score for single cell data is different

from the calculation for bulk RNA-seq data. We just sum up the expression value of genes in

the proliferation signature gene set to get a proliferation signature score. We do not use

ssGSEA consider ssGSEA is a rank-based method, however most of the genes have 0 expres-

sion in this scRNA-seq data set (S4A Fig), which makes it not appropriate to use ssGSEA.

We binned all single cells by their embryo time. We first calculate the mean proliferation

score for cells with same embryo time, then calculate Spearman correlation of this mean prolif-

eration score with embryo time, the result is rho = -0.65 (p = 9.3 ×10−19), the correlation of

unbinned data is -0.41 (p< 2.2×10−16). After excluding three special cell types germline, M

cell and intestine, the result is rho = -0.73 (p = 8.6 ×10−24), the correlation of unbinned data is

-0.45 (p< 2.2×10−16).

Experimental data for C. elegans development

Developmental data of C. elegans was extracted from Fig 4 of Sulston et al. [70]. This figure is

cell number (live nuclei number) change over embryo time and we use WebPlotDigitizer

[100] to extract data. We use the data to plot log2 cell number change over embryo time. The

difference of log2 cell number for two adjacent time points divided by the difference of time is

the proliferation rate of mean of two time points.
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Supporting information

S1 Fig. Fast proliferating subpopulations maintain higher proliferation rates than slow

proliferating subpopulations for at least 3 days. FACS gating strategy for CFSE staining to

get cell subpopulations with different proliferation rates. (A, B) The gating strategy for

CFSE staining to get cell subpopulations with different proliferation rates in fibroblasts (A)

and in ESCs (B). Slow, medium and fast proliferating cell subpopulations were sorted by

FACS according to their CFSE signal. Then RNA-seq was performed on each of the three sub-

populations. (C, D) FACS gating strategy for measuring the heritability of proliferation rates.

The gating strategy for measuring the heritability of proliferation rates in fibroblasts (C) and

in ESCs (D). In all experiments, the laser voltage was increased so that, when sorting high and

low CFSE cells, the modal CFSE signal was at least 103; the voltage is not the same for the first

and second CFSE sorts. (E) 3 Replicates of fibroblasts that similar to Fig 1E. (F) 2 Replicates of

ESCs that similar to Fig 1F.

(TIF)

S2 Fig. Functional pathways for which cell-to-cell heterogeneity in expression correlates

with proliferation rate across cell types and species. (A) GSEA result plot of Go preribosome

genes set for ESC. (B) The heatmap shows the expression (z-scored read counts) of preribo-

some genes in ESCs across four biological replicates of the CFSE sorting experiment. (C)

Higher expression of Myc in both fast proliferating ESCs and fibroblasts. log2 fold change of

Myc expression between fast and slow proliferating subpopulation in both ESCs and fibro-

blasts, each cell type 4 replicates. (D) Correlated changes in the expression of ribosome biogen-

esis and proteasome related genes during organ development. Change of average expression of

log2(TPM+1) of genes in ribosome biogenesis (Go preribosome) gene set and proteasome

complex (Go proteasome complex) gene set with developmental stages across different organs

in seven species [16]. Points (circle and triangle) are the mean expression of replicates, error

bars represent the maximum and minimum value in the replicates.

(TIF)

S3 Fig. Proliferation signature scores predict growth rate, using different methods of cal-

culation, and different species. (A-C) Using the Normalized Enrichment Score from ssGSEA

to predict growth rate in three different data sets. The Pearson correlation of proliferation sig-

nature score with growth rate in are R = 0.82 (p = 8.9×10−7), R = 0.73 (p = 1.3×10−8) and

R = 0.77 (p = 3.7×10−3). (D-F) Similar to A-C, but using the sum of expression values for all

genes in the proliferation signature gene set to calculate proliferation signature score. The

Pearson correlation of proliferation signature score with growth rate are R = 0.83

(p = 7.0×10−7), R = 0.73 (p = 1.6×10−8) and R = 0.55 (p = 0.65×10−2).

(TIF)

S4 Fig. Lineage-specific proliferation signature scores during C. elegans, human and

mouse development. (A) A density histogram of counts (UMI) across 1000 randomly sam-

pled cells; 95.6% of genes have zero reads. This causes ssGSEA to give unreliable results, so the

sum of expression values method is used for calculating the proliferation signature score for

single cells. (B) Cells are binned by embryo time, and the mean proliferation signature score

for all cells not the three outlier cell types (germline, intestine and M cells). The Spearman cor-

relation is rho = -0.73 (p = 8.7×10−24) for binned data, and rho = -0.45 (p< 2.2×10−16) for

unbinned data. (C) Similar to Fig 5C, but only showing cells with an age higher than 650 min-

utes, rho = 0.5 (p = 1.5×10−2). (D, E) The change in cell number, and the rate of change in cell

number, during development, as measured by microscopy [70]. (F) Change in proliferation

signature score for seam cells, which form multinucleated cells through cell-fusion. (G)
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Human single-cell gene expression data from Petropoulos et al. [72] projected onto the first

two principal components and colored by proliferation signature score or developmental

stages. And boxplot shows the change of proliferation signature score with developmental

stages. (H) Similar to G, but using mouse scRNA-seq data from Deng et al. [73].

(TIF)

S5 Fig. FACS gating strategy for TMRE staining and volcano plots for fibroblasts and

ESCs sorted by CFSE or TMRE. (A, B) The gating strategy for TMRE staining to get cell sub-

populations with different mitochondrial states in fibroblasts (A) and in ESCs (B). We use

Hoechst to get cells in G0/G1, gate by CFSE to get a more uniform cell population, and sepa-

rate populations with high and low TMRE signal, then do RNA-seq on each of the two subpop-

ulations. (C, D) Deseq2 was used to calculate log2 fold change and adjusted p-values for CFSE

sorting (C) and TMRE sorting (D), combining biological replicates. To set the axes to be maxi-

mally informative, genes with p< 10−5 had p set to 10−5, and those abs(log2 fold change)> 5

were truncated at -5 or +5. (E) PCA for RNA-seq data of ESCs sorted by TMRE. Low TMRE

ESCs of replicate 1 is an outlier, so we remove replicate 1 for all analysis.

(TIF)

S6 Fig. N-cadherin and E-cadherin levels in oligomycin and antimycin treated cells. (A) E-

cadherin staining of ESCs as positive control for E-cadherin detection, Scale bar = 80 μm.

Immunostaining for E-cadherin does not show detectable levels in fibroblasts, Scale

bars = 15 μm. (B) Western blot for N-cadherin and E-cadherin (Gapdh = loading control) in

DMSO- and drug-treated fibroblasts and ESCs. Oligomycin, but not antimycin treatment led

to a reduction in N-cadherin in fast fibroblasts. Double-drug treatment also showed no strong

effect likely due to antimycin treatment (complex III) acting upstream of oligomycin treatment

(complex V) in the electron transport chain and therefore being the dominant drug in the dou-

ble-treatment.

(TIF)

S7 Fig. The effects of Hoechst and CFSE staining on cell viability and proliferation rates.

Shown are the estimated doubling times (based on the increased in cell number after 24hrs

growth) and measured viability (trypan blue) for fibroblasts (A) and ESCs (B). The microscopy

shows that stained cells maintain the correct morphology.

(TIF)

S8 Fig. The images of CFSE staining for both fast and slow proliferating fibroblasts and

ESCs. Fibroblasts (A) and ESCs (B) were stained by CFSE and sorted into two bins: fast prolif-

erating cells (low CFSE) and slow proliferating cells (high CFSE).

(TIF)

S9 Fig. Images of TMRE staining for fibroblasts and ESCs, showing heterogeneity. Bright-

field and TMRE staining images for both Fibroblasts and ESCs. Two pairs of ESC colonies of

similar size but showing staining heterogeneity are circled in blue.

(TIF)

S1 Table. Viability data.

(XLSX)

S2 Table. Overlap of GSEA results of fibroblasts and ESCs (CFSE) and GSEA result of

yeast Fitflow.

(XLSX)
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S3 Table. Cor table prolif vs gene expression.

(TSV)

S4 Table. Proliferation signature combined human C. elegans yeast mouse.

(XLSX)

S5 Table. GSEA result of fibroblasts TMRE and ESCs TMRE.

(XLSX)

S6 Table. TMRE sort ANOVA.

(XLSX)

S7 Table. CD8T Ribosome and Proteasome table.

(XLSX)

S8 Table. GSEA results of Fibroblasts, ESCs and yeast sorted by CFSE or TMRE.

(XLSX)

S9 Table. C. elegans id single cell 20201027 max as terminal.

(TSV)

S10 Table. Published data used in this paper.

(XLSX)

S11 Table. Yeast Fit Flow Fast Slow.

(TSV)
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