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The severe neurological disorder epilepsy affects almost 1% of the world population. For patients
who suffer from pharmacoresistant focal-onset epilepsy, electroencephalographic (EEG) recordings
are essential for the localization of the brain area where seizures start. Apart from the visual
inspection of the recordings, quantitative EEG signal analysis techniques proved to be useful for
this purpose. Among other features, regularity versus irregularity and phase coherence versus phase
independence allowed characterizing brain dynamics from the measured EEG signals. Can phase
irregularities also characterize brain dynamics? To address this question, we use the univariate
coefficient of phase velocity variation, defined as the ratio of phase velocity standard deviation
and the mean phase velocity. Beyond that, as a bivariate measure we use the classical mean
phase coherence to quantify the degree of phase locking. All phase-based measures are combined
with surrogates to test null hypotheses about the dynamics underlying the signals. In the first
part of our analysis, we use the Rössler model system to study our approach under controlled
conditions. In the second part, we use the Bern-Barcelona EEG database which consists of focal
and nonfocal signals extracted from seizure-free recordings. Focal signals are recorded from brain
areas where the first seizure EEG signal changes can be detected, and nonfocal signals are recorded
from areas that are not involved in the seizure at its onset. Our results show that focal signals
have less phase variability and more phase coherence than nonfocal signals. Once combined with
surrogates, the mean phase velocity proved to have the highest discriminative power between
focal and nonfocal signals. In conclusion, conceptually simple and easy to compute phase-based
measures can help to detect features induced by epilepsy from EEG signals. This holds not only
for the classical mean phase coherence but even more so for univariate measures of phase irregularity.

I. INTRODUCTION

Epilepsy is one of the most common neurological dis-
orders. It is characterized by epileptic seizures which
are related to abnormal excessive neuronal activity in
the brain [1]. For patients who suffer from pharmacore-
sistant focal-onset epilepsy (around 9% of all epilepsy
patients [2]), a potential therapy is the neurosurgical re-
section of the brain area where seizures start [2, 3]. To
plan epilepsy surgery, the precise localization of this brain
area is crucial. For this purpose intracranial multichannel
electroencephalographic (EEG) recordings play an im-
portant role [4, 5]. In particular, one has to identify those
channels where the first seizure EEG signal changes can
be detected. In this study, we analyze signals recorded
during the seizure-free interval from these focal channels
as well as from nonfocal signals which are recorded from
brain areas that are not involved in the seizure at its
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onset. Nowadays, the visual inspection of these EEG
recordings by clinicians is complemented by quantitative
EEG signal analysis techniques [6–46]. The aim of this
multidisciplinary analysis is to understand how epilepsy
affects the dynamics of the brain and help to arrive at
valuable diagnostic information. From a physics perspec-
tive, the dynamics of the brain area where the seizure
starts is altered, not only during seizures [6–21] but also
during seizure-free intervals [6–9, 13, 22–46]. Thus, the
analysis of seizure-free EEG recordings can complement
other techniques [47, 48] in the diagnostics of epilepsy
patients. In order to promote the study of epilepsy, re-
searchers provide public domain EEG databases. In this
study, we use the Bern-Barcelona database, available in
Ref. [49].

The Bern-Barcelona database was constructed and
first analyzed by Andrzejak et al. [39] applying univariate
and bivariate nonlinear signal analysis techniques. The
measures were used together with the concept of sur-
rogates to test specific null hypotheses about the un-
derlying dynamics [50]. The database contains focal
and nonfocal signals from seizure-free EEG recordings
of patients suffering from pharmacoresistant focal-onset
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epilepsy. These two groups of signals demonstrated to
have different dynamical characteristics. For instance,
determinism, nonlinear interdependence and stationar-
ity were more evident in focal signals. Subramaniyam
et al. [51] used recurrence network measures together
with surrogates which, in contrast to those used in Ref.
[39], preserve the dynamics’ nonstationarity. Their re-
sults showed high levels of structural complexity and in-
terdependence in focal signals. Sharma et al. classified
focal and nonfocal signals by applying machine learning
to different entropy features [52–54]. In a recent study
[54], Sharma et al. achieved a diagnostic accuracy of 95%.
Acharya et al. [55] reviewed articles that used the Bern-
Barcelona database and proposed a computer-aided sys-
tem for the detection of focal and nonfocal signals.

An approach to distinguish focal and nonfocal signals
is the characterization of the dynamics’ regularity versus
irregularity [9, 39, 43, 55–60] and interdependence versus
independence [23, 38, 39, 51, 61, 62]. The study of irregu-
larity [63–69] and independence [70–73] can furthermore
yield beneficial information in the study of other neuro-
logical diseases. The features of irregularity and inde-
pendence are often computed by time-consuming signal
analysis techniques, and computation time is particularly
relevant when applied to long signals or big databases.
Moreover, these techniques are sometimes difficult to in-
terpret and several intermediate steps are needed to reach
the final result. Moreover, one has to be careful with the
selection of the primary observable used as input for the
signal analysis. EEG recordings are usually influenced
by the impedance between the electrodes and tissue and
can be affected by different artifacts of physiological or
technical origin during the measurement. Accordingly,
EEG amplitude signals are sometimes not very reliable,
and signals of instantaneous EEG phases can be more
informative [74]. Beyond their application to EEG sig-
nals [38, 75–78], instantaneous phase signals are used in
different fields of signal processing: telecommunication
systems [79, 80], electrocardiography [81, 82], geophysics
[83, 84], among others. The instantaneous phase can
be determined by means of several techniques, e.g., the
Hilbert transform [85], complex wavelet transform [86]
or the marker event method [87, 88]. Here one should
note that Quian Quiroga et al. [89] showed that Hilbert
transform together with filtering leads to equivalent re-
sults like the wavelet method. After comparing these
different techniques in some preanalysis, we decided to
extract the phase using the Hilbert transform.

Since phase-based measures are conceptually simple
and easy to compute, we use them in this study to ana-
lyze EEG signals from epilepsy patients to detect phase
irregularities and phase synchronization. Phase irregu-
larities are present in various nonlinear physiological sys-
tems, and their characterization is important to properly
understand the functionality of the organism [90]. Phase
synchronization can be useful for the study of physi-
ological processes [91–93] as well as neuronal diseases
[76, 94, 95]. In particular, phase synchronization was

demonstrated to contribute to quantitative EEG analy-
sis with respect to the dynamics of seizures [38, 96–99],
the seizure-free interval [31, 32, 38, 96, 100] and the dis-
tinction of focal and nonfocal signals [38]. Therefore,
the main question addressed in this study is the follow-
ing. Given that the analysis of phase synchronization
was demonstrated to contribute positively to the study
of EEG, can phase irregularities also characterize brain
dynamics? In particular, do they allow us to differentiate
focal and nonfocal signals even in the absence of seizures?
To address this open question, we apply univariate and

bivariate phase-based measures to the Bern-Barcelona
database. The univariate measure coefficient of phase
velocity variation is selected here to quantify phase ir-
regularities of individual dynamics X from single signals
x. This signal analysis technique is based on diffusion
measures [90, 101, 102], which capture invariant phase
characteristics. However, these measures cannot always
be applied to empirical data since they use ensemble av-
erages across independent realizations of the dynamics.
In this study, we perform averages across time since we
have only single signals, i.e. single realizations. As a bi-
variate approach, we use the mean phase coherence to
quantify the degree of phase synchronization between
two dynamics X and Y based on simultaneously mea-
sured signals x and y [38, 103]. Following previous work
[31, 38, 41, 104–107], prior to applying these techniques
to EEG recordings, we test them on the low-dimensional
nonlinear Rössler model system. Despite that the Rössler
dynamics is chaotic, it is narrow banded in the frequency
domain and therefore its Hilbert phase is well defined.
Accordingly, the Rössler model system is very well suited
to test phase-based measures under controlled conditions.
It should not, however, be mistaken for a model of brain
dynamics. While brain dynamics are certainly not linear,
they are not low dimensional, and EEG signals are typi-
cally not narrow banded. On the other hand, we reduce
this gap somewhat in part of our analysis by adding dy-
namical noise to the Rössler dynamics to have a system
more similar to real-world dynamics. We furthermore
combine the phase-based measures with the concept of
surrogates [8, 45, 50, 108] to disentangle the impact of
nonstationarities, nonlinearities, and correlations on our
measures. Doing so, we design phase-based surrogate
tests to study the consistency of the dynamics underly-
ing focal and nonfocal signals with the surrogates’ null
hypothesis.

II. MATERIALS AND METHODS

A. Rössler dynamics

We analyze a pair of bidirectionally coupled Rössler
dynamics [109] which is a widely used chaotic nonlinear
model system [31, 38, 41, 104–107]. The reason to se-
lect this model system is because its trajectory rotates
around a single center. It is therefore straightforward
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to obtain the phase of the dynamics which allows us to
evaluate the phase-based measures. For the purpose of
the joined evaluation of the coefficient of phase velocity
variation and the mean phase coherence we use a pair of
two coupled Rössler dynamics with dynamical noise:

dx1(t) = (−ωxx2(t)− x3(t) + ϵy→x(y1(t)− x1(t)))dt+ dηx(t),

dx2(t) = (ωxx1(t) + 0.165x2(t))dt+ dηx(t),

dx3(t) = (0.2 + x3(t)(x1(t)− 10))dt,
(1)

dy1(t) = (−ωyy2(t)− y3(t) + ϵx→y(x1(t)− y1(t)))dt+ dηy(t),

dy2(t) = (ωyy1(t) + 0.165y2(t))dt+ dηy(t),

dy3(t) = (0.2 + y3(t)(y1(t)− 10))dt,
(2)

The dynamics are made nonidentical by using a mis-
match in the natural frequencies ωx = 0.89 and ωy =
0.85. Both systems are coupled with coupling strength
ϵx→y from X → Y and ϵy→x from Y → X. The noise
terms ηx, ηy are independent Gaussian δ-correlated noise
with variance 2Ox,y and zero mean: ⟨ηx,y(t)ηx,y(t′)⟩ =
2Ox,yδ(t − t′)δx,y. Thus, the noise is uncorrelated for
different times t ̸= t′, and ηx and ηy are always uncor-
related between X and Y and between the first and sec-
ond components. We apply noise only in the first and
second component for each system but not in the third
component which gives rise to the nonlinearity to the
dynamics. This is done since in preanalysis we found
that adding noise also to the third component quickly
destabilized the system and therefore did not allow us to
study sufficient noise level ranges. We define the noise
level by the standard deviation of ηx,y which is given by

ξx,y =
√
2Ox,y.

To integrate the dynamics we use the Euler method
with step size dt = 0.001 time units, where the noise is
added in every integration step. In order to have approx-
imately 20 points per cycle of the Rössler dynamics, we
down-sample by a factor of 300, resulting in a sampling
interval of ∆t= 0.3 time units. Starting from random ini-
tial conditions we integrate a total of 100,000 data points
from which we use only the last 4,096 data points to let
transients fade away.

B. Intracranial EEG recordings

As recordings from epilepsy patients we use the pub-
licly available Bern-Barcelona EEG database [39], which
consists of EEG recordings performed at the Depart-
ment of Neurology of the University of Bern, Switzer-
land. These recordings were done using electrodes each
equipped with several recording channels. These elec-
trodes were implanted onto the surface of the brain or in
deeper brain structures. These intracranial EEG record-
ings were obtained as part of the epilepsy diagnostics
prior to epilepsy surgery. The database contains record-
ings from five patients suffering from pharmacoresistant
focal-onset epilepsy. In all cases clinicians located the

seizure onset in one of the two hemispheres. The record-
ings do not include any seizure episode. Instead, they are
from seizure-free periods, i.e. the time between seizures.
The data were filtered with a Butterworth filter between
0.5 and 150 Hz, and sampled at 512 Hz. EEG signals were
then re-referenced against the median of all the channels
free of permanent artifacts as judged by visual inspection.
The Bern-Barcelona database was constructed to con-

tain only signals with a minimal amount of artifacts. It
contains two types of signals. The first type are focal sig-
nals, which were recorded from brain areas where the first
ictal EEG changes were detected. The second type are
nonfocal signals, recorded from brain areas that were not
involved in the seizure at its onset. In total the database
contains 3750 pairs of focal signals and 3750 pairs of non-
focal signals. Each pair of signals, which we refer to as
x and y, was simultaneously recorded from neighboring
channels on one electrode. For the univariate analysis we
use only the signals x, whereas for the bivariate analysis
we use the pair of signals x and y. Beyond this pairing
and the information if the signals are focal or nonfocal,
the database was designed such that the signals are ran-
domized. In particular, the index of the signal pair is
not related to the identity of the patient or recording
location inside the patient’s brain. Every signal has 20
s corresponding to 10,240 time points. We applied an
eighth-order Butterworth low-pass filter with a cuttoff
frequency of 40 Hz and a 40th-order Butterworth stop-
band filter between 46.5 and 53.5 Hz. This was done to
work with the same preprocessing as performed in Ref.
[39] for the nonlinear measures. For the last part of the
analysis we applied a sixth-order Butterworth band-pass
filter using the classical EEG frequency bands: δ (0.5–4
Hz), θ (4–8 Hz), α (8–12 Hz) and β (12–31 Hz). Figure 1
shows some exemplary pairs of focal and nonfocal EEG
signals.

C. Phase of a signal

We use the analytic signal concept based on the Hilbert
transform [85] to compute the instantaneous phase ϕ(t).
Given a signal x(t) extracted from a system X we obtain
the Hilbert transform xH(t) as

xH(t) = p.v.

∫ +∞

−∞

x(τ)

π(t− τ)
dτ, (3)

where p.v. denotes that the integral is done following the
Cauchy principal value. From Eq. (3) we see that xH(t)
is a convolution of x(t) with 1

πt in the time domain. In
the frequency domain this convolution translates to the
product of the complex-valued Fourier transforms. The
Fourier transform of 1

πt is

F
( 1

πt

)
=


ei

π
2 for -π < ω < 0

0 for ω = 0

e−iπ
2 for 0 < ω < π
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Figure 1: Exemplary pairs of focal (a),(b) and nonfocal (c),(d) EEG signals.

Recalling that the multiplication of two complex num-
bers corresponds to multiplying their absolute value and
summing their phases and taking into account the Her-
mitian symmetry of the Fourier transform of real-valued
signals, we can see that the Hilbert transform performs a
shift of the original signal by 1

2π, maintaining the power
spectrum [110].

An analytic signal xα(t) can be expressed in the com-
plex plane with an imaginary unit i as

xα(t) = x(t) + ixH(t) = A(t)eiϕ(t), (4)

where ϕ(t) is the instantaneous phase and A(t) is the
instantaneous amplitude. Accordingly, we can extract
ϕ(t) by

ϕ(t) = arctan
xH(t)

x(t)
. (5)

This function has values in the interval (−π,π], and there-
fore provides the phase wrapped to this interval. We
denote the continuous unwrapped phase by Φ(t).

D. Phase-based measures

To numerically determine the phase-based measures
it is important to recall that we deal with signals con-
sisting of N samples taken at discrete times tj for

j = 0, . . . , N − 1 separated by the sampling interval ∆t =
tj+1 − tj .

1. Coefficient of phase velocity variation

We use the univariate coefficient of phase velocity vari-
ation to characterize the irregularity of the individual dy-
namics X based on measured signals x. For this purpose
we analyze the unwrapped phase Φ(t). As the first step
we define the instantaneous phase velocity Ω(tj) [111–
113],

Ω(tj) =
Φ(tj+1)− Φ(tj)

∆t
, (6)

the mean phase velocity M ,

M = µ⟨Ω(tj)⟩j=0,...,N−1, (7)

and the phase velocity standard deviation S,

S = σ⟨Ω(tj)⟩j=0,...,N−1, (8)

across the range of time indices indicated at the angular
brackets. To quantify deviations from the linear growth
of the phase we use the coefficient of phase velocity vari-
ation V :

V =
S

M
. (9)
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In our study, all systems are defined such that the mean
phase velocity M is positive. Furthermore, the phase ve-
locity standard deviation S cannot be negative. Accord-
ingly, the lowest bound of V is zero, which is attained
if and only if Ω(tj) is constant across j = 0, . . . , N − 1.
However, despite that the coefficient of phase velocity
variation V is divided by the mean phase velocity M ,
it is neither normalized to one nor bounded from above.
We refer to the measures as such using the corresponding
symbols: V , M , and S. Whenever referring to a specific
system or signal, we add a subindex to the symbol. For
instance, Vx is used for coefficient of phase velocity vari-
ation values of system X.

As examples, we use unwrapped phases Φ(t) extracted
from exemplary signals from Rössler dynamics [Fig. 2(a)]
and EEG recordings [Fig. 2(b)] which result in intermedi-
ate values of V . For the Rössler dynamics we get nonzero
values of S even in the absence of noise. The source of
this phase irregularity is the nonlinearity of the Rössler
dynamics. Once we add noise to the dynamics, the devi-
ations from the linear growth of Φ(t) are higher, leading
to increased values of S. In contrast, in this example the
mean phase velocity M is not strongly affected by noise,
and the increase of S directly results in an increase of
V . In summary, the case of the Rössler dynamics shows
that noise and/or nonlinearity can be source of the phase
irregularity as assessed by V .

Contrary to the Rössler examples [Fig. 2(a)], we see a
low and a high average slope in the unwrapped phases
Φ(t) of two EEG signals [Fig. 2(b)], resulting in differing
values of M for these two examples. For the EEG signals
we also have different values of V , similar to what we
observe for the Rössler dynamics. While the source of
increased values S in the Rössler dynamics can be noise
and/or nonlinearity, for the EEG signals it captures these
and any other source of phase deviations. Recall from
Eq. (9) that to compute the coefficient of phase velocity
variation V , values of S are divided by the mean phase
velocity M . Therefore, these particular examples show
that an increase of S does not necessarily have to result
in higher values of V .

The phase velocity standard deviation S and thereby
the coefficient of phase velocity variation V are based on
diffusion measures [90, 101, 102]. However, these diffu-
sion measures are typically based on ensemble averages
across different realizations of the dynamics. In our set-
ting we only have individual realizations for each of our
signals, and we therefore perform averages across time.
We are aware that the assumptions of stationarity and
ergodicity which in principle underlie temporal instead
of ensemble averages are not fulfilled. This does not in-
validate our approach since we aim to characterize any
possible deviation from the strictly linear phase growth,
which can also include the degree to which the assump-
tion of stationarity is not fulfilled. Our averages across
time also avoid the necessity to use sophisticated tech-
niques like in Ref. [90].
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Figure 2: Any deviation of Φ(t) from the linear
growth is detected by the coefficient of phase ve-
locity variation V . (a) Unwrapped phases Φ(t) in a
noise-free Rössler dynamics (black) and in a noisy Rössler
dynamics (blue) with noise level ξ = 1. The inset shows
a zoom into the dashed rectangle. The coefficients of
phase velocity variation V for these examples are Vblack =
0.29 and Vblue = 1.43. Values of mean phase velocity:
Mblack = 0.044 andMblue = 0.045. Values of phase veloc-
ity standard deviation: Sblack = 0.013 and Sblue = 0.064.
(b) Same as panel (a) but for unwrapped phases Φ(t)
of two EEG signals (black and blue). Results for these
examples are as follows. Coefficient of phase velocity
variation: Vblack = 2.18 and Vblue = 1.66. Mean phase
velocity: Mblack = 0.080 and Mblue = 0.112. Standard
deviation velocity: Sblack = 0.175 and Sblue = 0.186.

2. Mean phase coherence

The mean phase coherence R quantifies the degree of
phase locking between two dynamics X and Y . We use
the steps described in Sec. II C to extract the instanta-
neous phases, ϕx(t) and ϕy(t), from the signals x(t) and
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y(t), respectively, and determine the relative phase dif-
ference φ(t):

φ(t) = ϕx(t)− ϕy(t). (10)

To measure the mean phase coherence, we assess the dis-
tribution of phase differences φ(t) by means of the order
parameter [38, 94, 103]:

R =

∣∣∣∣∣∣ 1N
N−1∑
j=0

eiφ(tj)

∣∣∣∣∣∣ (11)

The measure R is bounded in the interval [0,1]. If both
dynamics are independent, R takes values close to zero.
Only when N goes to ∞, R goes to zero. In contrast,
when we have strong phase locking, meaning that the
relative phase difference φ(t) is constant during all time
t, we obtain R = 1. In between these two boundaries, low
and high values of R indicate a weak and strong degree of
phase synchronization, respectively. For dynamics such
as the Rössler [Eq. (1) and Eq. (2)] higher values of cou-
pling typically lead to higher values of phase synchro-
nization and thereby higher values of R. The stronger
the mismatch in the natural frequencies, the stronger
needs to be the coupling to obtain phase synchroniza-
tion [87, 114].

E. Surrogates

As stated above, for independent dynamics values of
the mean phase coherence R go to zero only for N to in-
finity. However, in real-world data we never have an in-
finite number of data points. Therefore, we do not know
which values of R to expect for independent dynamics.
Furthermore, we cannot know how the auto- and cross-
correlations of the signals influence R. Similarly, we do
not know which values of V to expect if the only source of
phase irregularity is the stochasticity of the dynamics or
measurement noise in the signals. To address this prob-
lem, we can estimate values for R and V expected under
certain null hypotheses using surrogate signals [50].

The concept of surrogates allows us to test a broad
variety of null hypotheses H0 about the dynamics under-
lying measured signals [50]. Surrogate signals are random
versions of original signals which maintain selected prop-
erties and destroy others by a constrained randomization
process. Therefore, depending on the H0 we want to test,
we use surrogates which maintain different properties.

In this study, we use univariate and bivariate itera-
tive amplitude adjusted Fourier transform (IAAFT) sur-
rogates [115]. Univariate surrogates have the same ampli-
tude distribution and autocorrelation that is practically
indistinguishable from the one of the individual origi-
nal signals x. The Huni

0 represented by these surrogates
is that the dynamics X is a univariate stationary lin-
ear stochastic autocorrelated Gaussian process [39, 115].
Furthermore, we use bivariate surrogates which have the

same autocorrelation, cross-correlation, and amplitude
distributions as the original pairs of signals x and y. The
Hbi

0 represented by bivariate surrogates is that the dy-
namics X and Y are a bivariate stationary linear stochas-
tic auto- and cross-correlated Gaussian process [39, 116–
118]. In both cases, the measurement function by which
the signals are derived from the dynamics is assumed to
be invertible but potentially nonlinear, leading to non-
Gaussian amplitude distributions.

F. Testing procedure

To perform a univariate phase-based test, we calculate
the coefficient of phase velocity variation V [Eq. (9)], the
mean phase velocity M [Eq. (7)] and the phase velocity
standard deviation S [Eq. (8)] for the original time se-
ries and 19 univariate surrogates. We denote these tests
as V, M, and S, respectively. For each measure sepa-
rately we reject Huni

0 by means of the corresponding test
if the result from the original signal is lower than the min-
imal value from the set of surrogates (significance level
α = 0.05). To denote the fraction of times we get a rejec-
tion we use the symbols V,M, and S with the subindex 1.
Whenever needed we use an additional subindex to dis-
tinguish between systems or signal types. For instance,
Vx,1 means the fraction of rejections in system X, and
Mf,1 denotes the fraction of rejections for focal signals.

We run a bivariate phase-based test, determining the
mean phase coherence R [Eq. (11)] for the pair of original
signals x and y and 19 pairs of bivariate surrogate signals.
We reject Hbi

0 of this mean phase coherence test R if R
for the original signal pair is higher than the maximal
R value from the set of bivariate surrogate signal pairs
(α = 0.05). We use R1 to denote the fraction of times we
get a rejection. Unlike in the case of univariate phase-
based tests, since we are working with pairs of signals, we
do not have to include subindices to distinguish between
systems X and Y , but only for focal and nonfocal signals.
Results for exemplary pairs of EEG signals are as fol-

lows: Fig. 1(a), rejection of univariate tests and bivariate
test; Fig. 1(b), rejection of univariate tests and no rejec-
tion of bivariate test; Fig. 1(c), no rejection of univariate
tests and bivariate test; and Fig. 1(d), no rejection of
univariate tests and rejection of bivariate test. The same
outcomes are obtained for signals x and y. In our study
for univariate phase-based tests we just work with signal
x.

III. RESULTS

A. Phase-based measures in Rössler dynamics

In this section we study under controlled conditions
how noise affects the phase-based measures in model dy-
namics. Figure 3 shows the coefficient of phase velocity
variation V and the mean phase coherence R applied to a
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Figure 3: While in general higher levels of noise ξx,y lead to higher values of the coefficient of phase
velocity variation V and lower values of the mean phase coherence R, we also find results resembling
stochastic resonance. Mean values of V and R are obtained from 50 realizations of two coupled noisy nonidentical
Rössler dynamics in dependence on the noise levels ξx,y. (a)-(c) Bidirectional coupling with equal coupling strengths
ϵx→y = ϵy→x = 1. (d)-(f) Bidirectional coupling with unequal coupling strengths ϵx→y = 2 and ϵy→x = 1. (g)-(i)
Unidirectional coupling ϵx→y = 1.5 and ϵy→x = 0. Panels (a), (d), and (g) show values of the coefficient of phase
velocity variation for system X (Vx). The corresponding results for system Y (Vy) are shown in (b), (e), and (h).
The panels (c), (f), and (i) represent values of R quantifying the mean phase coherence between systems X and Y .

pair of coupled nonidentical Rössler dynamics for differ-
ent noise levels 0 ≤ ξx,y ≤ 2. These results are averaged
across 50 realizations. For Figs. 3(a)-(c) we apply bidi-
rectional coupling ϵy→x = ϵx→y = 1, i.e. with the same
strength in both directions [Eqs. (1)-(2)]. Even in the
absence of noise (ξx,y = 0), the coefficient of phase ve-
locity variation V attains nonzero values. This result of
V reflects irregularities in the phases which are caused
by nonlinearities of the Rössler dynamics. Despite the
irregularity of individual phases we get strong locking be-
tween them as detected by the mean phase coherence R
equal to 1 for the noise-free case. Upon increasing ξx,y,

we obtain higher values of Vx,y and lower values of R,
reflecting the increased phase irregularity and decreased
phase coherence, respectively. For system X [Fig. 3(a)],
we obtain increased values of Vx for higher values of ξx.
Moreover, due to the coupling ϵy→x, higher values of Vx

are also obtained for higher values of ξy. An analogous
situation is found with the role of systems X and Y ex-
changed [Fig. 3(b)]. Results from Figs. 3(a) and 3(b) are
different due to the mismatch of both systems in their
natural frequencies.

The results illustrating the influence of dynamical noise
on Rössler dynamics using bidirectional coupling with
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Figure 4: The measure mean phase velocity M shows higher robustness against noise as compared to
the coefficient of phase velocity variation V and phase velocity standard deviation S. (a)-(c) Mean

values of Vx, Mx, and Sx from 50 realizations of two coupled nonidentical Rössler dynamics in dependence on the
noise levels ξx,y. We here use bidirectional coupling with unequal coupling strengths: ϵx→y = 2 and ϵy→x = 1.

(d)-(f) Same as (a)-(c), but here for the fractions of rejections of Huni
0 (Vx,1, Mx,1, and Sx,1).

unequal coupling strengths in the two directions are
shown in Figs. 3(d)-(f). The coupling strength ϵx→y = 2
is higher as compared to the previous analysis shown in
Figs. 3(a)-(c). As a consequence of this stronger influ-
ence of the system X on the system Y , increasing the
values of ξx leads to higher values of Vy [compare Fig.
3(e) to Fig. 3(b)]. In contrast, in system X [Fig. 3(d)]
the increase of the noise in the opposite system ξy in-
creases Vx to a lesser degree as compared to the results
obtained for bidirectional coupling with equal strengths
[Fig. 3(a)]. Finally, the results of R in this simulation
are not affected strongly by the increase of ϵx→y [com-
pare Fig. 3(f) to Fig. 3(c)].

Now we consider the case of unidirectional coupling,
where system X has an effect on system Y via ϵx→y =
1.5, but receives no feedback from it because ϵy→x = 0
[Fig. 3(g)-(i)]. Therefore, values of Vx are not affected
by changes in the noise level in the opposite system ξy
[Fig. 3(g)]. With regard to system Y , higher values of ξx
cause higher values of Vy but only for values of ξy below
approximately 1 [Fig. 3(h)]. On the contrary, for values of
ξy higher than 1, the increase of Vy is not monotonic with
regard to increasing noise ξx. For example, at ξy = 1.5
and increasing values of ξx up to 0.7, Vy at first decreases.
Then, for values of ξx higher than 0.7, Vy increases. The

results of R [Fig. 3(i)] are qualitatively very similar to
the ones from Vy [Fig. 3(h)].
Accordingly, in this third setting of the coupling we

find that for a certain range of noise levels, more noise
leads to less phase irregularity and more phase synchro-
nization. This behavior resembles the stochastic reso-
nance phenomenon, which occurs in nonlinear systems
when noise can enhance the phase coherence between two
dynamics [119]. Recall that our two Rössler systems are
nonidentical in their natural frequencies, and in this set-
ting the system with the higher natural frequency (sys-
tem X) is the one driving the system exhibiting stochas-
tic resonance (system Y ). If we drive the faster system X
with the slower system Y , we do not get stochastic res-
onance (results not shown). This is in accordance with
Ref. [120], because a particular match between the driv-
ing frequency and the range of noise levels is needed to
get stochastic resonance.

B. Hypothesis testing for Rössler dynamics

We now extend the simulation based on bidirectional
coupling with unequal coupling strengths [see again Figs.
3(d)-3(f)]. For each noise level ξx,y and each of the 50



9

0 0.05 0.1

0

0.1

0.2

0

0.1

0.2

0 0.1 0.2

0

0.1

0.2

0

0.1

0.2

1 2 3 4 5

0

0.1

0.2

0

0.1

0.2

0 0.5 1

0

0.05

0.1

0

0.05

0.1

Figure 5: Lower phase velocity and higher phase coherence is found for focal signals. Values for
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phase coherence R for focal signals (a)-(d) and nonfocal signals (e)-(h). Normalized distributions are shown in black,
and error bars represent mean values and two standard deviations. The grey parts of the stacked bars depict the

subfraction of counts for which the null hypotheses are not rejected for each test (V, M, S and R). For the red and
blue subfractions, the null hypotheses are rejected.

realizations, we carry out the tests V, M, and S for sig-
nal x. Recall from Sec. II F that these tests consist of
combining each of the univariate phase-based measures
(V , M , and S) with univariate surrogates to test the null
hypothesis Huni

0 of a stationary linear stochastic autocor-
related Gaussian process measured by an invertible but
potentially nonlinear measurement function. This allows
us to compare the sensitivity of the measures for the al-
ternative hypothesis, since Huni

0 is not correct for the
Rössler dynamics.

Results of the measures (Vx, Mx, and Sx) and the frac-
tions of times we get a rejection for the tests (Vx,1, Mx,1,
and Sx,1) are shown in Fig. 4. As a consequence, Fig. 4(a)
is a replica of Fig. 3(d). Comparing rejection rates, the
overall highest values are obtained for Mx,1, followed by
Sx,1 and then Vx,1. Accordingly, M has the highest sen-
sitivity for the complement of Huni

0 . In all three cases,
for higher values of noise we get less rejections of Huni

0 .
When the null hypothesis was not rejected we found that
the result for the original signal was typically within the
results for the set of surrogate signals. Only for two com-
binations of noise levels was Vx for the original signal
higher than for the maximum of the set of surrogates
(results not shown).

To understand the test outcomes, we look at the val-
ues of Vx, Mx, and Sx in Figs. 4(a)-4(c). As we pointed
out in Sec. III A, higher noise levels ξx lead to higher val-
ues of the coefficient of phase velocity variation Vx [Fig.
4(a)]. Since we have bidirectional coupling with unequal
strengths (2 = ϵx→y > ϵy→x = 1), noise ξy affects Vx to a
lower degree. For the phase velocity standard deviation
Sx [Fig. 4(c)], the noise dependence is similar to the one

obtained for Vx. In Fig. 4(b), values of mean phase ve-
locity Mx increase with higher values of ξx. To a lesser
degree, Mx decreases for higher values of ξy most promi-
nently at both high and low values of ξx. In general, lower
counts of rejections (Vx,1, Mx,1 and Sx,1) are found for
ranges of the noise ξx,y which lead to high values of the
measures [Figs. 4(d)-4(f)].

C. EEG signals from Bern-Barcelona database

We apply the univariate phase-based tests (V, M, and
S) and the bivariate phase-based test (R) to the 3750
focal and the 3750 nonfocal EEG signals constituting
the Bern-Barcelona database. Recall that the database
contains pairs of signals x and y, and for the univariate
phase-based tests we only use signal x. In Fig. 5 we show
the distributions of the values for the coefficient of phase
velocity variation V , mean phase velocity M , phase ve-
locity standard deviation S, and mean phase coherence
R for both types of signals. Values of V have a higher
mean and lower variability for focal signals [Fig. 5(a)]
as compared to nonfocal signals [Fig. 5(e)]. For M val-
ues, focal signals have lower values on average [Fig. 5(b)]
as compared to nonfocal signals [Fig. 5(f)]. Moreover,
nonfocal signals have a more flat distribution with a not
clear peak. With regard to S, we find on average higher
values for nonfocal signals [Fig. 5(g)] as compared to fo-
cal signals [Fig. 5(c)]. For the bivariate phase-based test
we apply the mean phase coherence R to pairs of signals
x and y from the database. We get higher values of R
for focal signals on average [Fig. 5(d)] than for nonfocal
signals [Fig. 5(h)]. Moreover, for nonfocal signals, the
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distribution of R is bimodal with a prominent peak for
values close to 1.

In Fig. 5 we show the frequency of null hypothesis re-
jections of each phase-based test on dependence of the
values of the underlying measures. Since the univariate
tests rejectHuni

0 if the measures’ value for the original sig-
nal is lower than the minimum from the set of surrogates,
we get more rejections in the left parts of the distribu-
tions. Using the mean phase velocity test M we get the
highest contrast between focal and nonfocal signals with
regard to the frequency of Huni

0 rejections. A similar sit-
uation is obtained for the phase standard deviation test
S, although for this measure we have more rejections in
nonfocal signals as compared to M. Finally, using the
coefficient of phase velocity variation test V the frequency
of null hypothesis rejections is similar for both groups of
signals. As a consequence of these results, from the uni-
variate tests we select the mean phase velocity test M for
the subsequent analysis. Regarding the bivariate mean
phase coherence test R we get a higher number of Hbi

0

rejections in the middle and right parts of the distribu-
tions. This is because the bivariate test is rejected if the
measures’ value for the original pair of signals is higher
than the maximum from the surrogates. As compared to
the results for the univariate phase-based measures, here
we get overall more rejections in both focal and nonfocal
signals. However, the contrast between these two groups
seems low.

We now quantify this contrast between the frequencies
with which the null hypothesis is rejected for focal and
nonfocal signals. Using the fractions of rejections for the
mean phase velocity test for focal (Mf,1) and nonfocal
signals (Mn,1) we define the relative difference λM :

λM =
Mf,1 −Mn,1

Mf,1 +Mn,1
. (12)

Analogously, we define the relative difference λR for the
mean phase coherence test:

λR =
Rf,1 −Rn,1

Rf,1 +Rn,1
. (13)

The values of λM and λR are bounded in [-1,1], and we
get positive values when the frequency of rejections for
focal signals is higher than the one for nonfocal signals.
Figure 6 shows the fraction of rejections for the phase-
based tests M and R for both groups of signals and their
respective relative differences λM and λR. The fraction
Mn,1 is close to the chance level of 5%, whereas the other
fractions are above. For both tests we obtain higher frac-
tions of rejections for focal signals compared to nonfocal
signals, resulting in λM > 0 and λR > 0, where we get a
higher contrast for the former (λM > λR).
The EEG is a broadband signal and therefore its phase

is not well defined using the Hilbert transform. A possi-
ble solution is to filter the EEG signal prior to the extrac-
tion of the phase [89]. To study this aspect, we bandpass

Figure 6: The mean phase velocity test M gives
the higher contrast between focal and nonfocal
signals. Rejection fractions for nonfocal (blue) and
focal signals (red) for the mean phase velocity test M
and the mean phase coherence test R. By construction
the bar representing Mn,1 corresponds to the sum of all
blue subfractions in Fig. 5(f), and analogously for the
other quantities. The λM and λR values represent the
relative difference for every pair of rejection fractions.
The dashed line represents the significance level of the

tests. The errorbars and the numbers in brackets
correspond to the 95% confidence interval (see Ref.

[39]).

filter the signals in the ranges of the classical EEG fre-
quency bands: δ, θ, α, and β. Figure 7 depicts the frac-
tions of rejections for the phase-based tests M and R for
these different frequency bands. In general, Mf,1 has de-
creased and in consequence also λM gets lower values as
compared to Fig. 6. Therefore, the prefiltering actually
decreases the contrast between the focal and nonfocal
signals. For the mean phase coherence test R a differ-
ent picture is obtained for the α-band and β-band where
higher values of λR are obtained. This analysis was also
performed using a bandpass filter in ranges of 2 Hz and
they lead to qualitatively similar results as shown in Fig.
7 (results not shown).

IV. DISCUSSION

In this study we use univariate and bivariate phase-
based measures to detect different features of EEG sig-
nals from epilepsy patients. We here present the uni-
variate coefficient of phase velocity variation V based on
the relative variability of instantaneous phase velocities
to quantify phase irregularities from times series. This
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Figure 7: Relative difference λM decreases while λR partly increases after prefiltering to different
frequency bands. Same as to Fig. 6 but after prefiltering using the frequency bands (a) δ (0.5–4 Hz), (b) θ (4–8

Hz), (c) α (8–12 Hz) and (d) β (12–31 Hz).

is done by dividing the phase velocity standard devia-
tion S by its mean M . To the best of our knowledge,
there are no studies applied to EEG signals from epilepsy
patients analyzing phase irregularity measures. In agree-
ment with previous studies [38] using bivariate measures,
we find that focal signal pairs are more phase coherent
than nonfocal signals as assessed by the mean phase co-
herence R. Furthermore, focal signals are less phase vari-
able in absolute terms (phase velocity standard deviation
S) but more in relative terms (coefficient of phase veloc-
ity variation V ). Moreover, focal signals have lower mean
phase velocity as assessed by M . When combined with
surrogates, using the measures S, M and R for the phase-
based tests we get more null hypothesis rejections for
focal signals as compared to nonfocal signals. In partic-
ular, the measure M gives the highest contrast between
focal and nonfocal signals. Therefore, focal signals are
less consistent with the null hypotheses of univariate and
bivariate surrogates than nonfocal signals. Furthermore,
under controlled conditions based on Rössler dynamics,
the measureM showed the highest sensitivity for features
not included in Huni

0 .

We now compare our results with those from previous
studies based on the Bern-Barcelona EEG database. An-
drzejak et al. determined contrast values λ analogously
to Eqs. (12) and (13) but based on a randomness test, a
nonlinear-independence test and a stationarity test [39].
They obtained λ values of 0.19, 0.15 and, -0.09, re-

spectively. Naro and colleagues applied a randomness
test based on a novel rank-based nonlinear predictability
score [43]. However, the authors did not specify the re-
sulting λ value in Ref. [43]. Nonetheless, the authors of
both Ref. [39] and Ref. [43] made the results for each sig-
nal publicly available at Refs. [49, 121]. Thanks to this
availability of the detailed results, we can compute the
λ = 0.21 value from Naro et al. without the necessity of
recomputing the results for each signal using the source
code available as well at Ref. [49]. Accordingly, our value
of λ = 0.6 obtained from the mean phase velocity test
M outperforms the results obtained in previous work.
To further sustain this policy of open science, we pro-
vide our source codes and detailed results in the public
domain [49, 122].

For the interpretation of our results shown in Figs. 4-7,
it is important to keep in mind that the outcome of any
surrogate test cannot prove the nature of the underlying
dynamics (see Ref. [39] and references therein). The
specific null hypotheses Huni

0 and Hbi
0 used here are

composed by different assumptions about the dynamics.
To test these hypotheses the randomization process
performed to construct the surrogates destroys any
nonlinear deterministic, any nonlinear interdependence
and nonstationarity present in the original signals.
Therefore, from a rejection of the null hypothesis Huni

0 ,
for example, one cannot conclude to nonstochastic phase
irregularity. That is because the null hypothesis could
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well be rejected because the dynamics are nonstationary.
In Ref. [39] Andrzejak and colleagues used different
conditioned surrogate tests to arrive at more specific
conclusions about the dynamics underlying the signals.
Nonetheless, even combining the results of Ref. [39],
using other kinds of surrogates (see Ref. [51]) and
the results presented here, it remains impossible to
understand totally the nature of the dynamics. Other
types of surrogates, such as twin surrogates [123], can
be applied for the study of brain dynamics [124].

It is also important to recall that one cannot conclude
from the mean phase coherence obtained for a pair of
signals to a coupling between different brain areas from
which the signals were measured. A common driving
from an unmeasured source is only one of several possible
reasons that would impede such a conclusion. This lim-
itation is also not overcome by using surrogates, which
only help to reduce the influence of linear correlations
and non-Gaussianity in the amplitudes. A detection of
causal interactions in human epilepsy networks requires
much more elaborate approaches (see for example Refs.
[125, 126]). The key point is that we do not aim at detect-
ing a coupling or even estimating a coupling strength. We
only compare the mean phase coherence and our other
measures as well as the rejection rates of the correspond-
ing surrogate tests obtained for focal versus nonfocal sig-
nal pairs. Any type of bias unrelated to epilepsy can
be expected to affect the results obtained for focal and
nonfocal signal pairs in the same way. Accordingly, the
contrasts we find between these two signal classes can be
attributed to the impact that epilepsy has on the EEG
signal during the seizure-free interval.

The Bern-Barcelona EEG database which we ana-
lyzed in this study contains only relatively short EEG
signal pairs cut from recordings performed during the
seizure-free interval. Future work should analyze long-
term multichannel EEG recordings also including epilep-
tic seizures. Seizures are not a steady-state dynamics.
Both the EEG frequency content (e.g. [127]) and the de-
gree of synchronization (e.g. [128, 129]) show a complex
temporal evolution across the duration of the seizure.
This calls for the application of time-resolved measures to
optimally capture evolving seizure dynamics. Prior to ap-
plying an interaction measure such as the mean phase co-
herence to sources reconstructed from scalp EEG or mag-
netoencephalographic (MEG) data with the aim to study
long-range interactions among cortical processes, spuri-
ous correlations caused by instantaneous field spread and
volume conduction must be carefully considered [130].

For the results shown in Figs. 3 and 4, we work un-
der controlled conditions applying dynamical noise to two
nonidentical coupled Rössler dynamics for different sym-
metric and asymmetric coupling schemes. For unidirec-
tional coupling and intermediate noise levels we obtain
high levels of mean phase coherence R and low values of
the coefficient of phase velocity variation V . This means
that under certain conditions noise can help both systems

to synchronize and reduce phase irregularities. Accord-
ingly, we observe results resembling stochastic resonance
in both phase-based measures. This consistency between
the two measures under controlled conditions further sup-
ports that the coefficient of phase velocity variation V
allows for a meaningful characterization of the dynamics
underlying experimental signals.

We extract the phase from observable data using the
Hilbert transform, and some studies consider it as a not
well-defined phase because it might not evolve uniformly
in time [88]. Therefore, in Ref. [88] this phase extracted
from the Hilbert transform is used only as a preliminary
variable to then obtain a genuine phase. However, this
genuine phase is defined for limit-cycle oscillators [88] and
is therefore not applicable to the dynamics we study here.
In any case, a better defined phase can be obtained by
filtering the signal to narrow frequency bands. Therefore,
in order to study the influence of prefiltering, we select
the classical frequency bands δ, θ, α, and β and bands
with a width of 2 Hz. We find that the performance of the
univariate test decreases due to the filtering. It is impor-
tant is also to note that while filtering generally facilitates
the extraction of a phase, it relies on the assumption that
the dynamics can be fully decomposed into narrow-band
oscillations. However, this assumption does not account
for the presence of aperiodic components in neural power
spectra (see, for example, Refs. [131–133]). This consid-
eration and the decreased performance of the univariate
tests for filtered data reinforce our approach to deliber-
ately use the phase extracted from unfiltered broadband
signals directly by means of the Hilbert transform. It is
this approach which allows us to characterize any possi-
ble deviation from the strictly linear phase growth, such
as nonlinearity, nonstationarity, chaoticity, and noise. In
contrast, for the bivariate test the performance increases
for certain frequency bands showing that in order to as-
sess phase synchronization narrow-band signals are more
suited.

The phase-based measures are conceptually simple and
easy to compute and this can help when analyzing big
databases. Despite this simplicity they give relevant in-
formation about the underlying dynamics of focal and
nonfocal EEG signals from epilepsy patients. Even in
the absence of seizures we can detect different features in-
duced by epilepsy. We compare different univariate and
bivariate phase-based measures under controlled condi-
tions. The univariate measure mean phase velocity gives
the highest sensitivity in a surrogate test. This is trans-
lated to a high contrast between focal and nonfocal sig-
nals in the rejections of the surrogates’ null hypotheses.
From a clinical point of view, the simplicity of the defini-
tion and computation of our phased-based measures can
be useful in the presurgical evaluation of epilepsy.
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