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Abstract

We study optimal Pareto-improving factor taxation when agents are heterogeneous
in their labor productivity and wealth and markets are complete. Pareto-improving
policies require a gradual reform: labor taxes should be cut, and capital taxes should
remain high for a long time before reaching the limit. This policy redistributes wealth in
favor of workers, promotes growth, and causes early deficits and government debt in the
long run. We address several technical issues, such as sufficiency of Lagrangian solutions
in a Ramsey problem, their relation to welfare functions, and solution algorithms. We
also provide a proof that long-run capital taxes are zero.
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don, Jordi Caballé, Begoña Domı́nguez, Joan M. Esteban, Giulio Fella, Michael Golosov, Andrea Lanteri,
Andreu Mas-Colell, Claudio Michelacci, Sujoy Mukerji, Michael Reiter, Sevi Rodŕıguez, Raffaele Rossi, Kjetil
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1 Introduction

We study optimal policy with heterogeneous agents when the government chooses labor taxes,

capital taxes, and debt, focusing on Pareto-improving policies. Previous related studies leave

many open issues. Recent works challenge the traditional result that optimal long-run capital

taxes are zero, (we denote this property as τ k∞ = 0), showing that τ k∞ might be positive and

large. We first argue that if a reasonable constraint on policies is included and cases where

the government would prefer to waste consumption are excluded, then τ k∞ = 0 reemerges.

However, even if τ k∞ = 0 there is a need to redistribute along the transition. Hence the

standard focus in the literature on long-run results using welfare functions with fixed weights

can be misleading. Our aim is to put these issues in context and provide a unified story

about redistribution and efficiency in factor taxation.

A large literature argued that the original τ k∞ = 0 result in Chamley (1986) and Judd

(1985) is robust to many extensions, as it efficiently promotes investment. Lowering capital

taxes in practice is controversial, as it lowers taxes for richer taxpayers, apparently favoring

efficiency over equity. But some papers argued that τ k∞ = 0 even with heterogeneous agents,

for example, Judd (1985) and Atkeson, Chari, and Kehoe (1999). This may suggest that

taxing capital is a ‘bad idea’ for everyone: there is no equity-efficiency trade-off and the large

capital taxes observed in practice must be a failure of fiscal policy-making, since lowering

capital taxes should benefit everybody. However, this view clashes with the results in Correia

(1999), Domeij and Heathcote (2004), Flodén (2009), and Garcia-Milà, Marcet, and Ventura

(2010) (GMV hereafter), showing that, in similar models as those considered above, a large

part of the population would suffer a large utility loss if capital taxes were abolished.

Furthermore, some recent results by Reinhorn (2019) and Straub and Werning (2020)

(SW hereafter) show that previous proofs treated Lagrange multipliers incorrectly, and that

a correct proof delivers τ k∞ > 0 for some parameter values. Lansing (1999), Bassetto and

Benhabib (2006) (BB hereafter), and Benhabib and Szőke (2021) (BSz hereafter) provide

more examples with τ k∞ > 0. SW find a discontinuity in long-run optimal taxes: small

changes in the parameters of the model can cause τ k∞ to switch from 0 to 100 percent. When

BB, BSz, and Section 2 of SW find a large τ k∞ in a heterogeneous-agent model, the authors

motivate the result by the need for redistribution.

This possibly leaves a confusing picture. It seems difficult to make any general recom-

mendation about labor and capital taxation. Should we expect τ k∞ to be large? Is the size

of τ k∞ related to redistribution? Are the long-run results on optimal policy a good guidance

for policy in the short and medium run? Is there a discontinuity in the total amount of
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optimal capital taxes? We argue that in the context of a standard model and for a rea-

sonable calibration the answer to all these questions is no. We assume full commitment,

complete markets, agents that are heterogeneous in their labor productivity and wealth, an

upper bound on capital taxes, a strictly concave production function and no agent-specific

lump-sum transfers.

We reexamine optimal policy under the following two elements: (i) we introduce a con-

straint on government policy that prevents immiserating future generations (no immisera-

tion), and (ii) we consider environments where wasteful government spending is undesirable

(absence of optimal waste). We prove that under these conditions τ k∞ = 0 reemerges in the

model we consider. We find that (ii) is indeed an assumption, as it requires that certain

endogenous Lagrange multipliers are positive. To our knowledge the possibility that optimal

waste can arise in this type of models had been ignored in the literature, and it reconciles

our results with those in BSz.

Even though τ k∞ = 0 along all the points on the Pareto frontier that we examine, an

equity-efficiency trade-off still exists: Ramsey Pareto optimal (PO) policies include a very

long transition of high capital taxes and low labor taxes if all agents are to gain from the

policy. (In our main calibration capital taxes should be high for 16 to 24 years). Therefore,

tax policies are the opposite of the long run for a very long time. Those high capital taxes

reduce total investment and output, but they are required in order to redistribute wealth in

favor of workers1 and, therefore, to achieve a Pareto improvement. In addition, the period

of high capital taxes is longer for points on the frontier that favor more the workers. These

results show that steady-state analysis hides issues of redistribution. The transition is crucial

to understand PO policies and it is a crucial element in order to generate sizeable welfare

gains.2 Further, there is no discontinuity: the length of the period of high capital taxes

increases gradually to achieve a larger redistribution toward workers, therefore the share of

capital tax revenue moves slowly as we move along the Pareto frontier.

The size of the equity-efficiency trade-off depends on the elasticity of labor supply. If

labor is elastic, as in our main calibration, a long transition of low labor taxes is optimal,

as it efficiently promotes growth and redistribution simultaneously, and welfare losses from

redistribution are small. If labor is inelastic, an even longer period of high capital taxes is

needed, optimal policy can barely promote growth, and the losses from redistribution are

1Even though all our agents work and have some wealth, throughout the paper we refer to ‘Workers’ as
the group with a higher ratio of labor productivity to initial wealth. We call the other group ‘capitalists’.

2An early paper studying the transition of optimal taxes with homogeneous agents is Jones, Manuelli,
and Rossi (1993).
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large.

We also show that, as a result of low initial labor taxes, the government initially accu-

mulates deficits, leading to a positive long-run level of debt. Thus a theory of long-run debt

can arise from a need to run deficits early on to fund a tax reform.

The literature on heterogeneous-agent macro models is now abundant and mainstream,

but it rarely addresses optimal policy. When it does, it tends to use a Benthamite welfare

function with equal weights for all agents. Jeremy Bentham made his contributions when

economics was in its infancy, but closer to our time Kenneth Arrow promoted the view

that there is no such a thing as a ‘correct’ or ‘fair’ welfare function. Most textbooks in

microeconomics take this view and suggest that economists should be content describing

policies along the Pareto frontier without arguing that a particular point on that frontier is

‘the best’.3 In our approach the welfare weights are endogenous, they just index different

Pareto-optimal allocations. We find that this point matters in practice. First, asymptotic

results using welfare functions with fixed weights have obscured the equity-efficiency trade-

off in factor taxation for decades, as the redistribution needed for a Pareto-improvement is

resolved along a very long transition. Furthermore, the location of the Benthamite policy on

the Pareto frontier is more or less arbitrary, and it can be far from Pareto improving.4

Our focus on Pareto improvements speaks to the issue of gradualism in implementing

policy reforms, as has been discussed in the political economy literature: in order for all

rational voters to be in favor of an optimal reform capital taxes need to be high for a long

time before they reach τ k∞ = 0.

Solving our model gives rise to a number of technical issues. Welfare weights should be

chosen endogenously as a function of the point on the frontier to be analyzed. The relative

consumption of different individuals has to be chosen optimally, it is not directly given by

welfare weights as in the absence of distortions. A further difficulty arises because the set

of competitive equilibria is potentially not convex, so the first-order conditions (FOCs) may

have multiple solutions. We reduce analytically the set of possible solutions to the FOCs to

be sure that our computations pick the maximum.5 In addition, non-convexities may lead to

a duality gap. We check that the duality gap is empty or very small.

3These comments also apply to any fixed welfare weights. These are sometimes justified by appealing
to probabilistic voting or Nash bargaining, but this interpretation poses some issues of its own. We do not
address this issue in this paper.

4A companion paper argues that fixed weights also matter for time consistency.
5The issue of multiple solutions to FOCs is often ignored in models of optimal policy. An exception is

Bassetto (2014), Section 3.1, showing how heterogeneity may lead to situations in which the FOCs are not
sufficient. SW show, in a representative-agent model, that the Ramsey problem is convex when the upper
bound on the capital income tax is 100 percent. Convexity ensures that they pick the optimum.
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The above results are robust to various parameter changes and even to the possibility of

progressive taxation. If the government can introduce a universal deductible (as considered

in many papers on dynamic taxation), it is optimal to set the deductible to zero. That

is, a flat-rate tax schedule is preferred over a progressive one. This is because a positive

deductible would increase the marginal tax rate and exacerbate total distortions. As it turns

out, a longer transition is a more efficient way to redistribute.

The rest of the paper is organized as follows. In Section 2 we lay out our baseline

model. Section 3 proves some analytical results, including τ k∞ = 0, some properties of the

transition, and sufficient conditions for solutions to the FOCs. Our numerical results are

in Section 4, including those on progressive taxation. Section 5 concludes. The Appendix

contains some algebraic details and proofs. The Online Appendix contains a description

of our computational approach, sensitivity analyses, it gives details on the relation of our

results and solution method to other approaches in the literature, and it discusses in detail

why optimal waste can arise in the model considered.

2 The model

2.1 The environment

We consider a production economy with heterogeneous consumers, complete markets, and

certainty. Firms produce according to a production function F (kt−1, et), where k is total

capital and e is total efficiency units of labor. The production function F is strictly con-

cave and increasing in both arguments, twice differentiable, has constant returns to scale,

F (k, 0) = F (0, e) = 0, and Fk (k, e) → 0 as k → ∞, where a subindex denotes the partial

derivative with respect to the corresponding variable.6

We consider two types of consumers, j = 1, 2.7 Consumers differ in their initial wealth

kj,−1 and labor productivity φj. Agent j obtains income in period t from renting out their

capital at the rental price rt and from selling their labor for a wage wtφj. Agents pay taxes

at rate τ lt on labor income and τ kt on capital income net of a depreciation allowance at each

time t. The period-t budget constraint of consumer j is

cj,t + kj,t = wtφjlj,t(1− τ lt ) + kj,t−1
[
1 + (rt − δ)(1− τ kt )

]
, for j = 1, 2. (1)

For comparison, below we also consider lump-sum taxes or transfers.

6BB and BSz consider some examples with a linear production function. Note that we exclude this
knife-edged case.

7This is for simplicity, it is immediate to extend our analysis to many types of consumers.
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Consumer j has utility function
∑∞

t=0 β
t (u (cj,t) + v (lj,t)), where cj,t is consumption and

lj,t ∈ [0, 1] is labor (fraction of time spent working) of consumer j in period t. We assume

uc > 0, vl < 0, and the usual Inada and concavity conditions. For many of our results we

use the following assumption:

A1. The two elements of the current utility function take the form

u (c) =
c1−σc

1− σc
and v (l) = −ω l1+σl

1 + σl
, (2)

where ω > 0 is the relative weight of the disutility of hours worked, σc > 0 is the (constant)

coefficient of relative risk aversion, and σl > 0 is the inverse of the (constant) Frisch elasticity

of labor supply.

The government chooses capital and labor taxes, has to spend g ≥ 0 in every period,

saves in capital, and has initial capital kg−1 (debt if kg−1 < 0). Ponzi schemes for consumers

and the government are ruled out. The two types of consumers have equal mass. Capital

depreciates at a rate δ < 1. Market clearing conditions for all t are

et =
1

2

2∑
j=1

φjlj,t, kt = kgt +
1

2

2∑
j=1

kj,t, and

1

2

2∑
j=1

cj,t + g + kt − (1− δ) kt−1 = F (kt−1, et) . (3)

2.2 Conditions of competitive equilibria

Our competitive-equilibrium (CE) concept is standard: consumers (firms) maximize utility

(profits) taking sequences of prices and taxes as given, markets clear, and the budget con-

straint of the government is satisfied. We now find a set of necessary and sufficient conditions

for a CE allocation.

Consumers’ FOCs with respect to consumption and labor yield

u′ (cj,t) = βu′ (cj,t+1)
[
1 + (rt+1 − δ)

(
1− τ kt+1

)]
, ∀t, (4)

− v
′ (lj,t)

u′ (cj,t)
= wt

(
1− τ lt

)
φj, ∀t, (5)

i.e., the Euler equation and the consumption-labor optimality condition, respectively, for

j = 1, 2. Using a standard argument, (1) and (4), for all t and j = 1, 2, can be summarized

in the present-value budget constraint

∞∑
t=0

βt
u′ (cj,t)

u′ (cj,0)

[
cj,t − wtφjlj,t

(
1− τ lt

)]
= kj,−1

[
1 + (r0 − δ)

(
1− τ k0

)]
. (6)
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Using (5) and rearranging for consumer 1 this becomes

∞∑
t=0

βt (u′ (c1,t) c1,t + v′ (l1,t) l1,t) = u′ (c1,0) k1,−1
[
1 + (r0 − δ)

(
1− τ k0

)]
. (7)

Assumption A1 simplifies our characterization as follows. It is clear that (4) for j = 2

can be replaced by the condition

c2,t = λc1,t, ∀t, (8)

for some constant λ to be determined in equilibrium. Further, (5) for j = 2 can then be

replaced by

l2,t = K(λ)l1,t, ∀t, (9)

where K(λ) ≡ λ
−σc
σl

(
φ2
φ1

) 1
σl . Note that the function K(·) depends only on the primitives σc,

σl, and φj, j = 1, 2.8

Using (4), (5), (8), and (9), we can write (6) for consumer 2 as

∞∑
t=0

βt
(
u′ (c1,t)λc1,t +

φ2

φ1

v′ (l1,t)K(λ)l1,t

)
= u′ (c1,0) k2,−1

[
1 + (r0 − δ)

(
1− τ k0

)]
. (10)

The implementability conditions (7) and (10) involve only consumption and labor of type-1

consumers, initial wealth of the two types, and λ, which is sufficient to capture the sharing

rule between the two groups, given that markets are complete. Werning (2007) and GMV

provide the same key characterization.

Firms behave competitively, hence equilibrium factor prices equal marginal products, i.e.,

rt = Fk (kt−1, et) and wt = Fe (kt−1, et) .

Therefore, factor prices can be substituted out in the CE conditions.

It is easy to show that the necessary and sufficient conditions for a CE allocation are

feasibility, the sharing rules for consumption and labor, and the present-value budget (or,

implementability) constraints. Formally, sequences {(cj,t, lj,t)j=1,2, kt}∞t=0 are a CE, for given

initial conditions on capital, if they satisfy (3), (8), (9), (7), and (10), respectively, for some λ

to be determined consistent with all equilibrium conditions.9 Given a set of CE allocations,

taxes are backed out from (4) and (5), and kj,t from the analog of (7) at t.

8Note that labor supply depends also on the distribution of consumption/wealth through λ. Under
Gorman aggregation this would not be the case.

9As usual, the government’s budget constraint can be ignored due to Walras’ law.
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2.3 The policy problem

Now we describe in detail the policy problem, and we introduce some additional constraints

on policies. As is standard in the Ramsey taxation literature, we assume that the government

has full credibility, i.e., it fully commits to the announced policies for all future periods, both

the government and the agents have rational expectations, and the government understands

the mapping between policy actions and equilibrium outcomes.

2.3.1 Additional constraints on policy

We assume that, in addition to allocations being a CE, the government faces further con-

straints. First, the government cannot impose capital taxes above a certain upper bound.

Constraint on Policy 1. Capital taxes satisfy τ kt ≤ τ̃ , ∀t, for a given τ̃ ∈ (0, 1].

Many papers in the optimal factor taxation literature assume a bound only at t = 1. Some

papers consider the above constraint ∀t for the special case τ̃ = 1, for example, Chamley

(1986), Atkeson, Chari, and Kehoe (1999), and SW.

The case τ̃ < 1 adds difficulties, as the feasible set for the government is non-convex, but

it is needed in our proofs and it seems more relevant: capital flight in an open economy or

tax evasion would be massive for τ kt close to 100 percent. Another motivation is credibility:

optimal policies under rational expectations involve taxes at the upper bound (τ kt = τ̃) for

a few initial periods before τ kt goes to zero in the long run. This initial tax hike could have

devastating effects on investment in a world with partial credibility of government policy, or

if agents form their expectations by learning from past experience.10

It is easy to see that, combining (4) for j = 1, (2), and (8), the tax limit holds if and only

if τ k0 ≤ τ̃ and

u′ (c1,t) ≥ βu′ (c1,t+1) [1 + (rt+1 − δ) (1− τ̃)] , ∀t ≥ 0. (11)

Adding (11) to the constraints guarantees that Constraint in Policy 1 holds, allowing us to

use the primal approach, as τ kt for any t ≥ 1 does not appear explicitly in the optimization

problem.

We also introduce the following constraint on consumption.

Constraint on Policy 2.

c1,t ≥ c̃, ∀t, for some c̃ ≥ 0. (12)

10Lucas (1990) offered a similar reasoning to motivate his study of a tax reform that abolishes capital taxes
immediately. Ideally issues of credibility and learning would be introduced explicitly in models of optimal
policy. A study of capital taxes in a model of learning can be found in Giannitsarou (2006).
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Given (8) this is equivalent with a lower bound on consumption for both consumers.

We focus on the case c̃ > 0, where the planner is constrained to choose policies where

consumption is uniformly bounded away from zero. The motivation is that government

cannot credibly commit today to policies that immiserate future generations, because of

either morall or practical concerns about how to treat those who come after us. A related

interpretation is that very low levels of utility in the future will be blocked by the political

system, or eventually lead to revolt or social conflict, as in Benhabib and Rustichini (1996). In

Section 3.4 we impose explicitly such a minimum constraint on utility. The above constraint

can be seen as a simple reduced form of that case.

Although this constraint is stated in terms of consumption allocations, given that we

use the primal approach, it is indirectly a constraint on tax policy. Consumers never see

themselves as facing a lower bound (12), but they face taxes that induce them to act in such

a way that (12) always holds.

2.3.2 The Ramsey problem

It follows from the previous discussion that the choice set of the government is

S ≡
{

sequences {(cj,t, lj,t)j=1,2, kt}∞t=0 which are a CE and satisfy (11) and (12)
}
.

We define a Ramsey Pareto Optimal (PO) allocation as an element of S such that the utility

of one or more agents cannot be improved within the set S without hurting other agents. A

standard argument shows that PO allocations can be found by solving a problem where a

planner maximizes the utility of, say, consumer 1, subject to the constraint

∞∑
t=0

βt (u (c2,t) + v (l2,t)) ≥ U2,

where minimum utility U2 varies along all possible utilities that consumer 2 can attain in S.

Collecting all the above, all PO allocations can be found by solving

max
τk0 ,λ,{c1t ,kt,l1t}∞t=0

∞∑
t=0

βt (u (c1,t) + v (l1,t))

s.t.
∞∑
t=0

βt (u (λc1,t) + v (K(λ)l1,t)) ≥ U2, (13)

for U2 attainable in S, subject to feasibility (3), implementability (7) and (10), tax limits

(11) and τ k0 ≤ τ̃ , and consumption limits (12). We have used (8) and (9) to substitute for c2

and l2 to obtain (13).
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We focus on PO allocations which are also Pareto improving relative to a status-quo

CE allocation where taxes are set as in the past. We call these POPI allocations. Let the

utilities attained by agent j at the status quo be USQ
j .11 POPI allocations can be found by

considering only minimum utility values U2 such that U2 ≥ USQ
2 and such that

∞∑
t=0

βt
(
u
(
c∗1,t
)

+ v
(
l∗1,t
))
≥ USQ

1 ,

where ∗ denotes the optimized value of each variable for a given U2.

Let ψ be the Lagrange multiplier of the minimum-utility constraint (13), let ∆1 and ∆2 be

the multipliers of the implementability constraints (7) and (10), respectively, and µt, γt, and

ξt be the multipliers of the feasibility constraint (3), the tax limit (11), and the consumption

limit (12), respectively, at time t. The Lagrangian for the government’s problem is

L =
∞∑
t=0

βt
{
u (c1,t) + v (l1,t) + ψ (u (λc1,t) + v (K(λ)l1,t))

1

2

+ξt(c1,t − c̃)

+∆1 (u′ (c1,t) c1,t + v′ (l1,t) l1,t) (14)

+∆2

(
u′ (c1,t)λc1,t +

φ2

φ1

v′ (l1,t)K(λ)l1,t

)
+γt {u′ (c1,t)− βu′ (c1,t+1) [1 + (rt+1 − δ) (1− τ̃)]}

+µt

[
F (kt−1, et) + (1− δ)kt−1 − kt −

1 + λ

2
c1,t − g

]}
− ψU2 −W,

where W = u′ (c1,0) (∆1k1,−1 + ∆2k2,−1)
[
1 + (r0 − δ)(1− τ k0 )

]
with τ k0 ≤ τ̃ . Further, ξt and

γt ≥ 0, ∀t, and ψ ≥ 0.

The first line of this Lagrangian has the usual interpretation: a Pareto-efficient allocation

maximizes a welfare function. The weight of consumer 1 is normalized to one, the ‘weight’ ψ

of consumer 2 is the Lagrange multiplier to be found endogenously. The next three lines in

(14) correspond to the minimum consumption and the equilibrium deficits of consumers. The

fifth line ensures that τ kt ≤ τ̃ for all t > 0. The last line includes the feasibility constraint.

The term W collects the terms on the right sides of (7) and (10).

The tax limit is a forward-looking constraint, therefore standard dynamic programming

does not apply. Appendix A shows how to obtain a recursive formulation using recursive

contracts (Marcet and Marimon, 2019). That Appendix also gives the first-order conditions

(FOCs).

11The status-quo utilities depend on k1,−1 and k2,−1 in general. We leave this dependence implicit.
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In a model with lump-sum taxes, the ratio of consumptions would be immediately given

by λ = ψ1/σc . Key to our approach is the fact that λ has to be chosen optimally and that

this equality does not hold. The optimal choice of λ leads to a non-trivial FOC shown

in Appendix A. The fact that λ is a choice for the government reflects the fact that the

government can vary consumers’ relative wealth by its policy choice, in particular, varying

the total tax burden of labor and capital in discounted present value. We further demonstrate

and discuss how λ behaves differently from ψ1/σc around Figure 3 in Section 4.3.1.12

As is often the case in optimal-taxation models, the feasible set of sequences for the

planner is non-convex, so the FOCs derived from the Lagrangian are necessary but not

sufficient. We address this in detail in Section 3.5.

For the government’s problem to be well defined, we should ensure that S is non-empty

and that initial government debt is sustainable. This is guaranteed if U2 is achievable in

S, if there is a status-quo equilibrium, as we require in our calibration, and if c̃ is lower

than status-quo consumption. Since S is compact and the objective function is continuous

and bounded above for feasible allocations, existence of a Ramsey optimum will be taken for

granted in the rest of the paper.

3 Characterization of equilibria

In this section we describe some analytical results, including our result τ k∞ = 0, the treatment

of dynamic participation constraints, and sufficiency of FOCs.

3.1 Zero capital taxes in the long run

We now examine under what conditions τ k∞ = 0 obtains in our model. This steady-state

result is of independent interest given some recent developments in the literature, and it will

be helpful in characterizing and interpreting the transition.

The result τ k∞ = 0 was proved traditionally under the assumption that Lagrange mul-

tipliers of the feasibility constraint in the Ramsey problem have a finite steady state. But

Reinhorn (2019) and SW show that these multipliers diverge under some conditions and in

that case τ k∞ > 0. In addition, SW emphasize that this is not a knife-edged case as τ k∞ > 0

and consumption goes to zero if initial government debt is above a certain level, see their

12As far as we know, no other paper has implemented the optimal choice of λ. Werning (2007) mentioned
that λ (called ‘market weights’) had to be chosen optimally but did not use this optimal choice in his paper.
Flodén (2009) considers a model similar to ours. In Online Appendix E, we argue that his approach does
not find all PO allocations, although it does provide a useful method to search over competitive equilibria.
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Section 3. Lansing (1999), BB, and BSz show heterogeneous-agent models where τ k∞ > 0. 13

We share with the literature just described a preoccupation with using the FOCs of the

Ramsey problem appropriately, and we do not bound Lagrange multipliers. However, our

Proposition 1 below resuscitates the Chamley-Judd result, as we show τ k∞ = 0 except in a

set of parameter values that, in our version of the model, has measure zero.

We proceed as follows. We take for granted the existence of a steady state for allocations.14

A2. Ramsey optimal allocations have a finite steady state, namely,

(c1,t, kt, et)→ (css, kss, ess) <∞.

Limits in this statement and in the rest of the paper are taken as t → ∞. As discussed in

SW, this is a reasonable way to proceed, because real variables have natural bounds. But as

mentioned before, a proper proof cannot restrict multipliers to be unbounded or to have a

limit.

Clearly, under this assumption and if css > 0, capital taxes have a finite limit, i.e.,

τ kt → τ k∞ <∞.15 The proof uses that a familiar argument in growth theory guarantees

Fk(k
ss, ess) > δ. (15)

We now provide a sequence of results leading to τ k∞ = 0.

Lemma 1. Assume A1 and A2, and consider the case where css > 0 and τ k∞ > 0. Assume

that µt ≥ 0 for all t large. Then µt → 0. If in addition τ̃ < 1 then γt → 0.

Proof. In Appendix B.

The requirement that µt ≥ 0 is routinely taken for granted in the literature. We will show in

Section 3.2 that, perhaps surprisingly, this fails in some models. Therefore µt ≥ 0 is indeed

an assumption.

Lemma 1 suggests that the key difference between our results and SW is the different

asymptotic behavior of µ: SW show that if τ̃ = 1 and css = 0, it can happen that τ k∞ > 0

13The frameworks of BB and BSz are quite close to ours. We discuss in footnote 17 how our approach and
results relate to BB, and in Section 3.2 and Online Appendix D the relation with BSz.

14Therefore in our paper we do not consider the example with perpetual growth of Section III in BSz.
15For a formal proof, note that the Euler equation of consumer 1 implies

1−
[

u′(c1,t)

u′(c1,t+1)β
− 1

]
1

Fk(kt, et+1)− δ
= τkt+1.

This equation, A2, (15), and the fact that ∞ > u′(css) > 0 imply that if css > 0 then τkt → τk∞ <∞.
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and µss = ∞, but Lemma 1 says that if c̃ > 0 and τ̃ < 1 then τ k∞ > 0 is incompatible with

µss > 0.

Let

Ωl ≡ 1 + ψK(λ)1+σl +

(
∆1 +

φ2

φ1

K(λ)∆2

)
(1 + σl) ,

Ωc ≡ 1 + ψλ1−σc + (∆1 + λ∆2) (1− σc) .

Proposition 1. Assume A1, A2, τ̃ < 1 and µt ≥ 0 for t large. Assume for parts a), b),

and c) that either Ωl 6= 0 or Ωc > 0.

a) Then either css = 0 or τ k∞ = 0.

Assume for parts b), c), and d) that c̃ > 0.

b) τ k∞ = 0 and Ωl ≥ 0.

c) Furthermore, if css > c̃ and Ωc 6= 0, then there is an integer N <∞ such that

τ kt = 0 for all t > N. (16)

If in addition ct > c̃ for all t, then there is an N such that in addition to (16) we have

0 ≤ τ kN ≤ τ̃ and (17)

τ kt = τ̃ for all t < N. (18)

In words, capital taxes transition to the steady state in two periods.

d) If Ωl = 0 and ∆1k1,−1 + ∆2k2,−1 > 0, then τ kt = τ̃ for all t and Ωc ≤ 0. If css > c̃ then

Ωc = 0.

Proof. In Appendix B.

Note that this proposition characterizes all cases. Given the minor requirements on

multipliers, parts a), b), and c) ensure zero long-run capital taxes for the case Ωl 6= 0, while

the case Ωl = 0 is covered in part d). The case Ωl 6= 0 was satisfied in all our computations.

The alternative requirement for zero taxes Ωc > 0 echoes that of SW.16 Note also that part b)

determines Ωc ≥ 0. Part c) shows a familiar result that the transition to zero taxes occurs

16Their condition can be written as 1 + ∆ (1− σc) > 0, where ∆ (µ in their notation) is the Lagrange
multiplier of the lifetime budget constraint of the representative household, see their Proposition 7. In our
case the condition contains additional heterogeneity terms, therefore ψ and λ play a role as well.
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in two periods, the proof does not use uniqueness of critical points, this part highlights that

css > c̃ is needed in order to obtain this ‘bang-bang’ result in our model.17

The requirement ∆1k1,−1 + ∆2k2,−1 > 0 is satisfied in the standard case when the govern-

ment wishes to tax capital in the initial period as much as possible, that is, it sets τ k0 = τ̃ ,

hence generically u′ (c1,0) (∆1k1,−1 + ∆2k2,−1) (r0 − δ) > 0 (see ∂L
∂τk0

in Appendix A). Under

homogeneous agents, this would also imply that ∆1 = ∆2 > 0.18 Our model with two het-

erogeneous consumers, interestingly, allows for one of the ∆j’s to be negative. As a matter of

fact, in our baseline calibration we find ∆2 < 0 for most Pareto-improving allocations. This

has some implications for redistribution that we discuss at the end of Section 4.4.

Since the behavior of long-run taxes depends on Ωl or Ωc and these are endogenous

objects, one may wonder in what situations we can ensure that the requirements that lead

to parts a), b), and c) are satisfied. Although we are mainly interested in the case where

lump-sum taxes are not available, it is useful to consider agent-specific lump-sum taxes Tj,

j = 1, 2. If lump-sum taxes satisfy T2 = T1
φ2
φ1
K(λ) we can call them ‘labor-income-neutral’,

since the relative labor income of the two agents is the same before and after tax.19

Corollary 1. Assume A1, A2, τ̃ < 1, and µt ≥ 0 for t large. If agent-specific lump-sum

taxes are labor-income-neutral and a marginal increase of lump-sum taxes above T1 = 0 is

welfare-improving, then parts a), b), and c) of Proposition 1 hold.

Proof. In Appendix B.

The requirement that increasing lump-sum taxes is welfare improving is likely to hold in

reasonably calibrated models. It would fail, for example, if the government is so rich and

has such high initial savings that it has to set negative distortionary tax rates, and hence

lump-sum taxes would only exacerbate the distortions. But for most models and calibrations

in the literature, the government finds it hard to collect enough taxes.

Proposition 1 and Corollary 1 suggest that (excluding the case Ωl = 0, seemingly of

measure zero), within the context of our model, τ k∞ > 0 can only occur in knife-edged cases.

For example, the homogeneous-agent environment in Section 3 of SW, where ct → 0, is a

special case of our paper with τ̃ = 1 and c̃ = 0 (and φ1 = φ2 and k1,−1 = k2,−1). Corollary 1

17BB also do not use uniqueness of critical points to prove this bang-bang result, but their approach of
‘piecing together’ a potentially better policy in the future cannot be easily applied here, because the share
of consumption λ has to remain constant through time, and the potentially better policy would in general
imply a different λ, so the ‘pieced-together’ allocation is not an equilibrium.

18In models with distortionary taxes, it is usually welfare enhancing that private agents are initially poorer
or, equivalently, that τk0 is high, leading to positive ∆’s.

19This because in equilibrium φ2

φ1
K(λ) =

l2,twtφ2

l1,twtφ1
, hence the distribution of non-capital income is unchanged

in this case.

14



of BB also assumes c̃ = 0 and a linear production function, while our results hold for c̃ > 0

and any strictly concave F . The cases τ k∞ > 0 shown in BSz are not knife-edged, but they

do not satisfy the assumption ‘µt ≥ 0 for t large’, see the next subsection.

3.2 The multiplier µ and optimal waste

The recent paper BSz considers a model very similar to ours. The authors provide conditions

on endogenous objects guaranteeing that optimal taxes satisfy τ kt = τ̃ < 1 for all t and

ct → css > 0. In Section III they show how these conditions are satisfied for some parameter

values. This result apparently contradicts our Proposition 1.

It turns out that the driving force behind the two results is the sign of the multipliers

µt on the feasibility constraint. Our τ kt → 0 result is derived under the assumption that

µt ≥ 0 for t large, but, as we show in Online Appendix D, in the example of Section IIIA

of BSz µt → µss < 0. This is why our results do not apply to their case.20 Furthermore,

Proposition 3 in Online Appendix D shows a partial converse: essentially this result states

that τ kt = τ̃ < 1 for all t only if µt is negative in the long run.

A negative µt in our model would imply that throwing away consumption in some periods

is welfare enhancing. This may seem like a mistake when social welfare is an increasing func-

tion of consumption. But it is not, since the current model amounts to imposing feasibility

as equality, and equality constraints can have multipliers of either sign. Equivalently, the

government has to set gt = g for a fixed g. If instead we allow for free disposal gt ≥ g,

the government could implement consumption waste by setting gt > g. We demonstrate in

Online Appendix D that in the example of BSz Section IIIA, the objective function of the

government is indeed increased by setting gt > g in periods where µt < 0.

Optimal waste arises here because even though setting gt > g in the long run lowers

aggregate consumption, it also increases the stochastic discount factor.21 This increases the

discounted value of capital tax revenue collected, redistributing wealth in favor of agents who

have little wealth. This may increase the utility of agents the policy-maker cares about (the

median voter as in BB or only poor agents as in BSz) if they are sufficiently poor relative to

aggregate wealth.22

20BSz contains a discussion of some results in the previous version of our paper. They do not show the
values of µt as they use an alternative dual approach.

21A related mechanism is described in the recent paper Debortoli, Nunes, and Yared (2021). They show
that time-inconsistency arises in the Lucas and Stokey (1983) economy, because future wasteful tax rates
may be desirable as they lower current equilibrium interest rates.

22Note that we find that increasing wealth inequality in our model does not give rise to τkt = τ̃ for all t,
even if the policy-maker only cares about the worker, see Online Appendix C. In addition, optimal policy
can be far from Pareto improving if the planner ignores some agents, as in BB and BSz. We come back to
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The result of BSz is useful because it alerts to the fact that negative µt’s may arise in

standard models, a possibility previously ignored in the literature.23 This raises the question:

is our assumption µt ≥ 0 for t large (i.e., absence of optimal waste) in Proposition 1 likely

to hold for reasonable parameter configurations?

Recall that µt ≥ 0 fails when less wealthy agents benefit from ‘consumption waste’.

Intuitively, this is more likely to occur when the tax system causes low aggregate efficiency

distortions. In the jargon of fiscal policy, optimal waste is more likely to arise when tax rates

are far from those corresponding to the ‘peak of the Laffer curve’. It is clear that this is

the case in the example of BSz Section IIIA, because (i) g = 0 and kg−1 = 0, hence there

is little need to raise public revenues, (ii) a universal lump-sum transfer D (same as in our

Section 4.4) implies that higher gt’s do not lead to higher distortionary taxes,24 and (iii)

τ̃ = 10% is low, so that setting τ kt = τ̃ for all t is not highly distortionary, while the weight

of capital in production is high (ρ = 0.95 in their CES function). Most applied work using

DSGE models similar to ours suggest that existing tax distortions are very high,25 hence the

efficiency loss is large, and no agent is likely to benefit from wasting consumption. Indeed,

moving BSz parameters slightly in the direction of increasing total tax distortions causes

negative µ’s to disappear.26 Therefore, we think the case µt ≥ 0 is likely to be relevant for

reasonable calibrations.

3.3 Sufficient conditions for a solution

The results in Section 3.1 relied on the fact that the FOCs are necessary for a Ramsey solution,

therefore those results are valid even if there are multiple critical points. But multiplicity

is an issue once we rely on numerical simulations obtained from solutions to FOCs. In this

section we address multiplicity given a weight ψ. Formally, for a fixed constant ψ ∈ [−∞,∞],

consider the following modified model (MM).

max
τk0 ,λ,{c1t ,kt,l1t}∞t=0

∞∑
t=0

βt [u (c1,t) + v (l1,t) + ψ (u (λc1,t) + v (K(λ)l1,t))] , (19)

this in Section 4.3.1
23For example SW (pages 9 and 25) take for granted that this multiplier, denoted λ in their paper, is

non-negative.
24More precisely, g = 0 and high capital taxes imply that D > 0 in BSz. Therefore a higher gt does not

call for larger distortionary taxes. In Section 4.4 and Online Appendix C, we show that things change when
g is calibrated to the data. In particular, progressive taxation then leads to D = 0, so that higher gt is likely
to imply higher distortionary taxes.

25See, for example, a suite of calibrated DSGE models in Trabandt and Uhlig (2011).
26We have found that if, ceteris paribus, τ̃ = 12% or ρ = 0.94, it is no longer optimal to keep capital taxes

at their upper bound indefinitely.
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subject to S. Notice that we allow for negative ψ’s, and ψ = ∞ means that consumer 1

receives zero weight. The FOCs of this problem coincide with the conditions of POs.

As mentioned in Albanesi and Armenter (2012), “the set of admissible allocations is not

convex for many second-best problems. [...] Often, sufficiency of the first-order conditions is

verified numerically or strong conditions on primitives are imposed.” But exploring numeri-

cally all possible solutions in an infinite-dimensional problem can be difficult. Proposition 1

is useful for this task, because it covers all cases for Ωl, and it narrows down the possible

values of τ k∞ to 0 and τ̃ . Then we have the following.

Algorithm to find optimal solutions to MM

Step 1 For each candidate N , compute the infinite ‘tail’ of the sequence imposing (16),

checking that all Lagrange multipliers have the correct sign, and taking a c̃ sufficiently

small. If such an allocation can be found and it has Ωl 6= 0, this is a candidate solu-

tion.27

Step 2. Find a solution with τ kt = τ̃ for all t. If Ωl = 0 this a candidate solution.

In each step we have to check numerically if there are several solutions with the stated

properties, as is done in scores of papers in economics, each step involves a finite-dimensional

problem.

If Step 1 delivers only one candidate solution and we find no solutions in Step 2, we are

done. If we find more than one candidate solutions, either because Step 1 has more than one

solutions or because Step 2 satisfies Ωl = 0, then the algorithm ends as follows.

Step 3. Compute the utility corresponding to each candidate solution and pick the solution

with the highest utility.

Since, according to Proposition 1, this algorithm exhausts all possible steady states, it is

certain to give the correct solution. In all the optimal allocations we computed in Section 4

there was no candidate solution with all the properties of Step 2, and we found one candidate

solution in Step 1 with Ωl 6= 0, hence τ k∞ = 0 in all the calculations shown below.

3.4 Dynamic participation constraints

Constraint on Policy 2 is a simple way to capture the idea that a policy entailing css = 0 will

be blocked by some political mechanism or social conflict because agents’ future welfare will

27See Online Appendix A for more details on the computations.
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be so low. To introduce this idea more explicitly, we now replace Constraint on Policy 2 by

the following dynamic participation constraints (PCs).28

Constraint on Policy 3.

∞∑
i=0

βi (u (cj,t+i) + v (lj,t+i)) ≥ U, ∀t, j = 1, 2, for some finite U. (20)

This implies a relatively minor change in the analysis. The Ramsey problem is as before

only with (20) replacing (12). Using the results in Marcet and Marimon (2019), the first two

lines of the Lagrangian for the government’s problem (14) are replaced by

L =
∞∑
t=0

βt (u (c1,t) + v (l1,t)) (1 +M1,t) + (u (λc1,t) + v (K(λ)l1,t)) (ψ +M2,t)− (ν1,t + ν2,t)U,

while the remaining lines in (14) stay unchanged. Here, νj,t ≥ 0 are the Lagrange multipliers

of (20), Mj,t = Mj,t−1 + νj,t for all t ≥ 0 and Mj,−1 = 0, for j = 1, 2.

A large literature has introduced PCs in models of risk sharing with partial commitment,

for example, Marcet and Marimon (1992, 2019), Kocherlakota (1996), and Ábrahám and

Laczó (2018). This literature exploits the fact that the terms (1 +M1,t) and (ψ + M2,t)

act as time-varying Pareto weights: the weight of agent j increases in periods when the

PC of j becomes binding, and it stays constant otherwise.29 This increase in the welfare

weight ensures that the PC holds for the corresponding agent, avoiding default in the risk-

sharing literature, or avoiding social conflict in our application. In those models the ratio

u′(c2,t)/u
′(c1,t) is time-varying and equal to (1 +M1,t) /(ψ + M2,t).

30 Instead in the model

of this section, u′(c2,t)/u
′(c1,t) is constant through time according to (8), and the dynamics

of (1 +M1,t) /(ψ + M2,t) only determine the dynamics of distortionary taxes. This is not

surprising given that, as mentioned in Section 2.3.2, even in our baseline model u′(c2,t)/u
′(c1,t)

is not directly given by the Pareto weights.

While studying the effect that PCs may have on the dynamics of taxes is of interest, we

leave a detailed analysis of this issue for future research. Here we focus only on asymptotic

28Ideally the right hand side of (20) would be derived from an explicit model of political economy or
social conflict. For example Benhabib and Rustichini (1996) derive a similar constraint from a mechanism of
social conflict, or Kocherlakota (1996) from assuming that there is an outside option of autarky. We leave
endogenizing U for future research.

29In our case only the participation constraint of one agent can ever be binding. If, say, λ∗ < 1, then
M1,t = 0 for all t.

30Alvarez and Jermann (2000) and Ábrahám and Cárceles-Poveda (2006) consider a continuum of agents
without and with capital, respectively, and show that the equilibrium in such an environment can be decen-
tralized with endogenous borrowing limits. Park (2014) studies optimal taxation in this model.
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results analogous to Lemma 1 and Proposition 1.31 We only give an outline of the proof.

The key difference is that the FOCs for consumption and labor hold with ξt = 0, and Ωl

and Ωc are replaced by

Ωl
t ≡ 1 +M1,t + (ψ +M2,t)K(λ)1+σl +

(
∆1 +

φ2

φ1

K(λ)∆2

)
(1 + σl) and

Ωc
t ≡ 1 +M1,t + (ψ +M2,t)λ

1−σc + (∆1 + λ∆2) (1− σc) .

Now, choose some U > 0 for the case σc < 1, or U > −∞ for the case σc ≥ 1. Given the

functional form (2), taking limits in (20), it is clear that for these choices of U if (20) holds

then css > 0. Since the proofs of Lemma 1 and Proposition 1 hinge on css > 0, it is easy

to check that the same limiting results obtain under Constraint on Policy 3 as long as the

conditions on Ωl and Ωc are replaced by the same conditions on Ωl
∞ and Ωc

∞.32

Therefore, the analogous asymptotic results obtain and the numerical results in Section 4

can be interpreted as solving the model in the current section with a U sufficiently low for

PCs to never be binding.

3.5 The Pareto frontier

Since the set of feasible equilibrium allocations S is not necessarily convex, a Lagrangian

approach is not guaranteed to give all the PO allocations. We have already discussed in

Section 3.3 how to address the issue of multiple solutions to the FOCs for a given welfare

weight ψ. A second concern arises in the determination of ψ: the duality gap (i.e., the set of

PO solutions that are not a saddle point of the corresponding Lagrangian for some welfare

weight ψ) might be non-empty. In this case we would ignore some PO allocations as we trace

out the Ramsey Pareto frontier by varying ψ. To be precise, let the feasible set of utilities

SU ≡

{
(U1, U2) ∈ R2 : Uj =

∞∑
t=0

βt (u(cj,t) + v(lj,t)) for some {(cj,t, lj,t)j=1,2, kt} ∈ S

}
,

and let F be the boundary (or ‘frontier’) of SU . Without distortions and with a concave

utility function, F corresponds to the PO allocations, and it defines U1 as a decreasing and

concave function of U2. In that case an allocation is Pareto optimal if and only if it optimizes

a welfare function with some fixed weight ψ. But if SU is not convex, its frontier may have

31Notice that Constraint on Policy 3 does not imply Constraint on Policy 2: given c̃ > 0 there are
consumption allocations satisfying (20) for which, say, c0 < c̃. Therefore, Lemma 1 and Proposition 1 do not
apply immediately to this case.

32In models with PCs it can happen that Mj,t → ∞. Note that the contradiction that sustains the proof
of Proposition 1 can be obtained even if Ωlt →∞.
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a non-concave part, and the equilibria with utilities in that non-concave part cannot be

found by maximizing a welfare function for some fixed weight ψ. Furthermore, parts of the

frontier F may now be increasing, and in that case F will not coincide with the set of PO

allocations. Indeed, this is the case in the model of Section 4.2 below where labor supply is

fixed. For all these reasons we now show a sufficient condition guaranteeing that, despite the

non-convexities, we are finding all PO equilibria. We will check this condition numerically in

our application.

Let Uj (ψ) be the utility of consumer j = 1, 2 at the solution to the MM problem defined

in (19).

A3. MM has a unique solution for all ψ ≥ 0. Furthermore, U2(·) is invertible on [0,∞].

Proposition 2. Assume A3. Then the following statements hold.

a) A solution to MM for any ψ ∈ [0,∞] is a PO allocation.

b) Every PO allocation is also the solution of MM for some ψ ∈ [0,∞].

c) Given ψ ∈ [−∞,∞], if the solution of MM exists, it defines a point on the frontier, i.e.,

(U1 (ψ) , U2 (ψ)) ∈ F .

Proof. In Appendix B.

Part b) of Proposition 2 implies that we can find all PO allocations by solving MM

varying ψ from zero to infinity. Part c) guarantees that we may obtain additional points on

the frontier F using a negative ψ. As long as a maximum of MM exists for this ψ < 0,33

these points are not Pareto optimal, since both consumers’ utilities could be increased along

the frontier. More points on the frontier can be found if the consumers switch places in the

objective function of MM, that is, if ψ multiplies the utility of consumer 1 and we take ψ < 0.

In Section 4.2 we use part c) to find an increasing part of the frontier F which is not Pareto

optimal.

Since the feasible set is non-convex, A3 may not hold for some parameterizations. But

it can be checked numerically for a given application. We record all utilities for a fine grid

of ψ’s, applying the Algorithm of Section 3.3 for each ψ, and check that U2 (ψ) is increasing

and continuous. These checks can only be done approximately, as they rely on numerical

approximations, but to the extent that invertibility is verified for a very fine grid of ψ’s, a

duality gap is unlikely to exist or is very small, as it would have to sneak in between grid

33Notice that if we had a standard model without distortions and u(0) = −∞, then there exists no solution
for MM with ψ < 0. In that case part 3 would, of course, not apply, and it would not define a point on F .
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points. Figures 1 and 2 show the utility pairs (U1 (ψ) , U2 (ψ)) for a grid of ψ’s. The function

U2 (ψ) appears invertible on these figures, therefore MM fully characterizes all PO solutions.

The POPI plans can be found with ψ ∈ [0,∞] such that (U1 (ψ) , U2 (ψ)) are larger than

the status-quo utilities of both consumers.

4 Numerical results

Most of the literature on optimal factor taxation has focused on long-run results, including

the recent results on τ k∞ > 0 in the previous section. We now turn to the analysis of the

transition. We find that capital taxes have to be high for a large number of periods before

becoming zero at t = N + 1. High capital taxes are needed for redistribution to achieve a

Pareto improvement. This suggests that following the optimal transition is very important

in order to achieve a Pareto improvement under heterogeneity, while the transition might be

less important with homogeneous agents.

Further, N is larger for PO allocations that favor more the workers, and it is very large

for all POPI allocations. Recent results suggested a discontinuity for taxes depending on

small changes in parameter values. For example, in SW small changes in parameter values

may cause optimal τ k∞ to jump from zero to its highest possible value. But we find that when

taking into account the transition there is no discontinuity: small changes in parameters

cause small changes in N .

We now present and discuss our numerical results in detail relying on the long-run results

and the Algorithm described in Section 3. More details on our computational strategy are

in Online Appendix A. We first explain how we calibrate the model. Then in Section 4.2,

we examine the model with fixed labor supply. Section 4.3 shows the results for our baseline

model. We discuss progressive taxation in Section 4.4.

4.1 Calibration

We calibrate the model at a yearly frequency. The parameter values are summarized in

Table 1.

We calibrate our parameters so that if taxes and initial government debt are matched to

the US average effective tax rates and debt-to-GDP ratio, the status-quo equilibrium matches

certain moments in the US economy. The macro variables, including effective tax rates, are

taken from the dataset provided by Trabandt and Uhlig (2012).34 We compute averages for

34https://sites.google.com/site/mathiastrabandt/home/downloads/LafferNberDataMatlabCode.zip
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the period 2001-2010. The average effective tax rates are: τ l = 0.214 and τ k = 0.401. Note

that tax rates at the status quo matter in several ways. Firstly, they influence the status-quo,

and hence the initial capital stock. Secondly, status-quo utilities depend on these variables,

and thus restrict the scope for Pareto improvements. Thirdly, we suppose that during the

reform the capital tax rate can never increase above its initial level, which is equal to the

status-quo rate by assumption, i.e., we set τ̃ = 0.401.

Table 1: Parameter values

Preference parameters

β 0.96
σc 2
σl 3
ω 845.4

Heterogeneity parameters

φw/φc 0.91
kc,−1 4.356
kw,−1 -1.136

Production parameters
α 0.394
δ 0.074

Public sector
g 0.094
kg−1 -0.315
τ̃ 0.401

We set some preference parameters a priori. We use the usual discount factor β=0.96.

The coefficient of relative risk aversion is σc = 2. The choice of σl = 3 generates an elastic

supply of labor, and it prevents hours from greatly differing across consumers with different

wealth. Hence Frisch elasticity of labor supply is lower than in many real-business-cycle

applications but is more in line with micro estimates.35

We assume that the production function is Cobb-Douglas with a capital elasticity of

output of α = 0.394, equal to the capital income share. There is no productivity growth.

Our two types of consumers are heterogeneous in labor efficiency φj and initial wealth

kj,−1. GMV show that the relevant aspect of heterogeneity when studying proportional

labor and capital income taxation is agents’ wage-wealth ratio, a fact also used in Correia

(2010). In our calibration we follow the calculations of GMV using the Panel Study of

Income Dynamics (PSID) when splitting the population into two groups: (i) those with

above the median wage-wealth ratio, whom we call ‘workers’ (type-2 consumers), indexed

w in the calibrated model, and (ii) those with below the median wage-wealth ratio, called

‘capitalists’ (type-1 consumers), indexed c. That is, capitalists are wealthier relative to their

35See for example GMV for a discussion of the trade-offs in choosing σl.
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labor earnings potential, while both types of consumers work and save. Given this split of

the population, the calibration proceeds as follows: (i) φw/φc is calibrated to the ratio that

places in the numerator (denominator) the average wage of workers (capitalists), 0.91, and

(ii) λ is calibrated to the ratio of consumptions, 0.54.36

Finally, we find ω, δ, g, kg−1, and the initial wealth of private agents in the model, kc,−1

and kw,−1, that are consistent with all chosen parameters, including φw/φc, such that the

status-quo equilibrium satisfies that (i) aggregate hours equal the fraction of time worked for

the working age population, 0.245, (ii) the consumption ratio satisfies λ = cw/cc = 0.54, (iii)

g over output equals 0.2, and (iv) kg−1 over output matches the average public assets-GDP

ratio from the data, −66.8 percent of GDP.37

4.2 Results with fixed labor supply

In our baseline model POPI plans differ from the first best for two reasons. First, as is

standard in models of factor taxation, the need to raise tax revenue generates inefficiencies.

Second, Pareto improvements may require redistribution and a further distortion. We first

analyze a model with fixed labor supply, since in this version of the model distortions could be

entirely avoided, hence it shows in a clean way the trade-off between efficiency and redistri-

bution. Formally, in this section we take v (l) = 1 and lj,t ≤ l = 0.245, matching the fraction

of hours worked. All parameters unrelated to the utility from leisure are as in Table 1.38

Under homogeneous agents and fixed labor supply, the policy-maker would set τ kt = 0, ∀t,
collect all revenues from taxes on labor, and thus implement the first-best allocation. In a

model with heterogeneous agents, this policy would avoid distortions but would pick a specific

point on the frontier that is not necessarily a Pareto improvement, instead it might make

workers worse off. The first best can only be implemented if the government in addition can

stipulate agent-specific lump-sum transfers at time 0, denoted Tw and Tc. But since we focus

36The consumption ratio is measured by ratio of average total labour and capital income of each type,
given actual asset holdings and their returns, see GMV for more details. This is reasonable because at steady
state the ratio of incomes is equal to the consumption ratio. GMV reported the ratios for five quintiles. For
our calibration we average out the numbers they report for each half of the population.

37As Table 1 shows, the initial wealth of workers turns out to be negative, i.e., workers are borrowers, and
we find that they stay borrowers in the main calibration. Given our capital tax formulation, this means that
workers receive a subsidy τkt on their interest payments. One could argue that this is not a good way to
model actual capital taxes, as subsidies to borrowing are limited. Removing the subsidy to borrowers would
complicate the analysis somewhat: the feasible set of workers would have a kink, the ratio of consumptions
would no longer be constant, and the subsidy would now depend on net borrowing taking into account
ownership of assets, including real estate. This could cause a larger departure from the standard Chamley
model, so we leave it for future research.

38Notice that in the case of fixed labor supply, the evolution of labor taxes is undetermined, only the net
present value of labor taxes is determined.
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on the case Tw = Tc = 0, deviations from the first-best policy are necessary for distributive

reasons to achieve a Pareto improvement.

In Figure 1 we compare the set of POPI plans to the first best. Units in this graph

are consumption-equivalent welfare gains.39 The dashed (black) line labeled ‘first-best PI’

represents allocations with τ kt = 0 for all t and optimal redistributive lump-sum transfers

Tw = −Tc.40 The frontier of the set of possible competitive equilibria F is depicted as the

union of the solid (blue) and the dot-dashed (green) lines. This frontier is non-standard as it

has an increasing part depicted with a dot-dashed (green) line. These points are not Pareto

optimal, the POPI allocations coincide with the decreasing part of F depicted with a solid

(blue) line.

Figure 1: The Ramsey Pareto frontier of Pareto-improving equilibria with fixed labor supply
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Notes: Welfare is measured as the percentage increase in status-quo consumption that would give the con-

sumers the same lifetime utility as the optimal tax reform. The point ψ = 1 corresponds to the Benthamite

policy, and the point Uw max represents the case where workers’ utility is highest, i.e., ψ →∞.

Using Proposition 2 part a), the decreasing part of F is found with ψ > 0 in MM, higher

39More precisely, in all the figures reporting results on welfare, the welfare gains for each consumer are
measured as the percentage of a permanent increase in status-quo consumption which would give the consumer
the same utility as the optimal tax reform. Therefore, the origin of the graph represents status-quo utilities,
and the positive orthant contains utilities which correspond to Pareto-improving allocations.

40BB derive asymptotic results for fixed labor supply and lump-sum universal taxes Tw = Tc.
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ψ corresponding to points further to the right along the solid (blue) line. Higher ψ’s imply

a longer period of high capital taxes. When ψ → ∞ (i.e., the planner cares only about

workers), the POPI allocation converges to the point ‘Uw max’ in Figure 1. At that point

capital taxes are above zero for 41 years. The increasing part of F imply an even longer

period of high capital taxes. These points are found with ψ < 0 according to Proposition 2

part c). These equilibria are so inefficient that both agents’ stance is worse than at the point

‘Uw max’.

Figure 1 clearly shows that the absence of lump-sum transfers generates large losses in

efficiency. The worker has almost nothing to gain, even at the point ‘Uw max’, which requires

N = 41. The utility loss is smaller if we give all the benefits of the reform to the capitalist.

This requires N = 26 years.

This model shows in a clean way the trade-off between efficiency and redistribution that

we mentioned in the introduction: even though there is a policy that avoid all distortions,

a period of high capital taxes is necessary for redistribution and to achieve a Pareto im-

provement. Because the need for redistribution is so high, N is very large for all POPI tax

reforms. High capital taxes induce less investment for many periods, and the Pareto frontier

is significantly below the first best.

4.3 Main results

We now return to our baseline model, which features elastic labor supply.

4.3.1 The welfare frontier and capital taxes

Figure 2 reports the set of POPI plans. The units in the axes are as in the previous fig-

ure. Again we contrast our main model with the case of redistributive lump-sum transfers

Tw = −Tc. Note that the first best is not attained even with Tw = −Tc, because distortionary

capital and/or labor taxes are still needed to raise tax revenue. First-best allocations would

only be achieved with unconstrained Tw and Tc.

As with fixed labor supply, the absence of redistributive transfers clearly reduces the

welfare gains achievable by POPI allocations, and capital taxes need to be high for a long

time. However, the equilibrium frontier F , the solid (blue) line in Figure 2, is now decreasing

in the whole range of Pareto-improving allocations, it is now feasible to leave either the

worker or the capitalist indifferent relative to the status quo. Furthermore, the total welfare

loss relative to the case with transfers is now much lower, the two frontiers are relatively

close to each other. In Section 4.3.3 we highlight that labor taxes play a crucial role.
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Figure 2: The Ramsey Pareto frontier of Pareto-improving equilibria in the baseline model
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Notes: Welfare is measured as the percentage increase in status-quo consumption that would give the con-

sumers the same lifetime utility as the optimal tax reform. The point ψ = 1 corresponds to the Benthamite

policy.

The solutions behind the Pareto frontier in Figure 2 are all according to Step 1 for each ψ.

The algorithm failed to find a solution when we tried to impose constraints Ωl = 0 and ct = c̃

for t large. SW find equilibria with τ k∞ > 0 when debt is high, so in order to look for some

solution according to Step 2 we explore what happens if initial government debt is higher

than in our calibration. We have looked for solutions according to Step 2 fixing ψ = 0.4

and increasing the initial level of government debt, letting the algorithm find Ωl.41 In all the

cases we found that Ωl > 0 always, and it is in fact increasing with debt, thus a solution

according to Step 2 was not found for high debt either.

Now we compare some key characteristics of different points on the frontier. The length

of the transition increases as welfare gains are shifted toward the worker. This is illustrated

in the first panel of Figure 3 showing the duration of the transition, N , on the vertical axis for

each POPI allocation, indexed by the welfare gain of the worker on the horizontal axis. We

see that the number of periods before capital taxes drop to zero increases from 16 to 24 years

41We impose asset market clearing, hence we decrease the initial capital stock at the same time.
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as we increase the welfare gain of the worker from zero (i.e., leaving the worker indifferent

with the status quo) to 2.4 percent (which leaves the capitalist indifferent with the status

quo). Along with the duration of the transition, the present-value share of capital taxes in

government revenues increases from 16.2 to 20.8 percent, as the second panel in Figure 3

reveals.42 This shows that a longer period of high capital taxes is beneficial for the worker:

the worker contributes to the public coffers primarily through labor taxes, which means that

his burden in the long run stands to increase through the reform. The longer the period of

high capital taxes, the less revenue has to be raised from labor taxes in present value, and

the lower the relative tax burden of the worker.

More generally, our paper speaks to the issue of implementing economic reforms. Economists

often promote reforms which improve aggregate efficiency, but these reforms may come at

the cost of a welfare decrease for many agents. This may be considered unfair, and it cer-

tainly acts as an obstacle for the actual implementation of such reforms. Considering Pareto

improvements addresses these issues. The above results show that a gradual reform toward

τ k∞ = 0 ensures that all consumers benefit and hence support the reform. This is in line with

the literature on gradualism of political reforms, which has been at the center of some policy

debates.43 In light of this, high capital taxes that are observed currently in many economies

are not necessarily a failure of a political system or a result of frequent voting, as has been

suggested. They could be a sign of perfectly functioning institutions.

The final panel of Figure 3 compares ψ and λσc , both normalized. Recall that λσc = ψ

would hold in a first-best situation without distortionary taxation or distributive conflict

(∆1 = ∆2 = γt = 0, ∀t), while in our second-best world the optimal choice of the consumption

ratio λ is non-trivial, see Section 2.3.2. Figure 3 shows that as we increase the welfare of

the worker, the marginal cost of doing so (as measured by ψ) increases rapidly, while λσc

increases only mildly. This shows that it is very difficult to alter the ratio of consumptions

even if the planner favors one type of consumers, given that the government only has access

to proportional taxes to resolve issues of efficiency and redistribution.

If optimal lump-sum redistributive transfers across consumers are possible, the graphs in

Figure 3 would look very different. In that case capital taxes are suppressed after 11 years for

all ψ, and the share of capital taxes is always 12.5 percent. The multiplier ψ increases very

little as the utility promise to the worker increases, while λ rises much more than without

42For comparison, the share of capital taxes in revenues is about 37.1 percent at the status quo.
43For example, the desirable speed of transition to market economies of formerly planned economies has

been extensively discussed both in policy and academic circles. Within this literature, closest to our approach
is Lau, Qian, and Roland (2001), who find a gradual reform which improves all consumers’ welfare.
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transfers. This is because shifting welfare gains and consumption between agents is much

easier with redistributive lump-sum transfers, hence the planner lowers capital taxes quickly

to increase efficiency. The policies and the paths of aggregate variables is very similar along

the Pareto frontier.

In Online Appendix B, we show that the main features described here are robust to some

changes in parameter values. In particular, we consider two different measurements for the

relevant tax rates and consumption inequality at the status quo. We also consider a case

with higher inequality, calibrating φj/kj,−1 to the top and bottom quintiles of wage-wealth

ratios. In addition, we consider all these scenarios for log utility (σc = 1). In all these cases

the results are similar to the ones for the baseline calibration.

4.3.2 Endogenous welfare weights

Optimal policy with heterogeneous agents is often studied with fixed welfare weights, ψ.

Some papers interpret ψ as arising from probabilistic voting or as the bias of the planner

in favor of some agents. Most papers focus on the Benthamite case of ψ = 1, justified by a

moral choice under the ‘veil of ignorance’. Given our focus on Pareto-improving allocations,

the value of ψ is determined in equilibrium, and there is no reason why ψ = 1 should reflect

an equitable reform.

The focus of the literature on fixed welfare weights is not innocuous. Our results show

how even if τ k∞ = 0 holds at all PO that we report, the interaction between redistribution

and efficiency is a key issue. High capital taxes are optimal for a very long time, and the

length of the transition increases gradually as the government redistributes more in favor of

workers, as the first panel of Figure 3 shows. These features would be hidden by studying

optimal policy with fixed ψ.44

We now discuss the relationship between ψ and equity. We dub ‘equitable reform’ a PO

solution which implies that both agents gain equally,45 that is, points on the frontiers of

Figures 1 and 2 which are on the 45o line. Figure 1 shows that with fixed labor supply the

Benthamite policy is Pareto improving but gives most of the welfare gains to the capitalist.

Even ψ =∞ (corresponding to ‘Uw max’) does not achieve an equitable reform. This shows

that a very large relative Pareto weight might be required in order to achieve an equitable

reform. In the case of Figure 2 where labor supply is flexible, optimal policy for ψ = 1 is not

44Furthermore, in a companion paper we show that optimal policy is ‘consensus time-consistent’. This
result would also be hidden if only fixed welfare weights were considered.

45Such a reform could be the outcome of a Nash bargaining game played by agents at t = 0 when both
agents have a similar bargaining power and the outside option is the status quo.
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even Pareto improving, a weight ψ ∈[0.35, 0.49] is needed for a Pareto improvement. This

shows that ψ = 1 is not related to an equitable reform or even to a Pareto improvement.

Benthamite policies can be located at arbitrary points on the frontier depending on the model

and the calibration.

4.3.3 The time path of the economy

The evolution of aggregate capital and labor, individual consumptions, tax rates, and gov-

ernment deficit are pictured in Figure 4. The three different paths in each panel show dif-

ferent policies along the POPI frontier, for ψ = 0.3467, 0.4000, and 0.4861. For ψ = 0.3467

(ψ = 0.4861), capitalists (workers) get all the benefits of the tax reform and workers (capi-

talists) are indifferent between the reform and the status quo, while ψ = 0.4000 is presented

as an intermediate case.

First, note that qualitatively the paths are very similar. The horizontal shifts in the

graphs occur because the more a plan benefits the worker, the longer capital taxes remain

at their upper bound. The kinks in the paths of labor taxes and government deficit occur

precisely in the intermediate period when capital taxes transit from the maximum to zero.

It is interesting to note that if labor supply is elastic, low labor taxes weaken the efficiency-

redistribution trade-off. Low labor taxes increase labor supply causing the return on capital to

go up, increasing investment and achieving higher efficiency, while at the same time this policy

redistributes wealth toward workers so as to achieve a Pareto improvement. Thus low initial

labor taxes promote both efficiency and redistribution.46 This explains why with flexible

labor supply the POPI frontier is closer to the frontier with optimal lump-sum redistributive

transfers than it is with fixed labor supply, compare Figures 1 and 2.

A somewhat surprising pattern which emerges from the figures is that the long-run labor

tax rate is higher for a policy that favors the worker more. This may seem paradoxical,

because the worker is interested in low labor taxes. Note, however, that even though the

long-run labor tax rate is higher if the worker is favored, the initial cut is even larger, and

the share of labor taxes in the total present value of government revenues is lower for these

policies, as the second panel of Figure 3 shows.

Since government expenditures are constant, low initial labor taxes translate into gov-

ernment deficits. Only as labor taxes rise and output grows, the government budget turns

into surplus. Once capital taxes are suppressed and tax revenues fall again, the government

deficit quickly reaches its long-run value, which can be positive or negative. We can also see

46Section III of Jones, Manuelli, and Rossi (1993) finds that in a model with homogeneous agents labor
taxes should be very negative and capital taxes very high in the first period.
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from Figure 4 that POPI policies imply that the government runs a primary surplus, hence

is indebted in the long run. This feature of the model is quite different from that of Chamley

(1986), where the government accumulates savings in the early periods to lower the labor

tax bill in the long run. Here, the early drop in labor taxes is financed in part with long-run

government debt, showing that one possible reason for government debt is to finance the

initial stages of a reform.

4.3.4 High capital taxes

We now compare the optimal solution with the one that would arise if capital taxes are kept

at the upper bound forever. This is of interest per se, and it is Step 2 of the algorithm, to

check if the solution is as in part d) of Proposition 1.

In this formulation the government faces the restriction τ kt = τ̃ for all t, but it chooses

labor taxes. The Pareto frontier for this policy problem is shown as the dashed line in

Figure 5, while the Pareto frontier for the baseline model of Section 4.3.1 is the solid line.

The frontiers show a larger range of Pareto optimal allocations, from ψ small to ψ =∞.

In all cases welfare is now lower, therefore the optimal solution has τ k∞ = 0, as in Sec-

tion 4.3.1. The value of Ωl reaches its minimum of 1.9 when the weight of workers is small,

which implies the allocation computed in Step 2 of the algorithm is not optimal. The multi-

pliers µt are always positive.

The solid line achieves much higher utility gains at the left of the graph, but the welfare

gain becomes negligible when the benefits of the reform are more targeted to the worker.

This is not surprising: as we saw earlier the transition to zero capital taxes takes longer as

we move to the right of Figure 5, therefore the welfare gain from eventually lowering capital

taxes is less significant. The rightmost points of these Pareto frontiers correspond to ψ =∞,

i.e., the case where the planner only cares about workers, as in BSz. At that point the welfare

gains of the worker are almost the same under the two policies.

4.4 Progressive taxation

Given that redistribution is a main theme of the paper, it might strike the reader as restrictive

to allow only for flat-rate taxes. After all, one of the prime instruments of redistribution in

the real world is progressive taxation. We now introduce progressive taxes in a simple way.

We assume that the planner can choose a uniform deductible Dt so that labor taxes

paid at time t by agent j are given by τ lt (wtφllj,t − Dt), and similarly for capital taxes.

As is well known, under complete markets any path for such deductibles is equivalent to a
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universal lump-sum transfer D in period 0. Using the notation in Section 3.1, this amounts

to −D ≡ Tw = Tc. Progressive taxation requires D ≥ 0. This tax scheme has been used

extensively by the literature on taxation and by Werning (2007), BB, and BSz in models of

optimal policy. Ramsey policy in this case is found by adding the term u′ (c1,0) (∆1 + ∆2)D
to the W-term in (14), and letting the planner maximize over D additionally.

We find that if we restrict our attention to D ≥ 0 (progressive taxation), the optimal

choice is to set D = 0, including in the case where the Pareto weight of the capitalist is 0.

Therefore, access to progressive taxation does not change any of our conclusions: optimal

policy implies not to use progressivity, hence the computations in Section 4.3.1 are also valid

for the case of progressive taxation.

The reason for this result is the following. There are two forces at work in the determina-

tion of the optimal D. On the one hand, distributive concerns would advise the government

to choose a positive D, since capitalists are richer. On the other hand, productive efficiency

recommends a negative D, as this allows to raise revenue in a distortion-free manner. In the

standard case of a representative-agent model only this second force is present, and it is well

known that the first best can be achieved by choosing a negative D large enough (in absolute

value) to raise all government revenue ever needed. In our model with heterogeneous agents,

it turns out that the second force is stronger. If the government set D > 0, then marginal

tax rates would have to increase, leading to more distortions.

If we remove the progressivity constraint, the government would choose a regressive tax

scheme with D < 0. How can this be Pareto improving in a model where, given the results

in Sections 4.2 and 4.3.1, redistributive concerns are a key issue? The reason is that the

government now redistributes by choosing negative labor taxes for many periods. In fact,

the present value of revenues from labor taxes is not only negative but even bigger in absolute

value than the revenue from capital taxes. The transition is 5 and 14 years at the two extremes

of the POPI frontier. The solid line in Figure 6 is the resulting Pareto frontier. Capitalists

can gain maximum 4.0 percent and workers 6.2 percent in welfare-equivalent consumption

units considering Pareto-improving policies. Welfare gains are larger than in the case with

optimal lump-sum redistributive transfers Tw = −Tc. We think such a regressive tax scheme

would not be POPI if we considered a richer form of heterogeneity, so we do not pursue this

analysis further in this paper.47

47Recall that we have calibrated our model according to wage-wealth ratios, because, as shown in GMV, this
is the appropriate criterion with flat-rate taxes. In the real world, some consumers with a high wage-wealth
ratio are rich (young stockbrokers) and some consumers with a low wage-wealth ratio are poor (farmers in
economically depressed areas). For the analysis of progressive taxation, the population should be classified
also according to total income. We leave this issue for future research.
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This speaks to previous work on τ k∞ > 0. BB and BSz find positive long-run capital taxes

for calibrations where D is optimally positive and serves to redistribute toward wealth-poor

agents, while the capital tax serves to raise revenue. But this means that they consider a

case where the total cost of distortions with Tw = Tc = 0 is negative. We discuss this issue

analytically in detail in Online Appendix D.

We have also computed optimal policies combining the features of this section and Sec-

tion 4.3.4, that is, with a constraint τ kt = τ̃ and an optimal D, positive or negative. Figure 6

shows the resulting Pareto frontier as a dashed line. Just as in Section 4.3.4, welfare losses

are large (minor) for allocations that favor the capitalist (worker). The optimal D is always

negative.

In addition, in Online Appendix C, we further examine the role of wealth inequality in

determining optimal policy allowing for D 6= 0, bringing our calibration closer to the parame-

ters considered in BSz, where tax distortions are very small. We consider six combinations of

parameter values and levels of inequality. We find that even when the government only cares

about wealth-poor agents, optimal tax policies involve τ k∞ = 0. A negative labour income

tax, combined with a lump-sum tax and zero capital tax in the long run, serves to promote

equity better than a high capital tax combined with a lump-sum transfer.

A different scenario would occur if the government can set agent-specific transfers but is

still restricted to progressive taxes, i.e., Dc,Dw ≥ 0. As we mentioned after Proposition 1,

we find ∆2 < 0 for most POPI allocations, in particular, whenever the worker’s welfare

gains are larger than 0.762 in Figure 2. It is obvious that if ∆2 = Dw < 0, the government

would choose Dw > 0 = Dc. Interestingly, the deductible is removed for high incomes in some

modern income tax codes (the UK’s, for example), which somewhat resembles this scheme.

This raises a lot of interesting issues that we do not address any further in this paper.

5 Conclusion

We study the efficiency-equity trade-off in setting capital and labor taxes when markets are

complete. We first show that the traditional result τ k∞ = 0 reemerges in our model if one

imposes reasonable constraints on policy, in particular, if the government is prevented from

immiserating consumers, and the government would not prefer to waste consumption. Hence

τ k∞ = 0 seems a more robust result than some recent papers suggest.48 It will be interesting

48The literature has identified some cases where τk∞ > 0 without immiseration in stationary models: (i)
the log case of Lansing (1999), Reinhorn (2019), and Section I.B. in SW, and (ii) the βr(1 − τ̃) = 1 case of
BB. Both of these cases are knife-edged.
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to see if similar results are found in other models.

However, τ k∞ = 0 does not mean that low capital taxes are good for all agents. In a

calibrated version of the model, we find that in order to achieve an optimal Pareto-improving

policy, capital taxes should be high (and labor taxes low) for a very long time before they

become zero (high) in the long run, thus an equity-efficiency trade-off is resolved during the

transition. With an elastic labor supply the efficiency-equity trade-off is less pronounced and

the loss from redistribution is lower. This is because lower labor taxes during the transition

both promote wealth redistribution and boost investment. We explore variations in parameter

values and model specification and find that results are robust even to the introduction of

progressive taxes. The government typically accumulates debt in order to finance the initial

cut in labor taxes, and has a primary budget surplus in the long run to service its debt.

We also demonstrate how results with fixed welfare weights can be misleading. We use

welfare weights as an artefact to compute a whole array of Pareto-optimal policies. In

this way we can study a number of issues, such as the speed of the transition and how

it relates to redistribution, and the importance of gradual reforms in order to achieve Pareto

improvements. In addition, Benthamite policies can be far from equitable, and they can hurt

large parts of the population.

Our analysis suggests that issues of redistribution are crucial in designing optimal policies

involving capital and labor taxes, even when τ k∞ = 0. Therefore, much is to be learnt from

studying optimal policy in heterogeneous-agent models, both from an empirical and a theo-

retical point of view, when policies are not selected by a certain arbitrary set of weights. One

avenue for research is to study other policy instruments which could be used to compensate

workers for the elimination of capital taxes that are less costly in terms of efficiency, for ex-

ample, promoting certain types of government spending, cuts to other taxes, or introducing

other types of progressivity. The transition in our model is very long, therefore partial cred-

ibility on the veto power of all groups or the absence of rational expectations might render

this policy ineffective in practice. Introducing partial credibility, learning about expectations,

and political economy in the determination of optimal taxes would therefore be of interest

and might influence optimal policy.

Finally, understanding the role of negative µt’s (optimal waste) could open interesting av-

enues for future research, such as establishing conditions under which negative µ’s occur more

generally, and solving for optimal policy allowing for free disposal in government spending,

i.e., gt ≥ g for all t.
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Appendices

A First-order conditions and recursive Lagrangian

Using the derivations in Section 2, the functional form u, v in A1 and Marcet and Marimon

(2019), the Lagrangian of the policy-maker’s problem can be written as

L =
∞∑
t=0

βt
{

Ωc u (c1,t) + Ωc v (l1,t) +
1

2

+ξt(c1,t − c̃) + u′ (c1,t) {γt − γt−1 [1 + (rt − δ) (1− τ̃)]}

+µt

[
F (kt−1, et) + (1− δ)kt−1 − kt −

1 + λ

2
c1,t − g

]}
− ψU2 −W

given γ−1 = 0 and with ξt, γt, µt ≥ 0, ∀t, and ψ ≥ 0, with complementary slackness

conditions.

The FOCs, using the functional form u, v in A1, are:

• for consumption at t > 0, noting that rt = Fk (kt−1, et) = Fk

(
kt−1,

φ1l1,t+φ2K(λ)l1,t
2

)
:

Ωcu′ (c1,t) + ξt + u′′ (c1,t) {γt − γt−1 [1 + (rt − δ) (1− τ̃)]} = µt
1 + λ

2
(21)

• for consumption at t = 0: γt−1 is replaced by (∆1k1,−1 + ∆2k2,−1) and τ̃ by τ k0

• for labor at t > 0:

Ωlv′ (l1,t)− γt−1u′ (c1,t)Fke (kt−1, et)
1

2
(φ1 + φ2K(λ)) (1− τ̃)

= −Fe (kt−1, et)
1

2
(φ1 + φ2K(λ))µt (22)

• for labor at t = 0: γt−1 is replaced by (∆1k1,−1 + ∆2k2,−1) and τ̃ by τ k0

• for capital at t ≥ 0:

µt + γtβu
′ (c1,t+1)Fkk (kt, et+1) (1− τ̃) = βµt+1 (1− δ + Fk (kt, et+1)) .

• for the multiplier of the promise-keeping constraint:

either ψ > 0 and
∞∑
t=0

βt (u (c2,t) + v (l2,t)) = U2,

or ψ = 0 and
∞∑
t=0

βt (u (c2,t) + v (l2,t)) ≥ U2.

• for relative consumption, λ, using (22) to simplify:
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∞∑
t=0

βt
[(
ψλ−σc + ∆2

)(
u′ (c1,t) c1,t +

φ2

φ1

K′(λ)v′ (l1,t) l1,t

)
− Ωlv′ (l1,t)

φ1 + φ2K(λ)
φ2K′(λ)l1,t −

µt
2
c1,t

]
− u′ (c1,0) (∆1k1,−1 + ∆2k2,−1)Fke (k−1, e0)

φ2

2
K′(λ)l1,0

(
1− τ k0

)
= 0.

• for γt at t ≥ 0:

either γt > 0 and u′ (c1,t) = βu′ (c1,t+1) [1 + (rt+1 − δ) (1− τ̃)] ,

or γt = 0 and u′ (c1,t) ≥ βu′ (c1,t+1) [1 + (rt+1 − δ) (1− τ̃)] .

• for ∆j: the corresponding lifetime budget constraint.

• for τ k0 :

either ∆1k1,−1 + ∆2k2,−1 = 0 and τ k0 ≤ τ̃ ,

or ∆1k1,−1 + ∆2k2,−1 ≥ 0 and τ k0 = τ̃ .

To obtain a recursive formulation, for simplicity, consider the standard case where τ k0 = τ̃ .

In this case L is unchanged if we delete W and set γ−1 = ∆1k1,−1 + ∆2k2,−1. Then, for given

(∆1,∆2, ψ), the Lagrangian is of the form considered in Marcet and Marimon (2019), and

optimal allocations satisfy (c1,t, l1,t,kt, γt) = P(kt−1, γt−1), for all t ≥ 0 and for a time-invariant

policy function P and the above γ−1.

B Proofs

Proof of Lemma 1. Assume that τ k∞ > 0. Taking limits in (4) gives

β
[
1 + (Fk (kss, ess)− δ) (1− τ k∞)

]
= 1.

Then using (15) we have β (1 + Fk (kss, ess)− δ) > 1, hence there is a constant A such that

1 > A > 1
β(1−δ+Fk(kss,ess))

. Obviously,

1 > A >
1

β (1− δ + Fk (kt, et+1))
for t large enough. (23)

We can write the planner’s FOC for capital (see Appendix A) as

µt
1

β (1− δ + Fk (kt, et+1))
+ γt

u′ (c1,t+1)Fkk (kt, et+1) (1− τ̃)

1− δ + Fk (kt, et+1)
= µt+1. (24)

We have Fkk (k, e) ≤ 0 by concavity and γt ≥ 0, hence the second term on the left-hand side

is non-positive. This, together with µt ≥ 0 and (23), implies that for t large enough

µtA ≥ µt+1.

Since A < 1 and µt ≥ 0, this proves that µt → 0.
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To prove γt → 0 when τ̃ < 1 we plug µt → 0 into (24) to obtain

γt
u′ (c1,t+1)Fkk (kt, et+1) (1− τ̃)

1− δ + Fk (kt, et+1)
→ 0. (25)

Now we show that the term multiplying γt in (25) cannot go to zero. First we prove that

the denominator cannot go to infinity: feasibility and css1 > 0 imply 1+λ
2
css + g + δkss =

F (kss, ess) > 0, hence by A1 ess, kss > 0. Therefore, Fk (kss, ess) <∞ and the denominator

of the term multiplying γt is finite. To prove that the numerator cannot go to zero, note that

we also need Fkk (kss, ess) < 0. Even if F is strictly concave we could have Fkk (kss, ess) = 0

for ess = 0. But we have already proved ess, kss > 0, therefore Fkk (kss, ess) < 0. Then, A2,

css > 0, and τ̃ < 1 give u′ (css1 ) Fkk(k
ss,ess)(1−τ̃)

1−δ+Fk(kss,ess)
< 0. Hence (25) implies γt → 0.

Proof of Proposition 1. Part a). Assume towards a contradiction that css > 0 and τ k∞ > 0.

Lemma 1 guarantees that µt, γt → 0. In the proof of Lemma 1 we have already showed

ess, kss > 0, therefore Fe (kss, ess) < ∞. Differentiating both sides of Fkk + Fee = F with

respect to k gives Fkkk + Feke = 0, hence 0 ≤ Fke (kss, ess) < ∞. Putting all this together,

taking limits on both sides of (22), we have Ωlω (lss1 )σl → 0. Then, given that Ωl 6= 0, this

implies ess = F (kss, ess) = 0, which is impossible since it violates feasibility.

Furthermore, since whenever Ωc > 0, the FOC for consumption (see Appendix A) and

Lemma 1 imply lim ξt < 0 which is impossible since ξt ≥ 0. Therefore it is impossible that

css > 0 and τ k∞ > 0. This proves part a).

Part b). That τ k∞ = 0 is a corollary of part a). Given τ k∞ = 0 and τ̃ ≤ 1 we have that

γt = 0 for t large enough so that (22) implies Ωlω (l1,t)
σl = Fe (kt−1, et)

1
2

(φ1 + φ2K(λ))µt
and µt ≥ 0 implies Ωl ≥ 0.

Part c). We first prove (16). Given part b) there is a finite integer such that γt−1 = ξt = 0

for all t ≥ N . Plugging this in (21) implies Ωc (c1,t)
−σc = µt

1+λ
2

for all t ≥ N . Plugging this

in the FOC for capital for all t ≥ N gives

(c1,t)
−σc = β (c1,t+1)

−σc (1− δ + Fk (kt, et+1)) , (26)

which together with (4) implies (16).

In the previous paragraph we only used γt = 0 for t sufficiently large. To prove the

remainder of part c) we need to show that once γt = 0 it stays at this value. Formally, there

is a finite N such that

γt > 0 for all t < N − 1 and γt = 0 for all t ≥ N − 1. (27)

For this purpose we first show that τ kt ≥ 0 for all t. If γt−1 > 0 then τ kt = τ̃ > 0, while if

γt−1 = 0 then (21) gives Ωc (c1,t−1)
−σc ≤ µt−1

1+λ
2

and Ωc (c1,t)
−σc ≥ µt

1+λ
2

. Plugging all this

in the FOC for capital at t− 1 and using γt−1 = 0 again, we have

(c1,t−1)
−σc ≤ β (c1,t)

−σc (1− δ + Fk (kt−1, et)) .

Together with (4) this implies τ kt ≥ 0 for all t.
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Now we show that if γt−1 = 0 then γt = 0. Notice first that, using the Kuhn-Tucker

conditions, γt−1 [1 + (rt − δ) (1− τ̃)] = γt−1
(c1,t−1)

−σc

β(c1,t)
−σc . Therefore (21) can be rewritten as

γt−1 (c1,t−1)
−σc =

(
µt

1 + λ

2
− Ωc (c1,t)

−σc
)
c1,t
σc
β + γt (c1,t)

−σc β.

Substituting forward the term γt (c1,t)
−σc , using the fact that the transversality condition

requires βtµt → 0 and other boundedness conditions, we find

γt (c1,t)
−σc =

∞∑
i=1

βi
c1,t+i
σc

(
µt+i

1 + λ

2
− Ωc (c1,t+i)

−σc
)
, for all t ≥ 1. (28)

This implies that if γt > 0 for a given t, then

µt+i
1 + λ

2
> Ωc (c1,t+i)

−σc for some i ≥ 1. (29)

Using the FOC for capital, γt ≥ 0, and Fkk ≤ 0, we have µt ≥ βµt+1 (1− δ + Fk (kt, et+1)),

for all t. Iterating we have

µt ≥ µt+iβ
i

i∏
h=1

(1− δ + Fk (kt+h−1, et+h)) .

Assume, toward a contradiction, that γt−1 = 0 and γt > 0 for some t. Then (21) implies

that Ωc (c1,t)
−σc > µt

1+λ
2

. Together with the previous two inequalities this implies

(c1,t)
−σc > (c1,t+i)

−σc βi
i∏

h=1

(1− δ + Fk (kt+h−1, et+h)) .

But using (4), τ kt+1 = τ̃ > 0, and since we have showed that τ kt ≥ 0 for all t, we have

(c1,t)
−σc < (c1,t+i)

−σc βi
i∏

h=1

(1− δ + Fk (kt+h−1, et+h)) ,

which is a contradiction. Therefore if γt−1 = 0, then γt = 0.

Take the smallest N for which (18) holds. Given part b) N < ∞. Since γN−1 = 0, the

last paragraph implies (27) by induction. The same argument we used to prove (16) now

holds for the same N in (18). We have already proved that (17) holds for all t so the proof

of part c) is complete.

Part d). We have already argued that Fkkk + Feke = 0 for all t. We have kt > 0 for

all t, otherwise ct would equal 0 for some t, and utility would be −∞. Since the status-quo

policy is feasible, kt = 0 cannot happen in an optimum. Therefore, strict concavity of F gives

Fkkk < 0. This implies Fke(et, kt)et > 0 for all t, hence Fke(et, kt) > 0 for all t. This means

that combining Ωl = 0 with (22), we have Atγt−1 = µt for At = (c1,t)
−σcFke(kt−1,et)(1−τ̃)
Fe(kt−1,et)

> 0,

for all t.
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If µt > 0 at any t, substituting out µt+1 = At+1γt ≥ 0 in the FOC for capital (24)

we have that γt > 0. Therefore At+1γt = µt+1 > 0. Furthermore the assumption that

∆1k1,−1 + ∆2k2,−1 > 0, the FOC for labor at time 0, and Ωl = 0 imply µ0 > 0. Therefore, by

induction µt > 0 for all t ≥ 0, γt = At+1µt+1 > 0, hence τ kt = τ̃ for all t.

Lemma 1 implies that µt, γt → 0. Since ξt ≥ 0, taking limits in the consumption FOC,

we have that Ωc ≤ 0.

Proof of Corollary 1. It is trivial that we have ∆1 + φ2
φ1
K(λ)∆2 > 0, hence Ωl > 0.

Proof of Proposition 2. The proof of part a) is obvious, the result is only stated for refer-

ence. Part b) is less obvious, as there could be a duality gap. Consider a pair of utilities(
U1, U2

)
∈ SU that correspond to a PO allocation. Invertibility in A3 guarantees that there

is a ψ̄ such that U2 = U2

(
ψ̄
)
. If ψ̄ is finite we have

U1 + ψ̄U2 ≤ U1

(
ψ̄
)

+ ψ̄U2

(
ψ̄
)
,

since the equilibrium that gives rise to
(
U1, U2

)
is feasible in MM, and the right-hand side

is the value of the objective function of MM at the maximum with ψ̄. Since U2 = U2

(
ψ̄
)
,

the above inequality implies U1 ≤ U1

(
ψ̄
)
. But the fact that

(
U1, U2

)
is the utility of a PO

allocation implies U1 ≥ U1

(
ψ
)
. Therefore, the PO allocation with utilities

(
U1, U2

)
attains

the maximum of MM with ψ̄. Uniqueness implies that this PO allocation solves MM with ψ̄.

The case ψ̄ = ∞ can be treated as ψ̄ = 0 when agents 1 and 2 switch places in the

objective function.

Let us now consider part c). If ψ ≥ 0 then part c) follows from part b). Consider

now a given ψ < 0. We can find points in R2 outside SU which are arbitrarily close to

(U1 (ψ) , U2 (ψ)) as follows: for any ε > 0 we have (U1 (ψ) + ε, U2 (ψ)− ε) /∈ SU , since this

point achieves a higher value of the objective function of MM than its maximum. Since

(U1 (ψ) + ε, U2 (ψ)− ε) can be made arbitrarily close to (U1 (ψ) , U2 (ψ)), this last point is on

the frontier F .
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Figure 3: Properties of POPI tax reforms in the baseline model
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Notes: Welfare is measured as the percentage increase in status-quo consumption that would give the workers

the same lifetime utility as the optimal tax reform.
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Figure 4: The time paths of selected variables for three POPI plans in the baseline model
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Figure 5: Comparison of Ramsey Pareto frontiers without a deductible
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Notes: Welfare is measured as the percentage increase in status-quo consumption that would give the con-

sumers the same lifetime utility as the optimal tax reform.

Figure 6: Comparison of Ramsey Pareto frontiers with a deductible
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Notes: Welfare is measured as the percentage increase in status-quo consumption that would give the con-

sumers the same lifetime utility as the optimal tax reform.
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