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ABSTRACT 

 

Background. To assess whether genetically determined quantitative and qualitative 

HDL characteristics were independently associated with coronary artery disease 

(CAD). 

Methods. We designed a two-sample multivariate Mendelian randomization study with 

available genome-wide association summary data. We identified genetic variants 

associated with HDL cholesterol and apolipoprotein A-I levels, HDL size, particle levels, 

and lipid content to define our genetic instrumental variables in one sample (Kettunen 

et al study, n=24,925) and analyzed their association with CAD risk in a different study 

(CARDIoGRAMplusC4D, n=184,305). We validated these results by defining our 

genetic variables in another database (METSIM, n=8,372) and studied their 

relationship with CAD in the CARDIoGRAMplusC4D dataset. To estimate the effect 

size of the associations of interest adjusted for other lipoprotein traits and minimize 

potential pleiotropy, we used the Multi-trait-based Conditional & Joint analysis.  

Results. Genetically determined HDL cholesterol and apolipoprotein A-I levels were 

not associated with CAD. HDL mean diameter (β=0.27 [95%CI=0.19; 0.35]), 

cholesterol levels in very large HDLs (β=0.29 [95%CI=0.17; 0.40]), and triglyceride 

content in very large HDLs (β=0.14 [95%CI=0.040; 0.25]) were directly associated with 

CAD risk, whereas the cholesterol content in medium-sized HDLs (β=-0.076 [95%CI=-

0.10; -0.052]) was inversely related to this risk. These results were validated in the 

METSIM-CARDIoGRAMplusC4D data.  

Conclusions. Some qualitative HDL characteristics (related to size, particle 

distribution, and cholesterol and triglyceride content) are related to CAD risk whilst HDL 

cholesterol levels are not.  
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1. INTRODUCTION 

 

The inverse association between high-density lipoprotein cholesterol (HDL-C) 

levels and the risk of coronary artery disease (CAD) has been reported in observational 

studies [1]. However, experimental and genetic studies question the causality of this 

association. On the one hand, drugs such as fibrates, niacin, and cholesteryl ester 

transfer protein inhibitors increase HDL-C levels but do not decrease CAD risk [2]. On 

the other hand, genetic predisposition to high HDL-C levels has not been linked to any 

decrease in the risk of cardiovascular events [3,4]. Thus, researchers are looking 

beyond HDL-C levels to disentangle this apparent contradiction. Anti-atherogenic 

properties of HDL particles seem to be determined by the quality or function of the 

lipoprotein [5]. HDL particle size and number have been linked to cardiovascular risk 

[6], and this association could be mediated through HDL functionality, which is 

predictive of cardiovascular risk [7]. The interplay between HDL-C and triglyceride 

levels, as two of the faces of atherogenic dyslipidemia, may also play a relevant role in 

their relationship with CAD [8,9]. Thus, further evidence of causal association between 

HDL characteristics and CAD risk would provide relevant data on the validity of these 

particles as therapeutic targets. 

Mendelian Randomization (MR) studies have arisen as a powerful tool to 

ascertain the potential causality of the association between a biomarker and a disease 

[10]. These studies assess the association between the genetically determined lifelong 

values of a biomarker and the development of a clinical outcome. MR studies have 

already raised serious doubts on the causal role of quantitative HDL characteristics, 

such as HDL-C and apolipoprotein A-I (ApoA-I) levels, in CAD [3,11]. However, to date, 

the association between qualitative HDL characteristics and CAD has not been tested 

using a MR approach. HDL mean diameter, the concentration of HDL particles of each 
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size subtype, the distribution of cholesterol across the HDL size subtypes, and the 

presence of other lipids in HDL particles (such as triglycerides, highly present in large 

HDLs) are some of these qualitative traits. Additionally, this evaluation must take into 

account the complexity of lipid metabolism and its potential genetic pleiotropic effects. 

HDL-C, low-density lipoprotein cholesterol (LDL-C), and triglyceride levels are highly 

interdependent and, therefore, the method used to test the association between HDL 

properties and CAD risk should take into account this inter-correlation [12]. 

This study had two aims: 1) to assess the potential causal association of 

quantitative and qualitative HDL characteristics with CAD risk, using a two-sample MR 

approach; and 2) to explore potential mechanisms explaining the observed 

associations.  

 

 

2. METHODS  

 

2.1. Study design and data sources 

We designed a two-sample MR study using aggregated summary data [10] 

from three published meta-analyses of genome-wide association studies. The main 

analysis was based on data from Kettunen et al [13] (n=24,925) and the 

CARDIoGRAMplusC4D consortium [14] (n=184,305), and the validation analysis used 

the METSIM [15] (n=8,372) and the CARDIoGRAMplusC4D datasets. Regarding the 

GWASs on lipoprotein traits, we used the Kettunen et al and the METSIM studies 

because these are the only ones with publicly available summary data. Regarding 

CARDIoGRAMplusC4D, we selected it because it had several quality characteristics 

that made it stand out among all GWAS on CAD with publicly available summary 

results: a large number of total participants (n=184,305), a large number of CAD cases 
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(n=60,801), a large number of genetic variants analyzed (8.6 million), and a quite 

consistent definition of CAD in the participant studies. A more detailed description of 

the studies is available in Supplementary Materials.  

We centered our analysis on the genetic variants associated with: 1) the main 

lipid profile traits in serum (HDL-C, LDL-C, and triglyceride levels); 2) other 

measurements of HDL quantity (ApoA-I levels); 3) HDL mean diameter; 4) the 

quantities of cholesterol transported in small, medium-sized, large and very large 

HDLs; 5) the quantity of other lipid species in HDL particles (triglycerides transported in 

very large HDLs); and 6) the levels of HDL particles according to the previous HDL size 

subtypes. Both the Kettunen et al and the METSIM studies measured HDL qualitative 

characteristics by the same nuclear magnetic resonance spectroscopy technique [16]. 

 

2.2. Assessment of genetic variants linked to lipoprotein characteristics and CAD 

risk adjusted for other lipoprotein traits: Multi-Trait-based Conditional & Joint 

analyses 

To identify the genetic variants associated with each lipoprotein characteristic 

that were also linked to CAD considering the potential pleiotropy among lipid profile 

traits, we used the Multi-trait-based Conditional & Joint analysis [17] in both the main 

and the validation stage. This method enables the estimation of the magnitude of the 

association of each genetic variant with each lipoprotein characteristic and with CAD, 

independently from the other genetically determined lipoprotein traits (adjusted effect 

sizes). For example, if we considered HDL-C as “main variable” and LDL-C and 

triglyceride levels as “covariates”, we would obtain the betas and standard errors of the 

associations of genetic variants with (1) HDL-C (using the Kettunen and METSIM raw 

summary data) and (2) CAD (using the CARDIoGRAMplusC4D raw summary results), 

adjusted for the association of these same genetic variants with LDL-C and triglyceride 
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concentrations. For this purpose, we defined six multivariate models a priori. Model 1 

included HDL-C, LDL-C and triglyceride levels. Further models included the elements 

in Model 1 as covariates and the following parameters as main variables: ApoA-I levels 

(Model 2); HDL mean diameter (Model 3); the cholesterol content in each HDL size 

subtype (small, medium-sized, large, and very large HDL particles; Model 4); the levels 

of HDL particles of each size subtype (Model 5); and the triglyceride content in very 

large HDLs (Model 6). In model 4 and 5, we required for the presence of at least two of 

the HDL subtypes (small, medium-sized, large, and very large) traits to build the model. 

The genetic correlation between traits was estimated by linkage disequilibrium score 

regressions using all genetic variants.  

 

2.3. Mendelian randomization analyses 

Based on the adjusted gene variant effects and their standard errors computed 

as previously described, we performed the MR analysis using the Generalized 

Summary-data-based Mendelian Randomization method [18]. The genetic variants to 

be considered were selected with the following criteria: 1) strong association with the 

lipid traits of interest (p-value<5·10-8); 2) not in linkage disequilibrium (R2<0.01, using 

the 1000 Genome project data –http://www.1000genomes.org/phase-3-structural-

variant-dataset– as reference [19]); and 3) a minor allele frequency ≥0.05.  

As an additional approach to exclude potential pleiotropy, we also removed the 

variants with a significant result in the HEIDI-outlier test (p-value<0.01). Finally, we 

explored and confirmed the exclusion of potential pleiotropic effects using Egger 

regressions [20]. Statistical significance of our results was corrected for multiple 

comparisons (p-value=0.05/number of traits). A description of complementary 

sensitivity analyses using other MR analyses methods such as the median-based and 
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inverse variance weighted, using the Global Lipid Genetic Consortium dataset [21] and 

post-hoc statistical power estimations [22] is available in Supplementary Materials. 
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3. RESULTS  

 

3.1. Mendelian randomization results 

 

3.1.1. Selected genetic variants 

We identified genetic variants significantly associated with 13 lipoprotein 

characteristics in the data published by Kettunen et al. and with 8 lipoprotein traits in 

the METSIM data. The number of genetic variants for each lipoprotein trait ranged from 

6 (level of medium-sized HDL particles) to 22 (ApoA-I). Genetic variants included in the 

analyses and their unadjusted and adjusted effects are listed in Supplementary Excel 

File 1.  

We observed high inverse genetic correlations (correlation coefficient≤-0.50) 

between triglyceride and HDL-C levels. Conversely, we observed very high direct 

genetic correlations (correlation coefficient≥0.70) between the cholesterol content in 

each HDL size subpopulation and HDL-C concentrations, between HDL mean diameter 

and the level of very large HDL particles, and between ApoA-I and the level of very 

large HDL particles and their cholesterol content (Supplementary Figure 1).  

 

3.1.2. Main analysis 

We defined as statistically significant those associations with a p-value<3.85·10-

3 (0.05/13). We observed a direct association between CAD risk and genetically 

determined levels of LDL-C (β=0.26 [95% Confidence Interval]: 0.17; 0.35], p-

value=1.32·10-8) and triglycerides (β=0.18 [0.073; 0.29], p-value=1.05·10-3). 

Conversely, the genetically determined concentrations of HDL-C (β=0.008 [-0.084; 

0.099], p-value=0.871) or ApoA-I (β=0.060 [-0.015; 0.13], p-value=0.116) were not 

associated with CAD risk (Figures 1, 2A and 2B). 
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In qualitative HDL measurements, the genetically determined HDL mean 

diameter was directly associated with CAD risk (β=0.27 [0.19; 0.35], p-value=2.23·10-

11) (Figures 1 and 2C). Cholesterol levels in very large HDLs was also positively linked 

to CAD risk (β=0.29 [0.17; 0.40], p-value=8.90·10-7), whereas cholesterol in medium-

sized HDLs was inversely related to this risk (β=-0.076 [-0.10; -0.052], p-value=4.55·10-

11) (Figures 1, 2D, and 2E). The genetically determined levels of all subtypes of HDL 

particles showed an inverse trend towards an association with CAD risk, but only that 

between very large HDLs and CAD was statistically significant (β=-0.22 [-0.32; -0.12], 

p-value=7.12·10-6) (Figure 1). Finally, the genetically determined levels of triglycerides 

in very large HDLs were directly related to CAD risk (β=0.14 [0.040; 0.25], p-

value=6.84·10-3) (Figures 1 and 2F). Effect sizes of all the associations are available 

in Supplementary Table 1. 

Genetic variants linked to both HDL qualitative traits and CAD risk were located 

within LIPC, the APOE/C1/C4/C2 cluster, PCIF1, TTC39B, and APOB 

(Supplementary Excel File 1). 

 

3.1.3. Validation analysis 

In the validation analysis (Figure 1), we confirmed the direct association 

between the genetically determined concentrations of LDL-C and CAD risk (β=0.24 

[0.17; 0.31], p-value=1.21·10-10), triglycerides and CAD risk (β=0.084 [0.013; 0.15], p-

value=0.020), and the null link between the genetically determined HDL-C levels and 

CAD (β=-0.025 [-0.087; 0.036], p-value=0.419).  

Results regarding qualitative HDL traits were also replicated. We confirmed the 

direct association of genetically determined HDL mean diameter with CAD risk (β=0.34 

[0.23; 0.46], p-value=4.47·10-9). There was a positive link between the cholesterol 

content in large HDLs and CAD (β=0.45 [0.34; 0.55], p-value=1.61·10-16) and an 
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inverse relationship between the genetically determined cholesterol levels in medium-

sized HDLs and CAD risk (β=-0.46 [-0.55; -0.37], p-value=5.9·10-23). Finally, high 

genetically determined levels of triglycerides in very large HDLs were nominally 

associated with greater CAD risk (β=0.081 [0.008; 0.15], p-value=0.030) (Figure 1 and 

Supplementary Figure 2). We could not assess the associations between the levels of 

HDL particles and CAD due to the lack of genetic variants associated with at least two 

of these HDL traits in the METSIM study. The effect sizes of all the associations of 

interest are available in Supplementary Table 2. 

 

3.1.4. Sensitivity analysis 

Egger regression intercept estimates supported the absence of pleiotropic 

effects. Results of the median-based and inverse variance weighted methods 

confirmed the direction and significance of the main analyses (Supplementary Table 

3). 

Associations between genetically determined HDL-C, LDL-C and triglyceride 

levels and CAD risk identified in our main analysis were similar to those obtained from 

the Global Lipid Genetic Consortium (Supplementary Table 4).  

 

3.1.5. Post-hoc statistical power estimation 

Power estimation for the main analyses ranged from 2.4% to 96.9% 

(Supplementary Table 5). 
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4. DISCUSSION 

 

Our findings suggest a potential causal relationship between qualitative HDL 

characteristics and CAD risk, even though HDL-C and ApoA-I levels were not 

associated with CAD. In particular, genetically determined mean HDL size, the 

distribution of cholesterol across HDL size subpopulations, and the triglyceride content 

in HDL particles were related to CAD risk.  

The relationship between HDL and cardiovascular risk is controversial [4]. 

Recent studies suggest that HDL functions and quality characteristics, rather than 

HDL-C concentration, are the main determinants of HDL anti-atherogenic properties 

[5]. Our data are consistent with previous evidence, and reflect that HDL-C and ApoA-I 

levels in the bloodstream are not causally related to CAD [3,11]. However, we 

observed a decrease in CAD risk when HDL-C was mainly transported in smaller 

HDLs, but an increase in CAD risk when HDL-C was carried by larger HDL particles (in 

both main and validation analyses, there is a gradient towards greater CAD risk as 

more cholesterol is transported in larger HDLs). The protective effect of cholesterol 

content in medium-sized HDLs and the increase in CAD risk due to cholesterol levels in 

larger particles observed in our data may contribute to explaining why the overall HDL-

C levels are not causally associated with cardiovascular risk [3,11]. Our results could 

also help explain the therapeutic failure of the pharmacological agents known to 

increase HDL-C levels. Niacin or cholesteryl ester transfer protein inhibitors are 

effective in increasing HDL-C concentrations but not in reducing CAD risk [2]. This 

paradox could be explained by the promotion of the accumulation of cholesterol 

content in large HDLs after the use of these drugs [23,24]. In gemfibrozil-treated 

patients, changes in HDL-C levels accounted for a small proportion of the CAD risk 

reduction (<10%), whereas the increase in small HDLs was much more predictive of 
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this risk reduction [25]. Finally, our results also concur with genetic studies analyzing 

variants in the SR-B1 gene, showing that individuals with loss-of-function variants have 

higher HDL-C concentrations, mainly in very large particles, but also higher CAD risk 

[26].  

However, there is still controversy in the relationship between HDL size 

subtypes and cardiovascular risk: some authors advocate for small HDLs as indicators 

of lower CAD risk [27] while others suggest they are associated with increased CAD 

risk [28]. There are several possible explanations for this heterogeneity. First, baseline 

health conditions of the subjects affect HDL quality and function. Lipid-poor, protein-

rich, small HDLs could be dysfunctional in pro-oxidative and pro-inflammatory 

pathological states due to post-translational modifications of their proteins and their 

enrichment in pro-inflammatory mediators (such as serum amyloid A or complement 3) 

[29]. Second, laboratory procedures to measure HDL size (nuclear magnetic 

resonance spectroscopy, electrophoresis, etc.) differed between the published studies, 

and there is low concordance between these techniques [30]. Third, the statistical 

models used did not consider all the same confounding factors and did not always 

include as covariates the levels of HDL-C or other lipid profile parameters related to 

these lipoproteins (e.g. triglyceride concentrations). 

Triglyceride and HDL-C levels may be two sides of the same coin, and this 

relationship may contribute to explaining why HDL-C is not causally related to CAD 

while triglycerides are. Hypertriglyceridemic states (generally due to high levels of very-

low density lipoprotein concentrations in plasma) are linked to an increased activity of 

the cholesteryl ester transfer protein, an enzyme that exchanges triglycerides in very-

low density lipoproteins for cholesterol in HDLs, resulting in an enrichment of HDLs in 

triglycerides [8]. Aged HDL particles may also become increasingly richer in 

triglycerides because this exchange is an essential process by which HDLs get rid of 
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the cholesterol they have collected from peripheral cells and transfer it back to the liver 

[31]. In any case, triglyceride-rich HDLs have been shown to present their ApoA-I in an 

unstable conformation [32], which may be related to lower HDL function (lower 

cholesterol efflux capacity) and a greater disintegration of the HDL structure (lower 

HDL-C levels) [8]. Our results confirm that triglyceride-rich HDLs are causally related to 

higher CAD risk independently from the circulating levels of triglycerides and HDL-C. In 

addition, this mechanism also verifies the hypothesis that high triglycerides (in 

circulation and in HDL particles) are essential mediators of high cardiovascular risk and 

suggests that low HDL-C levels in these states may be a secondary consequence of 

this lipid disruption. 

Both observational and experimental studies have more consistently found an 

inverse relationship between the number of HDL particles and cardiovascular risk, 

compared to HDL-C levels [7]. Similarly, we observed that the concentrations of HDL 

particles of all sizes were inversely related to CAD risk, although only the genetically 

determined levels of very large HDLs were significantly associated with it in the main 

analysis. Unfortunately, we could not validate these results due to the lack of valid 

genetic variants in the METSIM study.  

Our results are mechanistically plausible and highlight novel potential 

therapeutic targets in cardiovascular disease, since genetic variants individually 

associated with HDL qualitative traits and CAD in our data were located within several 

HDL-related genes or gene clusters. LIPC encodes for hepatic lipase C, an enzyme 

that hydrolyzes triglycerides in circulating lipoproteins, including HDL particles [31]. 

Hydrolysis of HDL triglycerides by this enzyme generates small/medium-sized, 

triglyceride-depleted particles, considered to be more stable and functional than very 

large, triglyceride-rich HDLs [33]. Since triglyceride-rich HDLs were also causally linked 

to CAD in our data, this potential mechanism would contribute to explaining a decrease 
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in cardiovascular risk. The APOE/C1/C4/C2 cluster encodes apolipoproteins E, C-I, C-

II, and C-IV and has been classically associated with blood lipid levels [34]. Particularly, 

apolipoprotein E is a pivotal mediator in reverse cholesterol transport [35] and 

apolipoprotein C-I is involved in the activation of lecithin-cholesterol acyltransferase 

and the inhibition of cholesteryl ester transfer protein, two key enzymes in HDL 

metabolism [36,37]. The third most relevant HDL-related locus encodes the PDX1 C-

Terminal Inhibiting Factor 1 (PCIF1) and is located next to the PLTP gene, which 

expresses the phospholipid transfer protein, an enzyme involved in HDL 

remodeling/stabilization [31]. PCIF1-related gene variants have been shown to 

modulate phospholipid transfer protein function in other studies [38]. Finally, TTC39B 

encodes the tetratricopeptide repeat domain protein 39B, whose genetic variants had 

already been associated with HDL-C levels and CAD in previous works [34,39]. 

Our study presents some limitations. First, in order to use a MR approach, we 

had to make some assumptions [10], among which stands out the absence of 

pleiotropy. In our case, most of the genetic variants used as instruments were 

associated with more than one lipid trait. To solve this problem, we used a novel 

approach (Multi-trait based Conditional & Joint analysis–Generalized Summary data-

based Mendelian randomization methodology) to control for the confounding effects 

related to the close relationship between lipoprotein characteristics and to minimize 

pleiotropy [17]. Second, the interpretation of multivariable MR is challenging, especially 

when the covariate-biomarker lies on the causal pathway from the main-biomarker to 

disease, or when the covariate-biomarker measures the same entity as the main-

biomarker [40]. Third, the population tested may exhibit significant genetic 

heterogeneity because of different ethnic origin. The Kettunen et al. study included 

European populations, the CARDIoGRAMplusC4D study included European and Asian 

populations, but the METSIM study included only Finnish. However, this heterogeneity 
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is assumed to be minimal since the original GWASs excluded those genetic variants 

whose allele frequencies departed from Hardy-Weinberg equilibrium and all the 

variants included in our analyses, except rs73168081 (associated with cholesterol 

content in large HDL particles in Kettunen et al), presented a similar allele frequency in 

the three GWASs considered (Supplementary Excel File 1). In addition, the METSIM 

study only considered male population, and this may have partially distorted the 

findings of the validation analyses. Nevertheless, sex- and age-related bias had been 

originally addressed in the original GWASs as described in the Methodology section of 

each of the studies. Fourth, we have not been able to study whether other HDL 

functional properties (such as cholesterol efflux capacity, HDL antioxidant properties, 

and HDL particle type according to ApoA-I and ApoA-II content) are causally linked to 

CAD due to unavailability of GWAS studies on these traits with publicly available 

summary data. Fifth, the statistical power of our analyses was limited for some of the 

traits of interest. Finally, in the validation analysis we could not generate genetic 

instrumental variables for some of the lipoprotein traits. However, our study has several 

methodological strengths. First, our results are based in MR, a useful approach to 

explore the causality of the association between biomarkers and specific diseases. 

Second, we included two independent MR analyses to validate the results initially 

observed. Finally, the validity of the genetic variants for HDL-C, LDL-C and triglyceride 

levels initially generated was confirmed, supporting the validity of these datasets for the 

analysis of other genetic variants.  

 

 

  

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 
19 

 

 

5. CONCLUSIONS 

 

Several genetically and life-long qualitative HDL characteristics were related to 

CAD risk. Although HDL-C and ApoA-I levels were not causally linked to CAD, our 

results support a potential causality between higher mean HDL diameter, greater 

cholesterol levels in very large HDLs, and triglyceride-rich HDL particles and higher 

CAD risk, and between cholesterol levels in medium-sized HDLs and lower CAD risk. 

This relationship could be mediated by several HDL-related proteins, which are 

suggested as potential therapeutic targets for further exploration in cardiovascular 

prevention.   
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FIGURES 

 

Figure 1. Association of the genetically determined lipid profile and HDL characteristics 

with coronary artery disease risk.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effect of genetically determined HDL cholesterol (HDL-C), LDL cholesterol (LDL-C) and 

triglyceride levels (Panel 1), apolipoprotein A-I concentrations (Panel 2), mean HDL 

diameter (Panel 3), cholesterol content in each HDL size subtype (Panel 4), number of 

particles of each HDL size subtype (Panel 5), and triglyceride levels in very large HDLs 

(Panel 6) on CAD, independently from the effect of genetically determined levels of 

classic lipid profile parameters. In all cases, main Mendelian randomization analyses 

(Kettunen-CARDIoGRAMplusC4D) appear first and the validation ones (METSIM-

CARDIoGRAMplusC4D) appear below. NA: non-available association.  
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Figure 2. Association of individual SNPs affecting lipoprotein traits with coronary artery 

disease risk in the main analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Estimates of the associations of individual SNPs related to (A) HDL cholesterol (HDL-

C) levels, (B) apolipoprotein A-I concentrations, (C) mean HDL diameter, (D) 

cholesterol content in medium-sized HDLs, (E) cholesterol content in very large HDLs, 

and (F) triglyceride levels in very large HDLs with coronary artery disease risk. 

Estimates were derived from the study by Kettunen et al and the 

CARDIoGRAMplusC4D meta-analyses (multivariate adjusted estimates). Error bars 

represent 95% confidence intervals. The slopes of the lines show the genetic 

instrumental variable regression estimates of the effect of the lipid characteristics on 

coronary artery disease risk. 
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HIGHLIGHTS 

 

 This is the first Mendelian randomization study on HDL quality traits and CAD 

risk 

 Genetically determined HDL-C and apolipoprotein A-I levels were not linked to 

CAD 

 HDL diameter and cholesterol levels in very large HDLs were directly related to 

CAD 

 Triglyceride levels in large HDLs were also directly associated with CAD 

 Cholesterol content in medium-sized HDLs was inversely related to CAD 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof


