Monetary Policy at Work: Security and Credit Application Registers Evidence

José-Luis Peydró Andrea Polo Enrico Sette*

Abstract

Monetary policy transmission may be impaired if banks rebalance their portfolios toward securities. We identify the bank lending and risk-taking channels of monetary policy by exploiting—Italy’s unique—credit and security registers. In crisis times, with higher central bank liquidity, less capitalized banks react by increasing securities over credit supply, inducing worse firm-level real effects. However, they buy securities with lower yields and haircuts. Unlike in crisis times, in precrisis times, securities do not crowd out credit supply. The substitution from lending to securities in crisis times helps less capitalized banks repair their balance sheets and restart credit supply with a one-year lag.

Keywords: securities, credit supply, bank capital, monetary policy, reach for yield.

JEL Codes: G01, G21, G28, E52, E58.

José-Luis Peydró: Imperial College London, ICREA-UPF, Barcelona GSE, CREi, CEPR, jose.peyro@gmail.com, South Kensington Campus, Exhibition Rd, London SW7 2AZ, UK, tel: +44 (0)20 7589 5111 (corresponding author); Andrea Polo: Luiss University, Universitat Pompeu Fabra, Barcelona GSE, EIEF, CEPR, ECGI, andrapolo@gmail.com, Viale Romania 32, 00197, Rome, Italy, tel: +39 06 85225550; Enrico Sette: Bank of Italy, enrico.sette@bancaditalia.it, Via Nazionale 91, 00184, Rome, Italy, tel: +39 06 47923772. We thank Bo Becker, Patrick Bolton, Markus Brunnermeier, Douglas Diamond, Mark Flannery, Jordi Galí, Emilia Garcia Appendini, Nicola Gennaioli, Peter DeMarzo, Filippo De Marco, Victoria Ivashina, Marco Pagano, Huw Pill, Soledad Martinez Pería, Ricardo Reis, Stefano Rossi, Tano Santos, Amit Seru, Sylvana Tenreyro, Annette Vissing-Jorgensen, David Web, and seminar and conference participants at Berkeley, Stanford, Copenhagen Business School, University of Copenhagen, CREI, Zurich, LSE, Bocconi, Cattolica Milan, IESE, ECB, CFM-LSE Money Macro Workshop, the Barcelona GSE Summer Forum FIR Workshop 2016, St. Gallen, the “Empirical Monetary Economics Workshop” organized by Sciences Po-Banque de France-Bank of England, the conferences on “Non-Standard Monetary Policy Measures”, and on “Monetary Policy Pass-Through and Credit Markets” at the ECB, the 42° Simposio de la Asociación Española de Economía, and the DNB-CEPR Conference on “Bank Equity over the Cycle” for helpful comments and suggestions. The views of this paper are those of the authors and do not represent the views of Banca d’Italia or of the Eurosystem. This paper has been developed through CEPR’s Restarting European Long-Term Investment Finance (RELTIF) Programme, which is funded by Emittenti Titoli. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 648398). Peydró also acknowledges financial support from the Spanish Ministry of Economy and Competitiveness through grants ECO2012-32434 and ECO2015-68182-P (MINECO/FEDER, UE) and through the Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2015-0563).
“With an impaired bank lending channel, monetary policy may lose its handle on the real economy.”

Mario Draghi, president of the European Central Bank

1

1. Introduction

Central banks have massively expanded their balance sheet since 2008, with main monetary rates around zero. However, the large injection of liquidity to banks may not have reached the real sector by means of expanded supply of credit. The potency of the bank lending channel of monetary policy may be limited if banks rebalance their portfolio toward securities holdings to hoard liquidity or reach for yield, as opposed to lending to the real sector. For instance, in the words of Jeremy Stein3, (then) governor of the Federal Reserve Board, “A credit crunch may arise as other financial intermediaries (e.g., banks) withdraw capital from lending, so as to exploit the now-more-attractive returns to buying up fire-sold assets. Ultimately, it is the risk of this credit contraction, and its implications for economic activity more broadly, that may be the most compelling basis for regulatory intervention.” Moreover, the impairment of the bank lending channel of monetary policy may be especially strong for less capitalized banks.4

2 Securities holdings are a sizable fraction of bank balance sheets, around 20% of assets in the US and Europe (e.g., in Italy and Germany), and recent policy initiatives aim at limiting security trading by banks (Volker Rule in Dodd-Frank in the US, Liikanen Report in the EU, and Vickers Report in the UK).

Softer monetary policy may also have unintended consequences for financial stability. In crisis times, less capitalized banks may take excessive risk (Freixas and Rochet, 2008), especially given the large expansion of central banks’ balance sheets, and banks may reach for yield more easily, and more quickly, by adjusting their liquid securities holdings rather than illiquid credit (Myers and Rajan, 1998; Acharya and Steffen, 2015). On the other hand, according to the risk-taking channel of monetary policy, while softer monetary policy incentivizes the building up of riskiness in banks’ balance sheets during booms (Adrian and Shin, 2010a; Borio and Zhu, 2012; Jimenez et al. 2014), in crisis times, this channel may not work by inducing risk-taking by less capitalized banks but in terms of repairing their balance sheets. In the words of Adrian and Shin (2010a), “The effect of keeping policy rates low in the aftermath of the financial crisis of 2008 has illustrated again the potency of low policy interest rates in raising the profitability of banks and thereby recapitalizing the banking system from their dangerous low levels.” That is, softer monetary policy in crisis times may help less capitalized banks to derisk and recapitalize.

We test for the bank lending and risk-taking channels of monetary policy by studying banks’ securities trading, in addition to credit supply, and evaluate the potency of monetary policy via banks and the channels through which it operates. Analyzing banks’ reactions in security trading and credit supply, including the heterogeneous effects, also sheds light on the empirical relevance of theories of banking and macro-finance. For identification, we exploit the

5 Draghi argues that “Our monetary policy measures are necessary to achieve our primary objective of maintaining price stability. But we are nevertheless aware that they may have unintended side effects on the financial system.” Mario Draghi, Hearing at the European Parliament’s Economic and Monetary Affairs Committee, March, 23, 2015.

6 For the bank lending and risk-taking channels, see, for example, Bernanke and Blinder (1988, 1992), Kashyap and Stein (2000), Adrian and Shin (2010a), Chodorow-Reich (2014), Bruno and Shin (2015), Brunnermeier and Sannikov (2013, 2017), and Brunnermeier and Koby (2017). Theory also links lending and securities trading:
unique security and credit application registers owned by the central bank of Italy in its role of
bank supervisor, at monthly frequency since the creation of the euro in 1999. As a byproduct, we
analyze the impact of nonstandard monetary policy via banks during the euro area sovereign debt
(and Lehman) crises with (unique) granular information.

While a very large empirical literature on the bank channels of monetary policy analyzes
only credit, including risk-taking, there is no evidence on the impact of monetary policy with
granular data on banks’ security trading. Moreover, we analyze all securities (not just sovereign
debt) and security-level information on risk (e.g., yield) or liquidity (e.g., haircuts). Furthermore,
we show the implications of securities trading on the supplying of credit associated to monetary
policy, both in the short term and in the medium term (intertemporal effects).

We show that securities do matter. In crisis times, with softer monetary policy conditions,
less capitalized banks react by increasing securities over credit supply, with associated firm-level
real effects. Importantly, less capitalized banks buy securities with lower yield (also lower
haircuts), even within securities with identical regulatory capital risk weights or public haircuts,
thus reaching for safety and liquidity. Results suggest that liquidity and risk-bearing capacity are
key drivers of banks’ behavior due to monetary policy conditions. Unlike in crisis times, in
precrisis (normal) times, when financial frictions are limited, as monetary policy conditions
become softer, less capitalized banks do not expand securities over supply of credit. Moreover,
during crisis times, with softer monetary conditions, the substitution from lending to securities
helps restore the profitability (and capital) of less capitalized banks, and this improvement in the
balance sheet helps to restart credit supply with a one-year lag.

Shleifer and Vishny (2010) and Diamond and Rajan (2011) show that in crises banks may prefer buying securities
rather than providing credit.
Identifying the bank lending and risk-taking channels of monetary policy is especially challenging. First, a portfolio rebalancing toward securities, especially during a recession, may be due to a credit demand problem, with few lending opportunities and in the presence of risky, highly leveraged borrowers, which may induce a nonrandom matching between risky securities or loans and banks. Second, to identify risk-taking, it is necessary to observe micro-level information on riskiness on all securities and loans, for example, the yield or the rating of a security (sovereign or not) or of a corporate loan.

Access to comprehensive and granular banking data is thus crucial to identify the monetary policy transmission channels and phenomena of reach for yield. The security register contains—at the security (ISIN) level data—all securities investments for each bank in Italy (not just government bonds or just securities that banks pledge as collateral to borrow from the European Central Bank (ECB)). We analyze bonds (81% of holdings), and for each security, we obtain yields, issuer, rating, and haircuts applied by the ECB in repo loans, prices, and remaining maturity. Even within an issuer (e.g., the Italian sovereign), our data include all the securities with different yields, maturities, and haircuts held by banks every month. Moreover, differently from other registers, the Italian security register records whether a security is in the trading book, available for sale, or held to maturity.

In addition, the credit register allows us to observe information on loan applications and borrower identity, thanks to which we can identify credit supply. We further match the security and credit register data with the official balance sheet data deposited by firms to the Chambers of Commerce, as required by Italian law. Thanks to the firm-level data, we obtain both a measure of ex-ante default probability (in addition to loan rates) for the analysis of the risk-taking channel

8 Kenneth Rogoff, “Debt supercycle, not secular stagnation”. VoxEU, April, 22, 2015.
and measures of firm-level real effects associated with the bank channels of monetary policy. Finally, we match the registers with supervisory banks’ balance sheet data.

We first analyze the data at the security-bank-month and at the (firm) application-bank-month level, since this allows us to (1) test heterogeneous effects, whether the effects of softer monetary policy conditions on banks’ securities holdings is heterogeneous across banks and across securities (e.g., banks with low capital change their holdings of securities depending on yield, haircut, maturity, rating and risk weight) or whether the effects of monetary policy on the granting of loan applications is heterogeneous across bank and firm (applicant) characteristics (e.g., banks with low capital grant relatively more applications to firms with different ex-ante loan rates and default probabilities proxied by z-scores) and (2) in the most demanding specification to saturate the model with security*time and firm*time fixed effects. The former helps us to control—in each month—for how much of each security is issued and outstanding, fully controlling also for unobserved time-varying risk at the security level (ratings, price, or maturity), thus isolating the demand of securities by banks. When we analyze loan applications, we include firm*time fixed effects, which implies that we analyze the granting of applications by different banks to the same firm in the same period, thus fully controlling for unobserved and observed time-varying borrower fundamentals in loan applications and thereby identifying credit supply.

To test for more aggregate effects, we check whether, at the bank level, the relative weight of all securities holdings compared to all loans changes heterogeneously across banks, and also test for spillovers to the aggregate economy, by analyzing firm-level real effects. Moreover, to test for intertemporal effects, we analyze whether, at the bank level, softer monetary policy increases the profits and capital of less capitalized banks and whether this increase in profits and capital helps to restart the supply of credit at a later point in time, including the overall lending effects of softer monetary policy.
We exploit bank capital heterogeneity, controlling for other bank variables, to identify the bank lending and the risk-taking channel of monetary policy. The bank capital ratio is a sharp measure for both the intensity of the agency conflicts between bank shareholders and their financiers (including depositors, debtholders, and tax payers) and the strength (net worth) of bank balance sheets, so bank capital is a key driver of both the risk-taking and the bank lending channels (Holmstrom and Tirole, 1997; Freixas and Rochet, 2008; Adrian and Shin, 2010a; Admati and Hellwig, 2014; Brunnermeier and Sannikov, 2017). As Hyun S. Shin remarked on a speech on “Bank capital and monetary policy transmission” in 2016 as chief economic adviser of the Bank for International Settlements, “for most central banks, discussions of bank capital crop up most often in connection with their financial stability mandate or perhaps with their financial supervision mandate, if they have a role there. But having soundly capitalised banks turns out to be vital for the transmission of monetary policy, also. In this sense, bank capitalisation ought to be a key concern for central banks in fulfilling their monetary policy mandate, as well as for their financial stability mandate.”

We focus on the crisis period, when financial frictions are strong and thus substitution between securities and loans may be more prevalent (see Shleifer and Vishny, 2010; Diamond and Rajan, 2011). We exploit the time series of unconventional monetary policy measures taken by the ECB after the Lehman default, which we proxy by the size of the ECB balance sheet (subtracting the autonomous factors that are beyond ECB’s direct control), deflated by nominal GDP (which is similar to Taylor residuals, that is, monetary activity over and above economic conditions). This measure (see ECB (2015) on the role of the central bank balance sheet as a monetary policy tool) reflects the series of unconventional monetary policies undertaken by the ECB that provided liquidity after the start of the financial crisis in September 2008 (main refinancing operations (MRO) with fixed rate full allotment, different long-term refinancing operations (LTROs), for example, three- and six-month and one-a and three-year LTROs,
buying of securities as, for example, the Security Market Programme (SMP) and Covered Bonds Purchase Programme (CBPP)). However, we also use more granular data to disentangle, within the total assets of the ECB, the repo liquidity (loans) extended by the ECB and the assets purchased by the ECB: in this way we can check whether different unconventional policies have different effects, including the analysis of differences at the security level on public haircuts as well as security-level differences in expansion of monetary policy with Quantitative Easing.

As monetary policy reacts to economic activity, we also control for other key macro variables by including time fixed effects and interactions of bank capital (and key security and loan variables) with current economic activity (Taylor, 1993), with the forecast of future economic activity (Romer and Romer, 2004), and with financial uncertainty (Freixas, Laeven, and Peydró, 2015), among other variables. We also look at alternative measures of monetary policy by using shadow rates (Wu and Xia, 2017) or, analyzing just the large quantitative changes of the two initial three-year LTROs on December 21, 2011 and February 29, 2012. We also study conventional monetary policy in the precrisis period (January 1999 to August 2008), where we proxy monetary conditions by a measure related to Taylor residuals. Finally, we also consider the recovery period, in which the largest ECB program (the Asset Purchase Programme (APP)), which is the start of the ECB’s Quantitative Easing in 2015, took place, and we exploit granular information on individual securities to analyze its impact on bank behavior.

In crisis times, we find robust evidence that when monetary policy conditions become softer, banks react by increasing their holdings of securities. Moreover, less (compared to more)
capitalized banks increase their securities holdings even more. However, the opposite happens with credit supply—banks with less (compared to more) capital react by granting fewer loan applications to the same firm in the same quarter when the ECB expands liquidity (i.e., less capitalized banks rebalance their portfolios from loans to securities, and this is not because of lack of good loan applications). Unlike in crisis times, in precrisis (normal) times, as monetary policy conditions become softer, less capitalized banks do not expand securities holdings over supply of credit to firms.

The differential result on securities holdings versus lending is moreover confirmed by aggregate bank-level data, analyzing all securities and all loans held by banks. An increase in one standard deviation of the unconventional monetary policy variable makes banks in the 25th percentile of bank capital, as compared to the 75th percentile, increase securities holdings over lending with a semi-elasticity of 5.85\%. Hence, both at the micro level and at the more aggregate bank level, we find that banks with capital below the mean react by cutting credit supply (and also all loans over all securities) when monetary policy conditions are softer, opposite than what banks with capital higher than the mean do. To address potential external validity concerns, we show similar results in a sample of French and German banks with aggregate bank-level data.

10 Results are very similar if we only analyze foreign issued securities (which do not directly support the Italian economy) or if we exclude securities issued by Italian nonfinancial firms (which are a tiny amount). The amount of these securities in Italian banks is less than 1\% of bank loans to firms (similarly in other bank-dominated countries). Small and medium enterprises are in general financially constrained, with lack of market access and strong bank dependence even in non-bank dominated countries (see, e.g., Allen, Chui and Maddaloni, 2004).

11 The differential impact of a one standard deviation change in the unconventional monetary policy variable on securities holdings over lending at the mean, in percent.
Results moreover suggest that the bank behavior has real effects at the firm level. After an increase of one standard deviation in unconventional monetary policy, firms ex-ante exposed to banks with less (as compared to more) capital (25th vs. 75th percentile) receive less credit overall, invest less, reduce the wage bill, and decrease sales (the semi-elasticities are, respectively, 11%, 9%, 20%, and 8%).

Consistent with the risk-taking channel of monetary policy in crisis times, we show evidence of intertemporal effects of monetary policy on credit supply. We find that the immediate substitution from loans toward securities helps to restore profits and capital of ex-ante weakly capitalized banks, and the increase in profits and capital allows these banks to restart the supply of credit after one year. Consistently, our results suggest that softer monetary policy has a much higher power to increase lending with six- to twelve-month lags.

Based on theory, when central bank liquidity increases, less capitalized banks may react by increasing securities over credit in crisis times to hold more liquid assets (which could be pledged as collateral to obtain additional funding), to economize on regulatory capital, and/or to reach for yield with securities. Therefore, to further understand the different drivers of our results, including the risk-taking channel, we analyze heterogeneous effects across different yields, haircuts, maturities, regulatory capital risk weights, and securities classes (e.g., government debt).

We find robust evidence that less capitalized banks buy securities with lower ex-ante yield in crisis times, when monetary policy conditions are softer, even within securities in the same period with identical regulatory risk weights or public haircuts. Moreover, we do not detect differences in risk-taking on loans by banks with different capital ratios in crisis times. Our results are therefore inconsistent with less capitalized banks taking on more risk when the ECB

12 We do not find any differential effects between domestic and foreign banks (in Italy) for risk-taking.
expands liquidity in crisis times. Results are economically significant: a 24% semi-elasticity of an increase in one standard deviation of monetary policy on the net purchases of securities. The increase in securities with lower yield (one standard deviation) by banks with low versus high capital (25th versus 75th percentile), after an increase in one standard deviation in monetary policy is 39% of the increase due to the softer monetary policy.

We also obtain very similar results when analyzing only Italian government bonds (all government bonds have zero regulatory capital risk weights) or when analyzing all securities with the same rating and maturity in the same month (which are the determinants of regulatory capital). Therefore, our monetary policy results are not explained by differences in regulatory capital risk weights, and hence pure regulatory capital arbitrage cannot explain the reach for safety by less capitalized banks (due to monetary policy).

Next, we look for differences between the two main types of policy interventions by the ECB (the repo liquidity and the assets purchased). We do not detect significant differences as both measures have very similar effects on our main two results that banks with less capital react to softer monetary policy by purchasing more securities and especially with lower yield. Moreover, less capitalized banks buy more securities with lower (ECB) haircuts that can be used to borrow at better conditions in repo loans at the ECB, which suggests that access to liquidity is another key driver of the monetary policy results. Consistently, we find that public haircuts only matter within the securities that banks mostly place at the ECB for liquidity (local sovereign

13 For liquidity, it may also be key to deposit excess reserves at the ECB; however, based on supervisory reports, this phenomenon is not large in Italy (the percentage of total reserves out of bank total assets during the crisis is 1.71, but most reserves are required, with the excess ones close to 0; e.g., in December 2013, the median of excess reserves is only 0.02%). Nevertheless, results are very similar if we include as securities the excess reserves at the ECB.
debt versus other securities), and results are only significant stemming from ECB repo loans and not stemming from ECB asset purchases. Therefore, less capitalized banks do not only reach for safety but also for liquid assets.

Finally, in the recovery period, which is characterized by improved economic conditions but does not yet qualify as “normal/boom” time, we find that banks with lower capital, on average, still take less risk (with softer monetary conditions), but the ones more favored by QE (based on granular security by security data) start to take more risk, consistent with the idea that as economic conditions improve, risk-taking by less capitalized banks starts to be undertaken again.

Our main contribution is to the literature on the transmission of monetary policy via banks, in general, and on the transmission of monetary policy via banks during the euro area sovereign debt crisis, in particular.\(^\text{14}\) Despite a very large literature analyzing the effects of monetary policy on bank lending, there is no empirical evidence on the impact of monetary policy with granular data on banks’ securities trading. We show that this does matter and matters differently for securities with different haircuts and yields. Moreover, while the main two monetary instruments (repo loans and asset purchases by central banks) have similar results overall, there are interesting differences: only repo loans affect security trading depending on public haircuts. In addition, due to exploiting more comprehensive data sets than the existing literature, our results give a new perspective on the transmission of monetary policy via banks during the euro area sovereign debt crisis.

\(^\text{14}\) Our results also relate to the literature on bank capital. Capital crunches can lead to credit crunches, as shown for example, by Bernanke and Lown (1991), Peek and Rosengren (2000) and papers after the last global financial crisis, including the macroprudential role of bank capital (Jiménez, et al., 2017). Our results show that for banks with less capital, softer monetary policy conditions in crises affect more securities rather than credit supply.
Our findings show that analyzing whether (and the different drivers through which) monetary policy affects banks’ security trading is crucial for (i) credit supply and thus for the bank lending channel of monetary policy (Bernanke and Blinder, 1992; Bernanke and Gertler, 1995; Stein, 1998; Kashyap and Stein, 2000; Brunnermeier and Sannikov, 2017; and Brunnermeier and Koby, 2017)\(^{15}\) and (ii) the risk-taking channel of monetary policy (Adrian and Shin, 2010a; Allen and Rogoff, 2011; Maddaloni and Peydró, 2011; Chodorow-Reich, 2014; Bruno and Shin, 2015; Dell’Ariccia, Laeven and Marquez, 2017).\(^{16}\) Moreover, we analyze the impact of nonstandard monetary policy via banks during the euro area crisis and, thanks to a more complete analysis and more granular data (first paper analyzing the time series of the euro crisis with securities and credit applications registers), we reach a different conclusion with respect to the existing literature. Furthermore, we analyze the largest GIIPS (Greece, Ireland, Italy, Portugal and Spain) country during the euro crisis.

\(^{15}\) Bernanke (Ben Bernanke, “The financial accelerator and the credit channel”, Federal Reserve Bank of Atlanta, June, 15, 2007) reinterprets the traditional bank lending channel (of Bernanke and Blinder, 1992; Bernanke and Gertler, 1995; Stein, 1998; Kashyap and Stein, 2000). Bernanke (Ben Bernanke, “Central banking after the great recession: lessons learned and challenges ahead”, Brookings Institution, January, 16, 2014) also argues that the theoretical underpinning of unconventional monetary policy is not yet fully developed, “The problem with QE is that it works in practice, but it doesn’t work in theory.”

\(^{16}\) Adrian and Shin (2010a) in the latest Handbook of Monetary Economics discuss the risk-taking channel of monetary policy. See also Allen and Rogoff (2011) (which summarizes different models by Franklin Allen and Douglas Gale), Chodorow-Reich (2014), Diamond and Rajan (2012), Borio and Zhu (2008), and Rajan (2006), among others. The idea that the liquidity provided by central banks is important in driving excessive risk-taking is not new however, “Speculative manias gather speed through expansion of money and credit or perhaps, in some cases, get started because of an initial expansion of money and credit” (Kindleberger, 1978, p.54).
There are several theoretical studies on the transmission of monetary policy via banks, and there is large evidence of the impact of monetary policy on only bank loans (e.g., Bernanke and Blinder, 1992; Kashyap and Stein, 2000; Jiménez et al., 2012, and 2014; Di Maggio, Kermani, and Palmer, 2016; Chakraborty, Goldstein, and MacKinlay, 2019; Dell’Ariccia, Laeven, and Suarez, 2017; Rodnyansky and Darmouni, 2017). However, despite the fact that security holdings by banks are a large share of their portfolio, may affect credit supply (and associated real effects), and there may be reach for yield in banks’ security holdings, as far as we are aware, there is no empirical evidence on the bank lending and risk-taking channels of monetary policy analyzing banks’ security trading, including different securities portfolios, and on the relation between securities holdings and credit supply.

In addition to the recent theoretical literature on monetary policy and banks (e.g., Diamond and Rajan, 2006, 2012; Bolton and Freixas, 2006; Gertler and Kiyotaki, 2010; Freixas, Martin, and Skeie, 2011; Allen, Carletti, and Gale, 2014; Dell’Ariccia, Laeven, and Marquez, 2014; Stiglitz, 2018; Coimbra and Rey, 2017), our results can shed light on theories on banking. Results suggest that the main drivers at work in crisis times are access to liquidity (banks with less capital have more liquidity needs; see e.g., Rochet and Vives, 2004; Diamond and Rajan, 2011; Cornett et al., 2011) and risk-bearing capacity (banks with less capital have lower risk-taking capacity; see, e.g., Adrian and Shin, 2010a, 2010b; Bruno and Shin, 2015; Coimbra and Rey, 2017), rather than regulatory capital arbitrage or reach for yield by less capitalized banks (see, e.g., Freixas and Rochet, 2008, and the references therein). In crisis times, when financial frictions are important, results suggest that less capitalized banks increase securities over credit supply, which is consistent, among others, with Shleifer and Vishny (2010) and Diamond and Rajan (2011). There is also evidence of crowding out in good times (during house price booms) but between mortgage and commercial lending (Chakraborty, Goldstein and, MacKinlay, 2018).

A related paper, Albertazzi, Becker, and Boucinha (2018), analyzes the impact of the QE of the ECB in 2015 exploiting bank-level information on security holdings for a sample of the 25 largest banks in the euro area but, unlike our paper, they cannot match this information with loan-level data. Also Paludkiewicz (2018) analyzes the impact of the QE of the ECB on German banks but, again, without loan-level data. Both papers focus on a specific
Two recent papers also work on credit and securities registers. However, their main questions are related but different from ours. In addition, differently from our work, none of these papers analyze the real effects of credit, which are crucial to assess aggregate effects in the overall economy, nor the reach for yield associated to softer monetary policy. Abbassi et al., (2016) use the security register in Germany to analyze bank trading in fire-sold assets after the Lehman crisis shock and its effects on credit granted.\footnote{Banks with higher capital reduce granted credit to buy more fire-sold securities. In our case, we find that—when the ECB expands its balance sheet—banks with higher capital grant more loan applications, not less. Our results are different, but we analyze a different question, that is, the effects of an expansion of the ECB balance sheet.} Importantly, they do not analyze the transmission of monetary policy, which is the focus of our paper.\footnote{In one regression, Abbassi et al. (2016) analyze the endogenous bank-level borrowing from the central bank, but they do not analyze how this (or different monetary policy conditions) affects trading and credit supply (including risk-taking) depending on bank capital (or balance sheet strength), which is our main question.} In a contemporaneous paper, Carpinelli and Crosignani (2018) focus on credit granted by banks with different wholesale funding around the three-year LTRO. Our work differs along several dimensions, in particular, we i) focus on securities trading by banks (analyzing granular data at the security-bank-month level);\footnote{Carpinelli and Crosignani (2018) have data on the aggregate amount of government bonds at bank level, so they do not distinguish between different yields or different accounting treatment in their analysis of sovereign debt, and they also do not analyze nonsovereign debt securities. Another difference with Carpinelli and Crosignani (2018) is that we analyze loan applications to identify credit supply rather than the change in existing credit.} ii) study risk-taking (in both securities and loans); iii) study the full time series of monetary policy since the creation of the euro in 1999, which includes several years of crisis and normal times (including a recovery period), as well as differences between ECB repo loans versus ECB asset purchases (which are important for securities trading depending on public monetary policy tool, while we study the impact of unconventional monetary policy on banks portfolios more broadly and over a longer time period.}
haircuts); iv) exploit bank capital as a key source of heterogeneity given its relevance for the theoretical literature of monetary policy and the debate on prudential regulation; (v) analyze real effects of credit and loan applications. As a consequence, our papers, but also our findings, are complementary but very different: for example, while Carpinelli and Crosignani (2018) show that banks less dependent on wholesale funding rebalance their portfolio relatively more from loans to government bonds after the first three-year LTRO, we show that in response to softer monetary policy, in crisis times, banks with less capital grant less loan applications and buy more securities (albeit bearing lower risk), whereas in normal times securities do not crowd out loan granting by less capitalized banks.

As in Becker and Ivashina (2015), who show evidence on reach for yield in bonds by insurance firms over the credit cycle, we also analyze reach for yield in our paper (banks with less capital expand into securities with lower yield, even for securities within the same regulatory capital risk weights), and extend their findings by studying banks and the transmission of monetary policy. Our paper also finds different risk-taking results in good than in crisis times.

Our results are robust to different observable variables (including wholesale finance) and fixed effects.

Chodorow-Reich (2014) studies the effect of unconventional monetary policy on reach for yield incentives by different financial institutions (banks, pension funds, insurances, mutual funds); Lian, Ma, and Wang (2019) study the effect of low interest rate on reach for yield incentives by individuals.

Our results allow us to better understand Stein’s quote that we use in the first page of our paper, which claims that a credit contraction may arise because banks withdraw capital from lending to buy risky assets. We show that bank capital heterogeneity is crucial. When the central bank expands its balance sheet, banks that buy riskier securities provide relatively more, not less, credit to the real sector. These banks are better capitalized with higher risk-bearing capacity and less need of buying securities with lower central bank haircut. Unlike for more capitalized banks, for less capitalized banks, which are more financially constrained, results show that these banks expand on securities but reduce the granting of loan applications (which is indeed consistent with Stein’s quote).
In crisis times with softer monetary policy, we find that the banks with the higher capital are the ones that take on higher risk. This is the opposite of what we find in normal times in lending (i.e., our results in normal times are consistent with Jiménez et al., 2014, who analyze Spain for the time period before the 2008 crisis).25

Our paper also contributes to the recent literature on banks’ investment behavior in reaction to the large injection of liquidity by the ECB during the euro crisis. Acharya and Steffen (2015), Drechsler et al., (2016) and Altavilla, Pagano, and Simonelli (2017), using euro area data, find that weaker capitalized banks used the large liquidity offered by the ECB to buy more risky GIIPS public debt. We instead analyze only the largest GIIPS country—Italy—but enlarge the data set to include the granular security and credit registers. We find that when the ECB provides high liquidity, less capitalized banks do indeed buy more GIIPS (Italian) public debt; however, we also find that these banks (i) also buy more nongovernment bonds (including foreign bonds) with equal or higher intensity and (ii)—within sovereign debt (and in general)—buy securities with \textit{lower}—not higher—yield. Moreover, differently from this literature, we also analyze the recovery period and find that less capitalized banks start increasing risk-taking again due to softer monetary conditions.

The rest of the paper is organized as follows. Section 2 describes the main data sets and explains the empirical strategy. Section 3 presents and discusses the results. Section 4 concludes.

\textbf{2. Data and empirical strategy}

We exploit several (matched) administrative data sets from Italy as well as public data sets. We use the Security Register, which is a supervisory centralized data set managed by the Bank

25 Jiménez et al. (2014) only analyze loans and only in good times, whereas our paper analyzes securities and loans and in crisis and good times.
of Italy that includes microdata on all securities investments—at the security level (ISIN code) —for each bank in Italy (bonds, ABS, equities, derivatives, and shares of mutual funds). Data are available at monthly frequency from 1999.

For each security, banks must report the notional amount they hold at the end of each period (stock of individual securities). We use the unique International Security Identification Number (ISIN) associated with every security to merge the data on holdings with a) Datastream to obtain the monthly time series of prices and yields; b) FactSet to get additional information regarding the issuer, the residual maturity, and the time series of ratings (in case of bonds); and c) the haircuts of marketable assets applied to each security in each point in time by the ECB. We compute the quantity of securities in banks’ portfolio by dividing the notional amount by the market price at the corresponding date (banks are required by the regulation to report the market value of the securities they hold using the closing market price of the last working day of the month). This is crucial to control for changes in values that may be caused by changes in monetary policy. The register also records whether a security is in the trading book, in available for sale, or in the held-to-maturity portfolio.

We also use the Central Credit Register, which is a supervisory, centralized data set managed by the Bank of Italy that records the credit exposure of resident banks to nonfinancial firms. The data include loan applications, credit volumes, and rates. We merge the credit register with (i) the official balance sheet data deposited by non-financial firms to the Chambers of Commerce (as required by the Italian law) to obtain firm-level probability of default as well as firm investment, wage bill, and sales; and (ii) with the Bank of Italy Survey of Industrial and Service Firms (SISF) to obtain additional information on time-varying firm expected demand. SISF is a panel representative survey administered to approximately 3,000 Italian firms (with at least 20 employees), designed to obtain firm-level detailed information on firms’ economic
activity.26 We also use the Italian supervisory reports to obtain data on individual and consolidated balance sheets for banks in Italy.27 Finally, we use SNL Financial to obtain bank-level data on German and French banks (i.e., banks in the core of the euro area).

As of 2013, the average bank has 59\% of its assets in credit (two-thirds to firms and one-third to households) and 17\% in securities. 81\% of the securities are bonds, out of which 58\% are issued by governments.

We apply the following filters to the securities data. We consider only debt securities as they represent the large majority of securities and we can compare differential risk-taking by different banks in a class of very similar securities (bonds and loans), which is one of the two main questions in this paper (risk-taking channel). We exclude the holdings of bonds issued by the same bank or by a bank belonging to the same group, as incentives are different in these group of bonds. To reduce the influence of securities of small value, we drop those for which the total notional amount for the entire banking sector are below EUR 10 million and the securities for which the average notional amount across all periods of each bank is below EUR 10 thousand. The resulting set of securities comprises over 95\% of the total holdings. We also exclude from the analysis banks with total assets below EUR 1 billion and mutual banks, the latter being subject to specific capital regulation. The final sample consists of 1,388 securities and 104 banks in the crisis period and of 815 securities and 120 banks in the precrisis period. All major banks operating in the country are included in our sample; we use the same sample of banks when we study lending.

\footnote{For a more detailed explanation of this data, see Guiso and Parigi (1999).}

\footnote{In this paper we introduce the securities data. For a detailed explanation of the credit data in the Italian Credit Register, including the firm- and bank-level data, see Bofondi, Carpinelli, and Sette (2018) or Ippolito et al. (2016). Note that neither of these papers analyze monetary policy.}
As discussed in the introduction, to identify the bank channels of monetary policy, we analyze securities trading, not just granting of loan applications. Instead of just analyzing the data at the bank level as the literature does (see the references in the introduction), we mainly analyze the data at the security-bank-month and at the (firm) application-bank-month level. This is essential for studying heterogeneity, as different securities within a bank have different ex-ante yields, as well as different haircuts, maturity, and regulatory capital risk weights, and because different loans to firms have different ex-ante loan rates and default probabilities. Note that even securities within the same issuer (even in the same time period) may have different yields, maturities, haircuts, and ratings (for example, Italian government debt).

Moreover, and crucially as well for identification, our micro-level data allow us to control for key unobservables, via security*time and firm*time fixed effects. Security*time fixed effects are a multiplication of a dummy for each security and a dummy for each month of each year (substantially stronger than adding just security and time fixed effects). They help us to control—in each month—for how much of each security is issued and outstanding (e.g., bonds of a particular security may mature), thus isolating the demand of securities by banks, and also to fully control for ratings, price or maturity and unobserved time-varying risk at the security level. For example, we can analyze the reach for yield controlling fully for time-varying ratings and maturity, the main determinants of the risk weights used to compute the regulatory capital ratios.

When we analyze the loan applications, we include firm*time fixed effects in the credit applications regressions, which implies that we analyze the granting of loan applications by different banks to the same firm in the same period, thus controlling for unobserved and observed time-varying borrower fundamentals in loan applications and thereby identifying credit supply. For loans, we look at quarters instead of months under the assumption that adjusting the loan portfolio to new monetary policy conditions requires more time than simply adjusting the securities portfolio (e.g., screening of opaque SMEs). In addition, as explained below in the
results sections, we include other fixed effects and a battery of controls for robustness checks, including different levels of clustering of standard errors.

Finally, we also analyze the results at the bank level, aggregating all the securities holdings and all loans for each bank (firms and households) to check aggregate substitution between all securities and all loans. We also analyze associated firm-level real effects.

For the security-bank-month-level data, our main dependent variable is Trading of security \(s \) by bank \(b \) at time \(t \) (month). We analyze both the extensive and intensive margin using the Davis-Haltiwanger definition (Davis and Haltiwanger, 1992). We define the following:

\[
\text{Trading}_{s,b,t} = \frac{\text{Holdings}_{s,b,t} - \text{Holdings}_{s,b,t-1}}{\frac{1}{2} \left(\text{Holdings}_{s,b,t} + \text{Holdings}_{s,b,t-1} \right)}.
\]

(1)

\(\text{Trading}_{s,b,t} \) is the increase in holdings of security \(s \), by bank \(b \) during the month \(t \). This variable is symmetric around 0, and it lays in the closed interval \([-200, 200]\) with final sales (initial purchases) corresponding to the left (right) endpoint (we multiply the variable by 100). This measure facilitates the integrated treatment of initial purchases (passing from 0 to a positive number), final sales (passing from a positive number to 0), and continuing trading in the empirical analysis (see the Online Appendix for an exact definition on all the variables used). In Table A2 (which reports the descriptive statistics of the main variables used in the paper), we report that the average monthly Trading in the crisis period is 5.1 with a large standard deviation (79.7), which implies a huge heterogeneity in banks’ securities trading.

For the (firm) application-bank-month-level data, we analyze the granting of loan applications, where the dependent variable is a dummy variable that equals one if a loan application is granted to firm \(i \) by bank \(b \) over the quarter starting in month \(t \), when the application was posted. In practice, if we observe a loan application, say, in January 2010, we define it as granted if we observe positive credit granted by the same bank that received the
application to the corporate borrower posting the application (identified by the credit register unique identification number) in the same month (January) or in the next quarter (February, March, or April 2010). Table A2 shows that the average probability of obtaining at least a loan for a firm after applying to banks is around 40%. In addition, when analyzing the aggregate bank-level results, we use as the dependent variable the ratio of all security holdings over the volume of all granted loans (where we either give equal importance to each bank or more importance to the larger banks).

Finally, we also analyze firm-level outcomes to explore whether the bank lending channel of monetary policy has consequences in terms of investments, wage bill, and sales (i.e., spillovers to the aggregate economy). Since in the firm-level real effects regressions we cannot control for demand as in the loan-level data, we analyze year-over-year changes in firm-level sales, fixed assets (investment), and the wage bill (therefore implicitly controlling for time-invariant firm demand) and control for a time-varying firm demand measure by restricting the analysis to the firms included in the Bank of Italy SISF, which provides direct information on time-varying firm expected demand. A crucial feature of SISF is that it contains a set of question that directly elicit expectations on future demand (see, e.g., Guiso and Parigi, 1999), as it collects information both on the actual level of sales and on its expected levels for the following year. The expected demand is strongly correlated with the ex-post realized demand, so it can be credibly used as a measure of growth opportunities. In addition, apart from analyzing the real

\[\text{28} \] We cannot exclude that some firms may not even apply for a loan since they may think that they are too risky and thus the chances of obtaining a loan are too limited. Note, however, that the fact that we cannot observe these firms does not undermine the identification of the credit supply (the coefficient of interest is not affected). First, too risky firms are a demand problem, and we are interested in credit supply. Second, if we were able to include even these observations, our dependent variable (the dummy variable that equals one if a loan application is granted) would be equal to zero for all the bank-firm-time triplets, and therefore the firm*time fixed effects would fully capture it.
effects, we also analyze firm-level total credit (as firms could substitute across different financiers).

As a proxy of monetary policy conditions after the start of the crisis, and to fully exploit the time series, we use the size of the ECB’s balance sheet (after subtracting the autonomous factors that are beyond the direct control of the ECB),\(^{29}\) deflated by nominal Italian GDP (note that Taylor rule shocks are based on monetary conditions over and above nominal economic activity, that is prices and real GDP or employment).\(^{30}\) This monetary policy variable (see ECB, 2015 on the role of the central bank balance sheet as a monetary policy tool) proxies for the series of unconventional monetary policies undertaken by the ECB to provide liquidity after the failure of Lehman Brothers in September 2008, such as the MRO with full allotment (at a fixed rate), the different LTROs with different long-term maturity periods (three months, six months, one year, three years...), and the purchases of securities by the ECB/Eurosystem such as the SMP or the CBPP. Moreover, we also use more granular data to disentangle, within the total assets of the ECB, the repo liquidity (loans) extended by the ECB and the assets purchased by the ECB. As a result, we can check whether different unconventional policies have different effects on our main questions. The main sample ends in December 31, 2013 because in 2014 the ECB also becomes the supervisor (potentially affecting bank risk-taking behavior) and sets rates at negative values, thus making the policy rate an instrument of unconventional monetary policy.

The ECB, as compared to the Federal Reserve or the Bank of England, for example, has had a key additional restriction in reacting during the crisis, coming from the presence of a clear, main mandate of pursuing inflation targeting. Nevertheless, as monetary policy reacts to

\(^{29}\) These include banknotes in circulation and government balances at central banks.

\(^{30}\) Results do not change if we normalize the monetary policy variable by euro area nominal GDP or if we take the logarithm of the total assets ECB without any normalization.
economic activity, we control for other key macro variables by including time fixed effects and interactions of bank capital (and key security and loan variables) with current economic activity (Taylor, 1993), with the forecast of future economic activity (Romer and Romer, 2004), and with financial uncertainty (Freixas, Laeven, and Peydró, 2015), among other variables. We also look at alternative measures of monetary policy by using shadow rates (Wu and Xia, 2017), which is highly correlated with our main measure of monetary policy (-0.7), or by analyzing just the large quantitative policy changes of the two initial three-year LTROs on December 21, 2011 and February 29, 2012.\(^{31}\) See the results sections and Table A3.

We also study conventional monetary policy in the precrisis period (January 1999 to August 2008); in this case our proxy for the monetary conditions is the Taylor (2008) residuals measure obtained by regressing EONIA (the overnight interest rate for the euro area) on the change in Italian GDP and Italian consumer price index (Adrian and Shin, 2011).\(^{32}\) Note that the monetary policy variables are normalized in both subperiods by the Italian nominal GDP (real GDP and prices), but results are similar if we normalize by euro area nominal GDP.

Both monetary policy measures (ECB balance sheet and short-term rates) moreover indicate softer monetary conditions if, given an overall level of economic activity and prices, the size of the central bank balance sheet is high or monetary policy rates are low (note that in addition to current economic and price conditions, we also control exhaustively via time fixed effects and key interactions by other key macro variables as the forecast of future GDP growth or financial risk and uncertainty). Note also that, as the ECB targets euro area inflation, and Italy is

\(^{31}\) Note that the correlation is negative because softer monetary policy is either increasing the balance sheet of the ECB or reducing interest rates.

\(^{32}\) Results are very similar if we directly use EONIA instead of the Taylor shock residuals based on the Adrian and Shin (2010a) measure.
not perfectly synchronized with the euro area, there is more exogenous variation of monetary policy in a monetary union with imperfect synchronization across different countries than otherwise.

In Fig. A1 we report the evolution of the total assets of the ECB and the EONIA rate during our main sample period. Table A2 and Fig. A1 show variability of the monetary policy variables. Note that EONIA is relatively flat during the crisis after the massive reduction following the failure of Lehman Brothers (in fact we show that results are very similar if we control in crisis times for EONIA in the key interactions). In the tables, to ease the comparison of the results with the crisis period, we multiply the Taylor residuals by -1 so that higher values of the monetary policy variable indicate softer monetary policy, as in the crisis period.

At the end of the paper, we also analyze a subsequent period where we can analyze the largest expansion of the total assets of the ECB due to Quantitative Easing (the APP) that happened in 2015 and exploit granular information on individual securities to analyze its impact on bank behavior. Moreover, this period can be characterized as a recovery period, as opposed to the normal times pre-2008, or the crisis times during the Lehman failure and euro area sovereign debt crisis.

We exploit bank capital heterogeneity (controlling for other bank variables) to identify the bank lending and the risk-taking channel of monetary policy. The bank capital ratio is a sharp measure for both the intensity of the agency conflicts between bank shareholders and their financiers (including depositors, debtholders and tax payers) and the strength (net worth) of bank balance sheets, so bank capital is a key driver of both the risk-taking and the bank lending channels (Holmstrom and Tirole, 1997; Freixas and Rochet, 2008; Adrian and Shin, 2010a; Admati and Hellwig, 2014). Bank capital is crucial not only for financial stability (and the risk-
taking channel of monetary policy, see also Adrian and Shin, 2010a) but also for the transmission of monetary policy via bank lending.

We exploit bank capital heterogeneity to identify the impact of softer monetary policy on the behavior of banks, both in terms of trading and lending. We use the capital ratio, defined as the ratio of equity (shares subscribed, book value of equity, plus retained earnings) divided by total assets;\(^3\) for robustness we also use an alternative proxy of bank capital: bank net worth (capital ratio plus Return on Assets (ROA)).\(^4\) Banks with less capital are more liquidity constrained, thereby needing more liquid assets (e.g., securities over loans) to hold them or to repo them (Holmstrom and Tirole, 1997; Rochet and Vives, 2004). Moreover, banks with less capital may prefer securities over loans as the former ones tend to have lower capital requirements (Freixas and Rochet, 2008).

In the firm-level regressions, where we analyze whether the preference for securities by less capitalized banks translates into less credit and less real outcomes at the firm level (investment, wage bill, and sales), for each firm, we calculate a weighted average of the capital ratio of the banks they are ex-ante exposed to (the weights are the shares of credit in the previous

33 Bank capital ratio is negatively related to the percentage of bad loans in crisis times, and positively correlated to ROA; both ROA and the percentage of bad loans are also measures related to the net-worth of banks. In addition, bank capital ratio is negatively related to bank size in normal and crisis times, therefore, apart for controlling for time-varying bank controls, in some regressions we also control in interactions of monetary policy and bank size.

34 Demirguc-Kunt, Detragiache and Merrouche (2013) show that, of the different measures of bank capital, the one that is more associated to higher stock returns during financial crises is the one that we use, rather than the risk-adjusted capital ratio (note also that, e.g., Mariathasan and Merrouche, 2014 show evidence on manipulation on risk weights for capital regulation in Basel II, and thus on Tier 1 ratio, whereas the measure we use in the main specification is not based on risk weights).
period) following the methodology used, among others, by Khwaja and Mian (2008), Cingano, Manaresi, and Sette (2016), Jiménez et al. (17), and Jiménez et al. (2020).\footnote{We use an observable bank measure, capital ratio, for the bank landing channel, which is different from Amiti and Weinstein (2018) who do not rely on observable bank characteristics.}

In the last part of the paper we investigate intertemporal effects. We want to check whether the substitution from loans toward securities helps banks to restore profitability and capital and whether the increase in profits and capital helps banks to restart the supply of credit with some time lag. We also analyze the overall effects of monetary policy on lending, once these intertemporal effects are taken into account.

The capital ratio has an average value during the crisis of 7.7%. There is a large variability among banks: the interquartile range goes from 6.5% to 8.7%. Since trading and lending may vary across banks, we control also for other bank variables, such as time-invariant heterogeneity via bank fixed effects and time-varying bank controls: \textit{Size} (the logarithm of the total assets), \textit{Liquidity} (cash plus sovereign bonds divided by total assets), \textit{Interbank} (the ratio of total borrowing from other banks to total assets), and \textit{Bad loans/Total assets}.

To analyze the risk-taking channel, we use the yield as a measure of the risk of a security. The size of the yield is a superior measure of risk in comparison with rating since, as shown in Becker and Ivashina (2015), financial institutions may select securities with an ex-ante higher yield, within the same rating category, to increase risk by reaching for higher yield. Our main proxy for security risk, \textit{Yield}, is calculated as the yield-to-redemption minus the overnight interest rate for the euro area. The average yield in the crisis sample is 2.66% with a very large standard deviation of 1.9. The average yield within the subsample of Italian government bonds is 20 basis points smaller than the average yield in the rest of the sample. Controlling for maturity, the differences in yields significantly increase; for example, for short maturities, the difference...
between the two types of securities becomes much larger: within securities with residual maturity below two years, the average yield for Italian government bonds is 120 basis points smaller than the rest of the securities.36 In some specifications, we also use additional measures of security heterogeneity, like the residual maturity, the haircut applied by the ECB in repo loans, or the difference between private and public valuation (haircut). During the crisis, the interquartile range for the residual maturity is between 1 and 4.5 years, and the interquartile range for the ECB haircut is between 1.5\% and 6.5\%.

As for lending regressions, we use ex-ante loan interest rates and default probabilities. The advantage of loan interest rates is symmetric with the yield in the security regressions. However, in the lending to SMEs firms, banks can have market power, so loan rates do not represent only firm risk but also market power (Jiménez et al. 2017); hence we also exploit default probabilities proxied by the ex-ante z-scores. In particular, we use as a proxy for firm risk a dummy that equals to one if the z-score is higher or equal to seven, the threshold that identifies “high risk” (substandard) firms; in the crisis subperiod, 33\% of the firms applying for credit are high risk.37 We adopt this classification since this follows the distinction between substandard and performing firms commonly used for credit risk assessment in Italy (see, e.g., Rodano, Serrano-Velarde and Tarantino, 2018).

We also use as a proxy for firm risk Loan yield, which we calculate as the highest interest rate (minus EONIA) paid by the firm in the preexisting credit relations in the period just before the posting of new loan applications. The use of this measure reduces largely the sample, as in the credit register, interest rates are available for a large and representative sample of bank-firm

36 Only the very best nonsovereign long-term debt could be issued in crisis times; hence, the summary statistics on average yields between nonsovereign and sovereign debt without adjusting for maturity are biased downwards.

37 The z-score takes values between one (least likely to default) and nine (most likely to default).
relationships but not for the whole population, and we are also excluding all those firms that apply for a loan for the first time. In the crisis sub-period, the average loan yield is 7.5% with a standard deviation of 3.6%. We use this measure as a robustness check.

As we explain in detail in the results section (also in Sections 1 and 4), our empirical analysis also sheds light on the empirical relevance of some theories that stress different financial drivers and frictions at work. We do so by analyzing the whole sample of securities, and different subsamples and also by exploiting, in addition, other security variables such as, for example, public haircuts in repo loans or differences between private and public valuations (haircuts) or different sets of fixed effects (such as, e.g., analyzing securities with the same rating and maturity in the same month).

3. Results

In this section we present the estimated specifications and discuss the results, first analyzing the security-level regressions and then the granting of loan applications, including overall bank changes in all securities over all loans and the associated firm-level credit and real outcomes during the crisis. We then explore the intertemporal effects and check the overall effects of monetary policy on lending. We also analyze normal precrisis times, and we conclude by analyzing QE in the recovery period. We demean all the continuous independent variables to make the interpretation of the coefficients meaningful.

3.1. The specifications

Our main empirical specification is the following:

\[
\text{Trading}_{sbt} = \beta_1 \text{Capital ratio}_{bt-1} + \beta_2 \text{Capital ratio}_{bt-1} \times \text{SofterMP}_{t-1} + \gamma \text{Yield}_{st-1} + \alpha_s + \alpha_b + \varepsilon_{sbt}.
\] (2)
We analyze Trading of security s by bank b in month t depending on the lagged measure of monetary policy, lagged bank capital, and lagged security yield. All these measures are defined and explained in the previous section and Table A1 in the Online Appendix. In the tables, we go from no controls whatsoever to fully saturating the specifications with fixed effects and observable controls. We always include the lower level of interactions (e.g., monetary policy and yield if we analyze the triple interaction), unless they are absorbed by fixed effects (e.g., security*time fixed effects, where time is every month of every year, that is year:month; for the sake of brevity, we refer to it as month). We include macro controls (e.g., ΔCPI and $\Delta Unemployment$) and bank controls ($Size$, $Liquidity ratio$, $Interbank$, $Bad loans/Total assets$). In intermediate regressions we replace the macro, bank, and security variables by different sets of fixed effects. We also provide comprehensive robustness in the main tables and in the Online Appendix (see, e.g., Table A3).

As we are interested in the estimated coefficient of the double interaction between bank capital and monetary policy (β_1) and of the triple interaction (β_2), the most demanding specification (Eq. 2) includes security*time fixed effects (a_{st}) and bank fixed effects (a_b). We double cluster standard errors at the bank and security-time level, as our main variation is at the bank and time-security level, which also corrects for heteroscedasticity and autocorrelation. We also perform many different permutations of fixed effects and of clustering as robustness checks and different robustness across further controls and subsamples.

We also use a very similar framework to study how monetary policy conditions, bank, and firm characteristics affect the propensity of banks to grant new loan applications to nonfinancial firms. Moreover, we also analyze whether our micro-level results at the security-bank-month and at the loan application (firm)-bank-month level translate into aggregate bank changes in all
securities over all granted loans. Finally, we also analyze the associated firm-level real effects and intertemporal effects on bank lending.

3.2. Unconventional monetary policy in crisis times: the security portfolio

When monetary policy conditions are softer (ECB provides higher liquidity overall), banks react by increasing their holdings of securities (positive net buy of securities), as the first three columns of Table 1 show. In column 1 we do not control for any macro, bank, or security characteristic, whereas in column 2 we control for bank observable characteristics. In column 3 we additionally control for the changes in Italian unemployment and inflation and for security fixed effects. Note that despite all these macro, bank, and security controls, the positive estimated coefficients of ECB’s monetary policy (Softer MP) on Italian banks’ net buys of securities (column 1, 2, and 3) are not statistically different.

We are interested in the reaction of banks with different capital to monetary policy. For this reason, in columns 4 to 7, we add the double interaction of Softer MP and Capital ratio. We find that when monetary policy is softer, banks in general buy more securities but especially banks with less capital (the estimated double interaction Capital ratio*Softer MP is negative). In column 4 we include time fixed effects to control for unobserved macro factors. In column 5, 6, and 7 we include again time fixed effects but restrict the sample to all securities different from either Italian nonfinancial corporate bonds (column 5) or Italian government bonds (column 6) and to only securities issued by foreign entities (column 7).38

In all the specifications, the double interaction of bank capital and monetary policy has a very similar coefficient (not different statistically), although it is statistically insignificant at

38 Results are similar if we also remove foreign government bonds from the sample of column 7, leaving only bonds issued by foreign nongovernment entities.
standard levels of confidence in column 7, but note that the number of observations is reduced by approximately 90% (and the estimated coefficients of column 4 and 7 are, respectively, -0.63 and -0.59). Therefore, banks with less capital expand more into securities when ECB provides high liquidity, and estimated effects are similar across all securities, government bonds and non-government bonds, and only foreign issued securities; results are also not driven by securities issued by Italian nonfinancial firms (note that these securities are a tiny percentage from a quantitative point of view and do not cover SME firms). \(^{39}\)

We are also interested in the impact of monetary policy on risk-taking by banks with different capital. For this, in column 8 we include the triple interaction \(\text{Capital ratio} \times \text{Softer MP} \times \text{Yield}\). In column 9 we introduce rating*maturity*time fixed effects (to control for the determinants of regulatory capital) and security fixed effects. In column 10 we include security*time fixed effects (to control fully for all unobserved and observed securities characteristics, including liquidity and risk aspects), and in column 11 we include both security*time and bank fixed effects. The triple interaction \(\text{Capital ratio} \times \text{Softer MP} \times \text{Yield}\) is always positive and statistically significant (the double interaction \(\text{Capital ratio} \times \text{Softer MP}\) is always negative and significant, and the level effect of \(\text{Softer MP}\) is positive and significant).

The results imply that when monetary policy conditions are softer (ECB provides higher liquidity), banks with less capital buy more securities but with lower yield in comparison to more capitalized banks (even within securities with the same ratings and maturity in the same month, \(^{39}\) In some (two out of six) specifications, the double interaction \(\text{Softer MP} \times \text{Yield}\) is negative and significant. Being equally lagged with respect to security trading, both variables (\(\text{Softer MP}\) and \(\text{Yield}\)) are contemporaneous; hence the estimated coefficient suggests that when monetary policy is softer, the security yields go down (an intended consequence of unconventional monetary policy).
which are the main regulatory capital risk weights). The estimated coefficients across different specifications are very similar and not different statistically.

The results are also economically significant. A one standard deviation increase in unconventional monetary policy is associated with an increase of 1.24% in the net buys of securities (based on the coefficient of column 3 of Table 1), which corresponds to a semi-elasticity of 24%. For the double interaction Capital ratio* Softer MP, an increase in one standard deviation in unconventional monetary policy leads banks with low capital (25th percentile) to buy 0.42% more securities than banks with high capital (75th percentile), which corresponds to 34% of the average increase due to softer monetary policy.

Finally, for the triple interaction Capital ratio* Softer MP*Yield, when there is an increase in one standard deviation in unconventional monetary policy, banks with low capital (25th percentile) buy 0.48% more securities with lower yield (one standard deviation) than banks with high capital (75th percentile), which corresponds to a 39% of the average increase due to the softer monetary policy. Note that we calculate the economic significance based on the coefficients obtained in the most demanding specification (column 11 of Table 1).

3.3. Further robustness checks

Table A3 reports several further robustness checks on the main two coefficients of interest, the double interaction (Capital ratio*Softer MP) and the triple interaction (Capital ratio*Softer MP*Yield), in addition to the main robustness tests in Table 1. In particular, Table A3 shows the results of 17 separate regressions of trading of security s by bank b at time t, as a function of a set of macroeconomic, security, and bank variables at time t-1.

40 The differential impact of a one standard deviation change in the unconventional monetary policy variable on securities trading at the mean of this variable, in percent.
First, we want to make sure that our variables of Capital ratio and Softer MP are not proxying for something else. For this reason, we first include a double (and triple) interaction between Softer MP and bank Size (and Yield). Note that bank size is the only bank variable correlated with capital in normal and crisis times. Second, in addition to the interactions with bank Size, we include also the double (and triple) interaction between Softer MP and bank Liquidity (and Yield), as bank liquidity is a key variable for the bank lending channel (Kashyap and Stein, 2000; Jimenez et al., 2012). Note that these additional bank controls are over the ones in Table 1, which are bank fixed effects and time-varying bank controls.

Next, we include double (and triple) interactions between bank Capital ratio and changes in VIX, Italian unemployment, and forecasted future GDP in Italy (note that these variables may also influence ECB policy, securities trading, and risk-taking). 41 Regarding the VIX and the other macro controls, note that we control for unobserved overall time-varying shocks via time (or security*time) fixed effects, where time is year:month; hence with the interactions of VIX and the other macro controls, we also control for differential effects of macro-financial shocks across different banks and different securities.

Second, we use different definitions for the two main variables: Capital ratio and Softer MP. As for bank capital, we replace the capital-to-asset ratio with a proxy of bank net worth (capital ratio plus ROA). As for the proxy for unconventional monetary policy, we modify the ratio of total assets of the ECB (net of the autonomous factors that are not under the control of the ECB) to the Italian nominal GDP in three ways: a) we include back the autonomous factors; b) we normalize the total assets of ECB by the euro area GDP; c) we take the logarithm of the total assets of ECB without any normalization; and d) we calculate the change in the total assets of the

41 Results are robust if we control for euro area forecasted future GDP growth or employment. Note that in the main Table 1 we also use controls for macro variables and time fixed effects.
ECB relative to the overall average in the crisis, divided by the nominal Italian GDP. In all these
specifications, the two coefficients of interest remain highly statistically significant and also the
associated economic effects are very similar (note that the coefficients may change because the
standard deviations and averages of the main variables change, but economic effects are similar).
Moreover, the coefficients of interest are also significant if we use a completely different proxy
for unconventional monetary policy, which is not based on the total assets of the ECB but on the
shadow rates (Wu and Xia, 2017).\footnote{Shadow rates data for Europe are downloaded from https://sites.google.com/site/jingcynthiawu/home/wu-xia-shadow-rates. The correlation between the shadow rates and our main measure of monetary policy is very large (-0.7).}

Third, we assess the robustness of our findings to changing the estimation method. We report
weighted least squares estimates where the weight is the level of the holdings of each security at
the beginning of the month by each bank to give more weight to the largest holdings. Weighted
least squares estimates of the coefficients are somewhat larger than the coefficients of the
ordinary least squares regressions.

Fourth, we include additional fixed effects to control for further unobservables. We include
bank*time fixed effects or security*bank fixed effects to control for unobserved time-varying
bank heterogeneity, such as, for example, overall bank expansion, or time-invariant specific
security and particular bank matching heterogeneity, proxying, for example, for different
specialization of banks in some particular securities. The inclusion of these additional set of
fixed effects do not change the coefficient of the triple interaction (note that when we include
bank*time fixed effects, we cannot identify the coefficient of the double interaction \textit{Capital ratio}*\textit{Softer MP}). Results do not change also if we include \textit{Haircut ECB}*time fixed effects. This
implies that, even within the same public haircut category at the same time, more fragile banks
react to softer monetary policy by purchasing securities with lower yield, thereby reaching for safety.

Fifth, we try a different way of clustering the standard errors. Instead of double clustering, we triple cluster at bank, security, and time level. Results do not change, as the size of the standard errors in the two specifications is very similar (note also the large set of fixed effects that we control for).

Sixth, instead of looking at the time series and analyzing the variations of the total assets of ECB as a proxy for the several unconventional monetary policy measures taken by the ECB, in the penultimate row of Table A3, we analyze only one large shock: the first three-year LTROs. With this measure in December 2011, the ECB provided more than one trillion of (euro) lending with a three-year maturity to European banks. The funds were distributed in two allotment dates: December 21, 2011 and February 29, 2012. We analyze the net buys of securities in the month of the first allotment of the three-year LTRO and the following three months, which also captures the second allotment date (i.e., December 2011 to March 2012). Symmetrically to the main specification, we are interested in the coefficient of Capital ratio and the double interaction Capital ratio*Yield to analyze which banks bought which type of securities. We find that the coefficient of Capital ratio is negative and the double interaction Capital ratio*Yield is positive; both coefficients are highly statistically significant. Therefore, consistent with the time series of monetary policy, during the months of the three-year LTRO, banks with less capital buy more securities but with lower yields (even with the same regulatory

43 Symmetrically to the main sample, in this new regression we control for other bank observable characteristics recorded at time t-1 and include security*time fixed effects (here the standard errors are double-clustered at bank and security level).
capital risk weights), as compared to more capitalized banks. The results from this large shock to the total assets of the ECB confirm the results of the main specification across the crisis period.\footnote{If we use, as a measure of softer monetary policy, the announcement of Mario Draghi “to do whatever it takes” on July 26, 2012, we find similar results (on capital and capital and yield) but only after the release of the Outright Monetary Transactions implementation rules in early September, not in August.}

Finally, in the very last row of Table A3, we come back to the original specification and show that the coefficients of the double interaction ($\text{Capital ratio} \times \text{Softer MP}$) and the triple interaction ($\text{Capital ratio} \times \text{Softer MP} \times \text{Yield}$) also remain significant if we exclude, precisely, the four months of the three-year LTRO (i.e., December 2011 to March 2012). This shows that our findings do not come just from the large increase in the total assets of the ECB (around the LTRO) but also hold in the rest of the crisis periods.

Moreover, in two additional tables we also check whether our results survive if we control explicitly for (i) other types of monetary policies (interest rate and forward guidance policies) and (ii) foreign banks.

We control explicitly for alternative monetary policy tools (interest rate policy and forward guidance) in Table A4. In the crisis subsample there is limited variation in the interest rate policy since, in just four months from December 2008 to April 2009, the deposit facility rate was reduced from 2\% to 0.25\%, leaving little room for maneuver in the following months. Regarding forward guidance, it was implemented for the first time on July 4, 2013. The introductory statement to the press conference following the ECB’s Governing Council meeting on that day contained the following sentence: “The Governing Council expects the key ECB interest rates to remain at present or lower levels for an extended period of time.” This statement marked a change in the ECB’s communication of monetary policy. In particular, with the formulation “for
an extended period of time,” the central bank wanted to convey its monetary policy orientation going forward.

In Table A4 we control for interest rate policy by including triple and double interactions with the deposit facility rate at the ECB (columns 1-3) or with EONIA (the overnight interest rate for the euro area, columns 4-6). In the last three columns, we control for forward guidance by including triple and double interactions with a dummy variable, which is one in the month of the forward guidance announcement and in the following three months (July-October 2013). We find that the coefficients of these additional controls are not significant,\(^45\) while the coefficients of our main interactions based on unconventional monetary policies, which move the central bank balance sheet size (large-scale repo lending and asset purchases), remain strongly significant and with similar size.

Finally, we want to check whether subsidiaries of foreign-owned banks behave similarly to domestic banks. We have eight subsidiaries of foreign-owned banks (BNP Paribas, Deutsche Bank, Santander, Allianz, GE Capital, Credit Suisse, Dexia, and UBS). We create a dummy variable \(Foreign\), which takes the value of one in case of foreign banks and zero otherwise. In Table A5 we reproduce our main results at security-bank-time level, but this time we interact our main variables with the dummy \(Foreign\). Also controlling for foreign subsidiaries, the coefficients of our two interaction variables of interest, \(Capital\ ratio*Softer\ MP*Yield\) and \(Capital\ ratio*Softer\ MP\), remain similar in size and strongly significant. We find that the

\(^45\) Note that forward guidance may not have effects as there may be an issue of credibility. The credibility problem in this context is a particular example of time inconsistency (Kydland and Prescott, 1977). When the central bank announces this policy during a crisis, the private sector may not believe that the central bank will stick to its commitment. Once the crisis is over, the central bank may have an incentive to renege on the commitment since it is better off raising the policy rate and eliminating the overshooting of inflation and output.
interaction $Foreign*_{Softer~MP}$ and $Foreign*_{Softer~MP*Yield}$ are not significant. We also notice that the interaction $Capital~ratio*_{Softer~MP*~Foreign}$ is negative and statistically significant, suggesting that foreign banks with higher capital (as it is the case for stronger capitalized domestic banks) buy relatively less securities when monetary policy is softer (i.e., in the same direction than the Italian banks but with even a higher estimated coefficient). The interactions with $Yield$ are not statistically different from zero. This evidence suggests that foreign subsidiaries have a similar behavior of domestic banks over the key findings of the paper on securities and capital.46

3.4. Understanding the drivers

In this section we provide additional evidence to shed light on the channels that could drive the results.

In Table 2 we analyze the possibility that the behavior of banks may be driven by regulatory arbitrage (buying of some securities to minimize capital requirements). We show estimates of the same regressions as in the baseline model but restrict the sample to the holdings of Italian government bonds, which all have zero risk weights for regulatory capital. As theory suggests, banks with less capital should have higher incentives to economize on capital, and hence they could buy securities with lower yield not because they are less risky but because they could be associated to lower regulatory capital weights.

Our findings indicate that—also within Italian government bonds—less capitalized banks buy securities with lower yield when monetary policy is softer. Since all Italian government

46 In the last three columns we exclude from the sample the subsidiaries of UBS, Credit Suisse, and Dexia that had severe problems during the crisis, and results remain similar. However, we notice that the standard errors of the variable $Capital~ratio*_{Softer~MP*~Foreign}$ become larger, so the coefficient loses statistical significance.
bonds have the same risk weights—zero—this evidence suggests that regulatory arbitrage is not among the main drivers of bank trading due to monetary policy. Importantly, note that in Table 1 when we analyze all securities, we find that within the securities with identical rating and maturity in the same month (which are the main determinants of regulatory capital weights), we also find that banks with less capital buy securities with lower yields. Therefore, looking at all securities or at securities with zero regulatory capital weights, results on the bank channels of monetary policy do not support the regulatory capital arbitrage hypothesis. All these results are moreover very similar (not reported) when we use capital in excess of regulatory minimum instead of the capital ratio.

In Table 2 we also look directly at *Maturity* as a risk measure of security heterogeneity. Consistently with the results on yield, the triple interaction of *Capital ratio*\(\times\)Softer MP\(\times\)Long maturity is positive and statistically significant. Within Italian government bonds, banks with less capital buy securities with shorter maturity. Note that results are robust to including bank*security fixed effects, in addition to security*time fixed effects. Note that the inclusion of bank*security fixed effects control for a preference of a bank for a particular security (e.g., a particular maturity horizon). All in all, the hypothesis on reaching for safety is consistent with the results.

In Table 3 we explore the hypothesis that access to ECB liquidity is a driver of the trading behavior (buying of securities with lower haircuts to potentially borrow at better conditions in repo operations). We exploit *Haircut ECB* as a measure of security heterogeneity. We obtain from the Eurosystem the eligible marketable assets that can be used as collateral and, for each

\(^{47}\) Recall that less capitalized banks prefer securities over credit when there is overall higher ECB liquidity, which, prima facie, without our granular data could have been suggestive of regulatory capital arbitrage. Given the overall results in Table 2, the hypothesis on reaching for safety is overall more consistent with the results.
security, the applied haircut at each point in time. In Table 3, we report that within Italian government bonds, more fragile banks use the liquidity offered by the ECB to buy Italian governments with lower public haircuts,48 consistent with the idea that these banks are the ones that may need to access the ECB liquidity in case of future problems (columns 1-4).49

Moreover, we show that if we run the same specifications but this time in the subsamples of securities that are used less as collateral at the ECB by Italian banks (BIS, 2013), such as non-Italian government bonds and corporate bonds, we do not find any heterogeneity in the behavior of banks with more or less capital (columns 5-8), as in this case security heterogeneity across public haircuts is not key as fragile banks do not use these assets as much for ECB repo loans. Therefore, results suggest that reaching for liquidity is a key driver.

To analyze both reach for safety and reach for liquidity, in Table A6 we analyze differences in haircuts (valuation) between the private market and the ECB. Haircuts applied by the ECB to the assets pledged as collateral are generally lower than those applied in private repo markets (especially during crisis times when private market conditions are tighter). We create a variable called $PrivateMinusPublic$ at a security-time level. Since private haircuts vary with the riskiness of the securities, we proxy them with their market yields (we define the variable as the security yield minus the ECB haircut).50 In Table A6 we use as a security heterogeneity the variable $PrivateMinusPublic$. We find that throughout our sample period and, in particular when

48 Note that the double interactions between $Softer MP$ and $Capital ratio$ here become smaller because the less capitalized banks buy more securities at the very low haircut level, not at the average level.

49 Note that banks with less capital do not need to actually access the ECB, but if in the future they need to access the ECB for additional funding (or potentially also in general markets), they can do it more cheaply or at higher volumes.

50 To make the comparison meaningful, we rescale the two variables to have a mean of zero and a standard deviation of one.
monetary policy softens, the stronger banks (not the more fragile ones) purchase more securities with higher private market yield (and hence higher private haircut) relative to the ECB haircut. Both the double and triple interactions (Capital ratio* PrivateMinusPublic and Capital ratio* Capital ratio* PrivateMinusPublic) have positive coefficients. This result, together with the previous result in Table A3 where we included haircutECB*time fixed effects, suggest that weaker capitalized banks buy less risky securities (over and above access to public liquidity considerations) when monetary policy softens.

In Table A7 we show additional evidence in favor of the risk-bearing capacity hypothesis (Adrian and Shin, 2010). We exploit information on the regulatory portfolio each security is held in, and we split the sample into securities placed in the held to maturity portfolio and securities placed in the other portfolios. If a security is in the held to maturity portfolio, unrealized changes in fair value are not reported. On the contrary, in the other portfolios (trading and available for sale) unrealized changes in fair value are recognized. If risk-bearing capacity drives less capitalized banks to take less risk, for example, buying securities with lower yield, we should find the results of the triple interaction to be particularly strong in the portfolios where securities are marked-to-market. This is exactly what we find in Table A7.

Overall our findings are consistent with risk-bearing capacity of banks, which is higher for banks with more capital in crisis times, and also with access to liquidity in crisis times by less capitalized banks, and not with regulatory capital arbitrage. Therefore, our results suggest that with higher central bank liquidity during crisis times, less capitalized banks buy more securities, but with lower yield (thereby reaching for safety and liquid assets), even within securities with the same regulatory capital risk weights.

Finally, to better understand the economic drivers we disentangle, within the total assets of the ECB, the repo liquidity (loans) extended by the ECB and the assets purchased by the ECB.
This allows us to understand whether different softer monetary policies have different effects. While both unconventional policies led to large expansions in central bank balance sheets, their composition varies within the same central bank over time.

In Table 4 we analyze whether our results are driven mainly from the increase in the ECB’s repo loans or from ECB’s purchases of assets. Instead of proxying monetary policy with the total assets of the ECB, we consider only repo loans, \(\text{Softer MP}_L \) (columns 1-3), or only asset purchases, \(\text{Softer MP}_P \) (in columns 4-6). As we do for the total (ECB balance sheet) assets in the main specification, we also normalize repo loans and asset purchases by the GDP. We find that both monetary components have a similar impact both in terms of statistical and of economic significance. The estimated coefficients of the main variable and of our two key interaction terms are all statistically significant. They are different in size, but the economic effects are similar since the standard deviation of \(\text{Softer MP}_L \) is 0.21, while the standard deviation of \(\text{Softer MP}_P \) is 0.13. Results are very similar if we include all the variables at the same time (not reported).

Disentangling the two types of monetary operations helps to shed light on the relation between unconventional monetary policy and the collateral framework (haircut schedule) of the ECB. The collateral framework should, in fact, only become relevant in the first type of monetary operations: when banks want to obtain the liquidity made available by the central bank, they need to post collateral as liquidity is injected by the ECB (as well as other central banks around the world such as the Fed) via repo loans. We investigate this hypothesis in Table A8. We show that the haircut result is indeed confined to the large-scale repo lending programmes (first three columns of Table A8). As we said, injections of liquidity to banks (via repo loans) are the monetary operations where the collateral framework is relevant. Consistently, the results suggest that haircuts are less relevant when the expansion of the ECB asset is due to the purchases of assets by the ECB (last three columns of Table A8).
Given the theory highlighted in the introduction, we concentrate the analysis in crisis times when financial frictions are high. However, for robustness, we also analyze the precrisis period, from January 1999 to August 2008. The monetary policy in this period is proxied by Taylor shocks (residuals), as explained in Section 2. We multiply the Taylor shocks by -1 so that higher values of the monetary policy variable imply softer monetary policy, as in the crisis period for the expansion of the ECB balance sheet. Following Adrian and Shin (2010a), we use the residuals after regressing monetary policy rates on GDP and price changes (note that our crisis policy variable is also related to real GDP and price, as it is normalized to nominal GDP).

Differently from the crisis period, we do not find that banks with less capital buy relatively more securities, as monetary policy becomes softer (Table 5 and A10 contain, respectively, the results and summary statistics). The double interaction Capital ratio*Softer MP is not statistically significant in any specification. Banks, on average, react to softer monetary policy by increasing their holdings of securities, but the effect is not heterogeneous across banks with different levels of capital. Therefore, when financial frictions are not strong (normal times), bank capital is not an important driver of the differential expansion of securities as monetary policy becomes softer.

3.5. The loan portfolio and aggregate and real effects

In this section we analyze the impact of monetary policy on credit supply, as well as the aggregate bank-level effects on the substitution between all securities and all loans, and the spillovers to the aggregate economy by analyzing firm-level real effects.

We first study the impact of monetary policy on the granting of loan applications by differently capitalized banks, including reach for yield in lending. Symmetrically with the specification on the security portfolio, we estimate Eq. (2) where instead the dependent variable is now Granting a loan application, that equals one if a loan application is granted to firm i by
bank b over the quarter starting in month t, when the application was posted, and the measure of risk is the variable *Firm high risk* or *Loan yield* (see Section 2 and Table A1 for the exact definition of variables). Table 6 shows the results.

As in the securities regressions, the key variables of interest are the double interaction between bank capital and the proxy for monetary policy and the triple interaction between bank capital, the proxy for monetary policy, and ex-ante firm risk. In column 1 we do not include any time dimension in the fixed effects (we have firm but not firm*time fixed effects) so that we can estimate the coefficient of monetary policy. We find that the coefficient is not statistically significant here, while it was significant in the security regressions, suggesting that the positive effects of softer monetary policy in the crisis are stronger in securities than in loans.

Importantly, the double interaction *Capital ratio**Softer MP is positive and statistically significant, which suggests that banks with less capital grant fewer loan applications to the same firm in the same quarter as compared to banks with more capital (which is the opposite of what we find for securities trading). Moreover, the coefficient of the triple interaction is never significant (differently from the securities trading regressions).\(^{51}\) Note that in column 3, as a robustness check, we exclude firms with very high or very low z-scores to test whether results hold around the z-score values that sort firms into safer (performing) and riskier (substandard),\(^{52}\) and we find that this is indeed the case. In unreported regressions we find that in normal times, the coefficient of the double interaction changes sign, consistent with the literature (Jimenez et al., 2012).

\(^{51}\) In addition, in column 4, we also use as a proxy for firm risk *Loan yield*, but also in this specification, the triple interaction is not significant.

\(^{52}\) We restrict the sample to firms with a z-score between five and eight. We remind here that our dummy *Firm high risk* is equal to one if the score is larger or equal to seven (see Section 2 and Table A1 for details).
Regarding economic effects, following an increase of one standard deviation in the unconventional monetary policy variable, banks with low capital (25th percentile) have a 0.81 percentage point lower probability of granting a loan application than banks with high capital (75th percentile) to the same firm in the same period, which corresponds to a semi-elasticity of 3.11%.53 We calculate the economic significance on the basis of the coefficient of the double interaction $\text{Capital ratio} \times \text{Softer MP}$ obtained in the most demanding specification (column 3 of Table 7).

Importantly, note that with softer monetary policy, banks with capital below the mean cut loan applications to the same firm in the same quarter, which is opposite to banks with capital higher than the mean; and, at the same time, based on previous tables, less capitalized banks increase more their purchases of securities in comparison to more capitalized banks.54

In Table 7, we report evidence at the aggregate bank level to confirm the result that less capitalized banks react to softer monetary policy during the crisis by purchasing more securities rather than lending. We report OLS and WLS (with bank size as weight) regressions using data

53 For each application, the average probability of being granted is 26.17%.

54 To have a sense of how these results translate into aggregate quantities, here we provide a back-of-the-envelope partial equilibrium calculation. The average total assets of the Italian banking system in the crisis subperiod is 4.034 trillion. We know that a one standard deviation increase in unconventional monetary policy is associated with an immediate increase of 1.24% in securities in the following month. This implies that banks increase their security portfolio by about 8.5 billion euros (1.24%*17%*4.034 tn). In a counterfactual exercise we assume that all banks are at the 25th percentile of the capital distribution. Under this assumption, the increase in securities is larger: banks buy an additional 2.9 billion (0.42%*17%*4.034 tn), for a total amount of 11.4 billion of securities (8.5 bn + 2.9 bn). We find a different behavior in the lending to the corporate sector. At this level of capital, there is a substitution from loans to securities: while securities increase by 11.4 billion, loans decline by 13.1 billion (0.81%*40%*4.034 tn).
at the bank level, using all security holdings and all loans by banks, where the dependent variable is the ratio between securities and loans.55

The coefficient of the double interaction Capital ratio* Softer MP is negative and statistically significant, which confirms, also with aggregate data (bank-level data with OLS or WLS), that when monetary policy is softer, banks with less capital increase overall securities over overall lending volume as compared to banks with more capital.56 Results are very similar across different specifications, in particular OLS versus WLS.

Regarding economic effects, in the most conservative specification we find that an increase in one standard deviation in unconventional monetary policy leads banks with low capital (25th percentile) to increase their securities/loans ratio by 1.29% more than banks with high capital (75th percentile), which corresponds to a semi-elasticity of 5.85%.57

Since in this last table we only use aggregate bank-level data, we can see whether similar results are obtained outside Italy to address potential external validity concerns. In Table A9, we replicate Table 7 for a large sample of French and German banks (we select the sample by applying the same filters used for the Italian sample). We indeed find very similar results. Also

55 This information is reported in the supervisory reports every six months, and the loans here include both loans to firms and households. The average security/loans ratio in the crisis period is 22.02%.

56 The variable Softer MP enters the regression positively, which suggests that during the crisis, softer monetary policy has a stronger positive effect on securities than on loans, though it is not statistically significant at conventional levels.

57 The size of the coefficients is not directly comparable with the core results of the paper for the following reasons. First, in the loan-level regression we analyze the granting of loan applications, and more importantly, as we said, to obtain a more aggregate picture in these regressions, we use all securities and all loans from bank balance sheet reports.
in the core countries of the euro area, less capitalized banks react to softer monetary policy during the crisis by purchasing more securities than increasing lending. Here as well the estimated coefficient of *Softer MP* is positive (and large) but not statistically significant, and more importantly, the estimated coefficient of the double interaction *Capital ratio*\(^*$\)*Softer MP* is negative and statistically significant. Results are very similar across different specifications, in particular OLS versus WLS. Though the estimated coefficients are larger in the sample of banks of the core countries (French and German banks), the semi-elasticity (3.37\%) is smaller than the one calculated from the Italian sample (5.85\%).

All in all, our results are not only based on granular data, at the loan application level or at the security level but also on aggregate bank-level data, as shown in Table 7, when we analyze the ratio between all securities and all loans, either giving equal weight to each bank or giving more weight to larger banks. Before analyzing the real effects at the firm level, it is important to stress that results are identical if we exclude securities issued by nonfinancial firms, which are tiny quantitatively and only issued by very large firms.

Therefore, our results—at the micro level or at the aggregate level—suggest that, with higher expansion of central bank liquidity in crisis times, securities crowd out credit supply for less capitalized banks. This may be beneficial if credit to nonfinancial firms during a crisis is risky and then higher capital banks, thanks to their higher risk-bearing capacity, may be better able to supply credit to the real economy, while less capitalized banks repair their balance sheets.

Finally, in Table 8 we analyze whether the preference for securities by banks with less capital translates into less credit and worse real outcomes (a reduction in investment, wage bill, and sales) at the firm level for firms more dependent ex ante on credit from less capitalized banks. We follow here the same methodology used, among others, by Khwaja and Mian (2008), Cingano, Manaresi, and Sette (2016), Jiménez et al. (2017), Jiménez et al. (2020): for each firm,
we calculate a weighted average of the capital ratio of the banks they are ex-ante exposed to (the weights are the shares of credit in the previous period).

The dependent variables are the change in the log of credit at the firm level, several definitions of firm investment,58 the change in the log of firm overall wage bill, and the change in the log of firm sales by firm f at time t. Note that the wage bill, sales, and investment are the key components of aggregate output (GDP). We are interested in the coefficient of the lagged double interaction \textit{Weighted capital ratio}*\textit{Softer MP}. As we analyze changes in firm-level real effects (how real effects change for a firm), we implicitly control for time-invariant firm level risk and demand (fixed effects, which are dropped when taking differences). Moreover we control for time-varying firm (lagged) characteristics including, notably, a measure of expected firm demand obtained from the survey, the self-reported expected sales growth rate for the following period, to proxy for time-varying growth opportunities and overall firm demand, and also include province*time and industry*time fixed effects (see Section 2 and Table 8 for further details).59

58 We present three definitions of investment rate: (a) the first measure is calculated as adjusted total assets$_t$-adjusted total assets$_{t-1}$/adjusted total assets$_{t-1}$ (where adjusted total assets is equal to total assets - fair value revaluation); (b) the second measure is the same as the first one but without adjusting for the fair value revaluation; (c) the numerator in the third measure is a flow measure of investments from the income statement.

59 It is worth noticing that the measure of time-varying expected demand is statistically significant at 1\% and with the expected sign. The problem of analyzing firm-level real effects, except in restrictive settings, is that one cannot control for time-varying demand (see, e.g., Jiménez et al., 2017). In our case, we control explicitly for time-varying expected demand using survey data (which was also used in other papers, see, e.g., Guiso and Parigi, 1999). In addition, since our sample of firms for the real effects comes from a rotating panel, we do not have statistical power to include firm fixed effects. In any case, our model is in differences (firm-level changes), and hence we are implicitly controlling for firm fixed effects.
We find that the coefficient of the interaction \(Weighted \text{ capital ratio} \times \text{Softer MP} \) is always positive and significant. After an increase in one standard deviation in unconventional monetary policy, firms ex-ante exposed to banks with high capital (75\(^{\text{th}}\) percentile), in comparison to firms ex-ante exposed to banks with low capital (25\(^{\text{th}}\) percentile), receive more credit, and they increase investment, the wage bill, and sales, respectively, with the following semi-elasticities: 11\%, 9\%, 20\% and 8\%. Therefore, the active bank channels of monetary policy on bank credit supply and securities trading during crisis times have also significant spillovers to the real economy.

3.6. Unconventional monetary policy, intertemporal effects, and bank lending

While we established that banks with less capital react to softer monetary policy in the crisis by purchasing more securities and supplying less credit, in this section we explore intertemporal effects. The hypothesis is that the substitution from loans toward securities can eventually lead to more lending capacity; in particular, easier monetary policy may help restore profitability of more fragile banks, helping them to recapitalize, which positions them to restart lending at a later point in time. Specifically, we test whether a) softer monetary policy helps to restore profits and capital of weakly capitalized banks and b) the increase in profits and capital helps banks to increase credit supply with some time lags.

First, we run bank-level regressions with ROA and capital ratio as dependent variables (columns 1-4 of Table 9), and we find that the double interaction \(Capital \text{ ratio} \times \text{Softer MP} \) is always negative and significant. Unconventional monetary policy specifically helps to restore the profitability and the capitalization of ex-ante more fragile banks.

Second, to explicitly test whether the (differential) increase in profits and capital can restore the supply of credit at later points in time, we analyze the granting of loan applications
(to the same firm at the same period) and explore whether lagged changes in the sum of bank-level profits and capital (obtained as the sum of ROA and Capital ratio) increase the probability of granting loan applications (columns 5-6 of Table 9). We construct two variables of lagged changes in profits and capital at the bank-time level. Since bank-level balance sheet variables are recorded every six months, each lag corresponds to six months: the first variable considers a six-month lag, and the second considers a one-year lag. We show that both variables are positive. This means that lagged increases in profits and capital lead to increases in credit supply (in these specifications we are able to fully control for demand by including firm*time fixed effects). When we compare the coefficients of the two variables, we notice that the coefficient of the 1Y lag is the largest and is statistically significant and robust across specifications, which implies effects are stronger in one-year period. Note that the estimated coefficient for 6M lag is not robust and its estimated coefficient is half of that for the one-year lag.

In sum, our results suggest that during the crisis, softer monetary policy is able to restore the profitability (and capital) of less capitalized banks, and this improvement in the balance sheet contributes to restore credit supply with some time lags.

Finally, we analyze whether softer unconventional monetary policy actually increases overall lending, irrespective of the differential effects across banks with different capital. In Table 10 we report the results of OLS and WLS bank-level regressions where the dependent variable is the level of credit by bank \(b \) at time \(t \), as a function of monetary policy and a set of macroeconomic and bank control variables and bank fixed effects. To capture the intertemporal effects we discussed above, not only do we include Softer MP 6M lag but also Softer MP 1Y lag.

60 This is the sum of profits plus equity divided by total assets.
We show that the expansion of the total assets of the ECB does not produce an immediate significant increase in lending, but it does increase lending with a one-year lag. A one standard deviation increase in unconventional monetary policy leads to an 8% (0.315*0.255*100) increase in lending after one year. Although these aggregate estimates need to be taken with caution (as they are subject to caveats associated with the impossibility of disentangling the supply and demand of credit), they are consistent with the results of Table 9: softer monetary policy translates immediately in an increase in securities which allows banks to recapitalize and then to restart lending in the near future.

3.7. Unconventional monetary policy, risk-taking, and the recovery period

The risk-taking channel postulates that risk-taking occurs in booms and is followed by a sharp deleveraging in times of crisis (see, e.g., Adrian and Shin, 2010a). Indeed, we find that while during the crisis banks with less capital react to softer monetary policy by taking less risk, in the boom years before the crisis, consistent with the literature, banks with less capital take more risk (in fact, as Table A11 shows, we are also able to reproduce with Italian data the original result found by Jimenez et al., 2014 with Spanish data in normal/boom times).

In this section we ask whether the risk-taking resumed after the crisis. However, in Italy the recovery period is characterized by improved economic conditions but does not yet qualify as

61 In economic terms, this corresponds to around 190 billion (8%*59%*4.034 tn) of additional lending for the banking system after one year.

62 Our results are not consistent with a more risk-shifting channel where less capitalized banks used the higher liquidity provided by the central bank (ECB) by reaching for higher yield (instead, they reach for both safety and liquidity).
“normal/boom” time. With this caveat in mind, we expand the sample to analyze the largest expansion of the total assets of the ECB due to QE which happened in this later subperiod. On January 22, 2015, the ECB finally joined other central banks, as well as the Federal Reserve and the Bank of England, in resorting to QE. On that day, the ECB announced the APP, which consisted of combined monthly purchases of €60 billion of debt securities, intended to be carried out until September 2016. The APP is the programme that is more similar in size and design to the QE programmes implemented by the Federal Reserve and the Bank of England. The implementation started in March 2015. The intended purchases until September 2016 were €1.14 trillion, representing 11% of the annualized 2014:Q4 euro area GDP. The QE programme was subsequently recalibrated on various occasions, extending the duration and total amount of purchases due to the sluggish euro area overall economy.

We follow the methodology used by Di Maggio, Kermani, and Palmer (2016) and Rodnyansky and Darmouni (2017) to analyze the impact of QE in the US. These papers do before/after comparisons using dummy variables for the announcement of the programme. In Table 11 we focus on the behavior of banks in a one-year time window around the announcement of the QE. We fix the bank controls in June 2014 (i.e., the closest preperiod that we have for bank-level variables). The variable Soft MP is a dummy variable equal to one after January 2015. The standard errors are double-clustered at security and bank level. We find that the triple interaction Capital ratio * Soft MP * Yield is positive and statistically

63 Even after several years from the beginning of the 2008 global crisis, Italy’s economy is still characterized by sluggish economic growth and historically high unemployment rates. The drop in GDP due to the crisis was larger for Italy in comparison to other countries, and the recovery has been weaker. Even after 2013, the growth rate is the smallest and the Italian GDP is still largely below the precrisis level. Four years after the end of our sample, the unemployment rate in Italy was 11.2%, even higher than the unemployment rate in 2012, which was 10.7%.
significant in columns 1 and 2, which implies that also after QE, banks with less capital reacted to this new large monetary stimulus by purchasing securities with lower yield.

We further explore more granular information (on security level for each bank). In particular, here we use granular information on security-level holdings to exploit cross-sectional bank heterogeneity in the impact of QE. While we do not have access to the list of securities purchased by the ECB, by analyzing around QE we can infer it by calculating the changes in prices of individual securities caused by the announcement (as done recently by Albertazzi, Becker, and Bouchina, 2018). For each security, we calculate the change in price around the QE announcement (the difference between the price at end-January 2015 and that at end-December 2014) and multiply these price security-level changes for the holdings of each security outstanding in the bank portfolio just before the QE announcement (end-December 2014). Finally, we add up the individual gains over all the securities in bank portfolios and express them as a percentage of total assets.

The QE announcement impacted some bond prices creating revaluation gains for banks having these bonds in their portfolios. To analyze the impact of these gains on bank behavior, in columns 3 and 4, we introduce a quadruple interaction by interacting Capital ratio* Softer MP\textsubscript{QE} *Yield with a dummy for high gains (dummy equal to one if the gains divided by assets is larger than the 75th percentile). We find that the coefficient of this interaction is negative, which implies that banks that benefited more from softer monetary policy (proxied by their security revaluation gains from the introduction of QE) reach for higher yield the less capital they have ex-ante (everything else constant). Moreover, the (negative) quadruple coefficient is of similar size as the positive coefficient of the triple interaction (Capital ratio* Softer MP\textsubscript{QE} *Yield), this eliminates the difference in the risk-taking between banks with lower and higher capital.

\footnote{The size of the QE(APP) is much larger than the earlier SMP, and it is associated with distinguishable changes in prices of securities that allows this identification.}
To sum up, in this subsequent period, which is characterized by improved economic conditions but does not yet qualify as “normal or boom” time but a “recovery” period, we find that banks with less capital overall still take less risk, relative to more capitalized banks, but among those with less capital, the ones more favored by QE (based on granular security by security) start to take more risk (eliminating the difference in the risk-taking between banks with lower and higher capital). This is consistent with the idea that when economic conditions improve, risk-taking starts to be undertaken again.

4. Conclusions

While a large empirical literature on the bank lending channel of monetary policy analyzes credit, including compositional effects with respect to risk, there is no empirical evidence on the impact of monetary policy with granular data on banks’ securities holdings, in addition to loans. As we argued in the paper, and as theory shows, this is important to analyze the impact of monetary policy (expansion of central bank liquidity) via banks as (i) it may be easier to reach for yield with securities rather than with loans, (ii) there may be potential policy restrictions to banks’ security trading (e.g., US Volcker Rule), and (iii) bank security trading can crowd out loans.

We are in a unique position to analyze these issues since we have access to the matched security and credit application registers (including comprehensive security, loan, bank, and firm characteristics) for banks in Italy, on a monthly basis, since the creation of the euro in 1999. This is especially important in a bank-dominated economy where banks are the main providers of finance to nonfinancial corporations and are also key players in security markets. Moreover, as far as we are aware, Italy is the only country with a comprehensive credit register that records loan applications, rates and a comprehensive security register. While there are credit registers in most countries around the world, only a few of them also hold exhaustive security registers or
include loan applications. The granular data of the credit and security registers allow identification of bank risk-taking, security trading, and credit supply as well as the associated real effects.

Our results show that in crisis times, with softer monetary policy conditions, banks with capital below (as opposed to above) the mean react by increasing their purchases of securities relatively more than higher capitalized banks. At the same time, less capitalized banks are less likely to grant loan applications than better capitalized banks. Results are based both on granular data (at the loan application level or at the security level) and on aggregate bank-level data (analyzing the ratio between all securities and all loans, either giving equal weight to each bank or giving more weight to larger banks). We also find that this bank behavior translates into aggregate real effects at the firm level. Unlike in crisis times, in precrisis times, when financial frictions are limited, less capitalized banks do not expand securities holdings over credit supply. Moreover, during crisis times, the substitution from lending to securities helps restore the profitability (and capital) of less capitalized banks, and this improvement in the balance sheet contributes to restart credit supply with a one-year lag.

Less capitalized banks may prefer securities over credit in crisis times to have more liquid assets, to economize on regulatory capital, and/or to reach for yield with securities. Therefore, to further understand the different drivers of our results, and to also test for the risk-taking channel of monetary policy, we analyze further heterogeneous effects. We find that while banks with less capital buy more securities when monetary conditions are softer in crisis times, they choose securities with lower yield (or shorter maturity). Moreover, they buy securities with lower ECB haircuts (especially in the securities that are generally used at ECB repo loans and also stemming from softer monetary conditions associated to repo loan injections by the ECB, not to asset purchases), and results equally hold within sovereign debt securities with zero regulatory capital.
risk weights or in general within securities with the same regulatory risk weights or public haircuts.

Results are informative for theories about the interaction of finance and macro. Reach for yield by less (compared to more) capitalized banks requires (as a necessary condition) that these banks increase more their risk, but we find the opposite (results also hold when we control for the covariance of new net security purchases with the existing bank portfolio). Therefore, our results suggest that for less capitalized banks, there is reaching for safety rather than reaching for yield (when monetary conditions are softer). Results are consistent with the risk-taking channel of monetary policy that postulates that risk-taking is undertaken in booms, followed by a sharp deleveraging in times of crisis. Consistently, we find that the risk-taking channel during crisis times does not work by inducing risk-taking, but it does work in terms of repairing bank balance sheets.

We find the same results across securities with identical risk weights for regulatory capital, and hence pure regulatory capital arbitrage cannot explain the lower reach for yield by less capitalized banks. Regulatory arbitrage may be a more structural (low-frequency) rather than a high-frequency phenomenon moving with the monetary cycle (Freixas, Laeven, and Peydró, 2015). Moreover, less capitalized banks buy more securities with lower public haircut (reaching for liquid securities) as central banks expand their balance sheets, which suggests that access to liquidity is another key driver of banks’ behavior (consistent, among others, with Rochet and Vives, 2004 and Cornett et al., 2011).

Finally, our findings suggest that as central banks change their monetary conditions, securities trading by banks reduce the supply of credit to the real sector (for banks with capital below the mean), with significant associated real effects, but we do not find that the banks that take on higher risk in securities are the ones reducing credit the most, that is the ones with higher
capital (Shleifer and Vishny, 2010; Diamond and Rajan, 2011). However, consistent with the risk-taking channel, we find that the softer monetary policy helps banks to restore their balance sheets (profits and capital), in turn increasing credit supply with a one-year lag (Adrian and Shin, 2011).

Results are also informative on the current debate on public policy regarding the transmission of monetary policy and its interaction with macroprudential policy. Our results suggest that lower bank capital does not imply higher reach for yield incentives when central banks provide high liquidity during a crisis, which is important for the discussion on the interactions between monetary and macroprudential policies (Rajan, 2006; Taylor, 2008; Allen and Rogoff, 2011; Acharya and Steffen, 2015). Liquidity injections during a crisis allow more fragile banks to recapitalize and restart lending in the future. Moreover, since we show that less capitalized banks prefer securities with higher liquidity (low yield and haircut) over other securities and loans, policies aimed at making loans more liquid may increase the potency of the bank lending channel, for example, via a better market for securitization of SME loans (see e.g., the speech by Yves Mersch from the Executive Board of the ECB).65

Finally, our results are informative also for the policy debate on banks’ securities trading. First, there are proposals on limiting sovereign debt in banks on the basis of the recent academic literature on the sovereign bank nexus (Brunnermeier et al., 2016) and the alleged gambling for resurrection with GIIPS sovereign debt by less capitalized banks in the periphery (see, e.g., Acharya and Steffen, 2015). In this respect, our results suggest that as monetary policy became expansionary (note that we are making a relative, not an absolute, statement), less capitalized banks took less risk than more capitalized banks during the crisis and that risk-taking may occur via purchases of GIIPS nonsovereign securities and loans that are riskier, offer higher yields, and

65 Yves Mersch, “Banks, SMEs and securitisation”, ECB, April, 7, 2014.
are quantitatively more important, especially loans to firms and households. Second, there are proposals on imposing restrictions to banks’ security trading (not specific to sovereign bonds, as the Volker Rule in Dodd-Frank in the US, the Likaanen Report in the EU, and the Vickers Report in the UK). These may not be warranted since, in the light of our evidence, less capitalized banks did not take higher risk in security trading.
References

Table 1
Unconventional monetary policy, bank capital, and reach for yield in the security portfolio.

The table shows regressions of trading of security \(s \) by bank \(b \) at time \(t \), as a function of a set of macroeconomic, security, and bank variables at time \(t-1 \). Macro controls include changes in Italian unemployment and inflation. Bank controls include capital ratio, interbank debt/total assets, liquidity ratio, bad loans/total assets, and size. In this table, the variable \(\text{Softer MP} \) is the total assets of the ECB minus autonomous factors divided by the Italian GDP. The sample includes monthly observations from September 2008 to December 2013. Data on security holdings are from the Italian Security Register and includes all debt securities traded by banks. Data on security characteristics are from Datastream. Balance sheet data are from the supervisory reports submitted to the Bank of Italy. In column 5 we restrict the sample to securities that are different from Italian nonfinancial corporation bonds. In column 6 we restrict the sample to securities that are different from Italian government bonds. In column 7 we restrict the sample to securities issued by foreign entities. See the Online Appendix for exact definitions of variables and Section 2 for the empirical strategy and the data. We always include the lower level of interactions or standalone variables, unless they are absorbed by fixed effects. Fixed effects are either included ("Yes"), not included ("No"), or spanned by another set of effects ("-"). Standard errors are double-clustered at bank and security-time level and are reported in parentheses. *** \(p<0.01 \), ** \(p<0.05 \), * \(p<0.1 \).

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
<th>(11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softer MP</td>
<td>3.562*** (0.692)</td>
<td>4.793*** (0.925)</td>
<td>3.948*** (1.141)</td>
<td>4.459*** (1.031)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital ratio*Softer MP</td>
<td>-0.639** (0.293)</td>
<td>-0.673** (0.323)</td>
<td>-0.935** (0.366)</td>
<td>-0.591 (1.537)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital ratioSofter MPYield</td>
<td>0.415*** (0.160)</td>
<td>0.409*** (0.149)</td>
<td>0.389** (0.149)</td>
<td>0.377*** (0.149)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital ratio*Yield</td>
<td>0.108** (0.048)</td>
<td>0.123** (0.051)</td>
<td>0.113 (0.071)</td>
<td>0.255 (0.175)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Softer MP*Yield</td>
<td>-0.296 (0.397)</td>
<td>-0.685* (0.412)</td>
<td>-0.126 (0.439)</td>
<td>-0.899 (1.127)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macro controls</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bank controls</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Time fixed effects</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Security fixed effects</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bank fixed effects</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>RatingMaturityTime fixed effects</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Security*Time fixed effects</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
Table 2
Regulatory arbitrage? The portfolio of Italian government bonds.

The table shows regressions of the trading of security s by bank b at time t, as a function of a set of macroeconomic, security, and bank variables at time t-1. Bank controls include capital ratio, interbank debt/total assets, liquidity ratio, bad loans/total assets, and size. In this table, the variable Softer MP is the total assets of the ECB minus autonomous factors divided by the Italian GDP. The sample includes monthly observations from September 2008 to December 2013. Data on security holdings are from the Italian Security Register and includes the subsample of Italian government bonds. Data on security characteristics are from Datastream. Balance sheet data are from the supervisory reports submitted to the Bank of Italy. See the Online Appendix for exact definitions of variables and Section 2 for the empirical strategy and the data. We always include the lower level of interactions or standalone variables, unless they are absorbed by fixed effects. Fixed effects are either included (“Yes”), not included (“No”), or spanned by another set of effects (“-”). Standard errors are double-clustered at bank and security-time level and are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital ratioSofter MPYield</td>
<td>0.710**</td>
<td>0.746**</td>
<td>0.638*</td>
<td>0.979**</td>
<td>1.883**</td>
<td>1.771**</td>
<td>1.517*</td>
<td>1.620</td>
</tr>
<tr>
<td></td>
<td>(0.338)</td>
<td>(0.343)</td>
<td>(0.368)</td>
<td>(0.463)</td>
<td>(0.754)</td>
<td>(0.756)</td>
<td>(0.835)</td>
<td>(1.110)</td>
</tr>
<tr>
<td>Capital ratioSofter MPLong maturity</td>
<td>-0.982</td>
<td>-1.065*</td>
<td>-1.042*</td>
<td>-1.656</td>
<td>-0.840</td>
<td>-0.979*</td>
<td>-0.920*</td>
<td>-0.522</td>
</tr>
<tr>
<td></td>
<td>(0.629)</td>
<td>(0.624)</td>
<td>(0.596)</td>
<td>(1.169)</td>
<td>(0.551)</td>
<td>(0.539)</td>
<td>(0.526)</td>
<td>(0.899)</td>
</tr>
<tr>
<td>Capital ratio*Yield</td>
<td>-0.054</td>
<td>-0.113</td>
<td>-0.098</td>
<td>0.059</td>
<td>-0.377</td>
<td>-0.609</td>
<td>-0.604</td>
<td>-1.157</td>
</tr>
<tr>
<td></td>
<td>(0.140)</td>
<td>(0.138)</td>
<td>(0.143)</td>
<td>(0.225)</td>
<td>(0.436)</td>
<td>(0.417)</td>
<td>(0.417)</td>
<td>(0.889)</td>
</tr>
<tr>
<td>Capital ratio*Long maturity</td>
<td>-0.982</td>
<td>-1.065*</td>
<td>-1.042*</td>
<td>-1.656</td>
<td>-0.840</td>
<td>-0.979*</td>
<td>-0.920*</td>
<td>-0.522</td>
</tr>
<tr>
<td></td>
<td>(0.629)</td>
<td>(0.624)</td>
<td>(0.596)</td>
<td>(1.169)</td>
<td>(0.551)</td>
<td>(0.539)</td>
<td>(0.526)</td>
<td>(0.899)</td>
</tr>
<tr>
<td>Bank controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Security fixed effects</td>
<td>No</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>No</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Security*Time fixed effects</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Security*Bank fixed effects</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>79,250</td>
<td>79,249</td>
<td>79,227</td>
<td>78,342</td>
<td>79,070</td>
<td>79,069</td>
<td>79,048</td>
<td>78,185</td>
</tr>
</tbody>
</table>

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
Table 3
Access to public liquidity? The role of haircuts.

The table shows regressions of the trading of security s by bank b at time t, as a function of a set of macroeconomic, security, and bank variables at time t-1. Bank controls include capital ratio, interbank debt/total assets, liquidity ratio, bad loans/total assets, and size. In this table, the variable Softer MP is the total assets of the ECB minus autonomous factors divided by the Italian GDP. The sample includes monthly observations from September 2008 to December 2013. Data on security holdings are from the Italian Security Register and includes all debt securities traded by banks. Data on security haircuts are from the ECB. Balance sheet data are from the supervisory reports submitted to the Bank of Italy. The analysis is confined to the subsample of Italian government bonds in columns 1-4 or to the rest of the securities in columns 5-8. See the Online Appendix for exact definitions of variables and Section 2 for the empirical strategy and the data. We always include the lower level of interactions or standalone variables, unless they are absorbed by fixed effects. Fixed effects are either included (“Yes”), not included (“No”), or spanned by another set of effects (“-”). Standard errors are double-clustered at bank and security-time level and are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Italian government bonds</th>
<th>Trading_{s,b,t}</th>
<th>Non-Italian government and corporate bonds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Capital ratioSofter MPHaircut ECB</td>
<td>0.369**</td>
<td>0.451**</td>
<td>0.418*</td>
</tr>
<tr>
<td></td>
<td>(0.179)</td>
<td>(0.201)</td>
<td>(0.218)</td>
</tr>
<tr>
<td>Capital ratio*Softer MP</td>
<td>-0.147</td>
<td>-0.212</td>
<td>-0.235</td>
</tr>
<tr>
<td></td>
<td>(0.489)</td>
<td>(0.465)</td>
<td>(0.477)</td>
</tr>
<tr>
<td>Capital ratio*Haircut ECB</td>
<td>-0.128</td>
<td>-0.127</td>
<td>-0.170</td>
</tr>
<tr>
<td></td>
<td>(0.110)</td>
<td>(0.120)</td>
<td>(0.123)</td>
</tr>
<tr>
<td>Bank controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Security fixed effects</td>
<td>No</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Security*Time fixed effects</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Security*Bank fixed effects</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Observations</td>
<td>76,565</td>
<td>76,564</td>
<td>76,550</td>
</tr>
</tbody>
</table>

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
Table 4
Unconventional monetary policy: repo loans extended and assets purchased.

The table shows regressions of the trading of security s by bank b at time t, as a function of a set of macroeconomic, security, and bank variables at time $t-1$. Macro controls include changes in Italian unemployment and inflation. Bank controls include capital ratio, interbank debt/total assets, liquidity ratio, bad loans/total assets, and size. The variable Softer MP_L is the amount of repo loans extended by the ECB to the banking sector divided by the Italian GDP. The variable Softer MP_P is the amount of securities purchased by the ECB divided by the Italian GDP. The sample includes monthly observations from September 2008 to December 2013. Data on security holdings are from the Italian Security Register and includes all debt securities traded by banks. Data on security characteristics are from Datastream. Balance sheet data are from the supervisory reports submitted to the Bank of Italy. We always include the lower level of interactions or standalone variables, unless they are absorbed by fixed effects. Fixed effects are either included ("Yes"), not included ("No"), or spanned by another set of effects ("-"). Standard errors are double-clustered at bank and security-time level and are reported in parentheses. *** $p<0.01$, ** $p<0.05$, * $p<0.1$.

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Trading$_{s,b,t}$</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softer MP_L</td>
<td>6.439***</td>
<td>4.929***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.326)</td>
<td>(1.339)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital ratio*Softer MP_L</td>
<td>-1.030**</td>
<td>-1.028**</td>
<td>-0.864**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.425)</td>
<td>(0.404)</td>
<td>(0.435)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital ratio*Softer MP_P*Yield</td>
<td>0.465**</td>
<td>0.493**</td>
<td>0.445**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.207)</td>
<td>(0.194)</td>
<td>(0.194)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Softer MP_P</td>
<td>5.305</td>
<td></td>
<td>6.088*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.440)</td>
<td></td>
<td>(3.217)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital ratio*Softer MP_P</td>
<td>-3.086***</td>
<td>-3.206***</td>
<td>-2.892***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.112)</td>
<td>(1.068)</td>
<td>(0.947)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital ratio*Softer MP_P*Yield</td>
<td>1.101**</td>
<td>1.123**</td>
<td>1.042**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.522)</td>
<td>(0.518)</td>
<td>(0.501)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Macro controls	Yes	Yes	-	Yes	Yes	-
Bank controls	Yes	Yes	Yes	Yes	Yes	Yes
Security fixed effects	No	Yes	-	No	Yes	-
Security*Time fixed effects	No	No	Yes	No	No	Yes
Observations	225,364	225,364	225,364	225,364	225,364	225,364
Table 5

Monetary policy, bank capital, and reach for yield in normal times.

The table shows regressions of trading of security s by bank b at time t, as a function of a set of macroeconomic, security, and bank variables at time $t-1$. Macro controls include changes in Italian unemployment and inflation. Bank controls include capital ratio, interbank debt/total assets, liquidity ratio, bad loans/total assets, and size. In this table, the variable *Softer MP* is the Taylor rule residuals multiplied by (-1). The sample includes monthly observations from January 1999 to August 2008. Data on security holdings are from the Italian Security Register and includes all debt securities traded by banks. Data on security characteristics are from Datastream. Balance sheet data are from the supervisory reports submitted to the Bank of Italy. See the Online Appendix for exact definitions of variables and Section 2 for the empirical strategy and the data. We always include the lower level of interactions or standalone variables, unless they are absorbed by fixed effects. Fixed effects are either included ("Yes"), not included ("No"), or spanned by another set of effects ("-"). Standard errors are double-clustered at bank and security-time level and are reported in parentheses. *** $p<0.01$, ** $p<0.05$, * $p<0.1$.

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softer MP</td>
<td>1.305*** (0.233)</td>
<td>1.534*** (0.247)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital ratio*Softer MP</td>
<td>-0.081 (0.099)</td>
<td>-0.099 (0.108)</td>
<td>0.080 (0.122)</td>
<td>0.047 (0.098)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital ratioSofter MPYield</td>
<td></td>
<td></td>
<td>0.046 (0.094)</td>
<td>0.084 (0.053)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital ratio*Yield</td>
<td>0.075 (0.096)</td>
<td>0.065 (0.096)</td>
<td>0.080 (0.151)</td>
<td>0.069 (0.101)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Softer MP*Yield</td>
<td>-0.025 (0.107)</td>
<td>0.053 (0.112)</td>
<td>0.265 (0.328)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macro controls</td>
<td>No</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bank controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time fixed effects</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Security fixed effects</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>RatingMaturityTime fixed effects</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Security*Time fixed effects</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>335,029</td>
<td>335,029</td>
<td>335,029</td>
<td>329,217</td>
<td>194,806</td>
<td>335,029</td>
</tr>
</tbody>
</table>
Table 6
Unconventional monetary policy, bank capital, and reach for yield in the loan portfolio.

The table shows a set of linear probability model regressions of the probability of a loan application being granted by bank \(b \) to firm \(i \) over the quarter starting in month \(t \), when the application was posted, as a function of macroeconomic, bank, and firm variables at time \(t-1 \). Macro controls include changes in Italian unemployment and inflation. Bank controls include capital ratio, interbank debt/total assets, liquidity ratio, bad loans/total assets, and size. In this table the variable \(\text{Softer MP} \) is the total assets of the ECB minus autonomous factors divided by the Italian GDP. The sample includes monthly observations from September 2008 to December 2013. Data on loan applications, the granting of the applications and loan yields are from the Italian Credit Register. Data on firm characteristics are from the official balance sheet data deposited by firms to the Chambers of Commerce. Bank balance sheet data are from the supervisory reports submitted to the Bank of Italy. In column 3 we exclude firms with a very high or very low \(z \)-score, restricting the sample to firms with a \(z \)-score between five and eight. The dummy \(\text{Firm high risk} \) is equal to one if the score is larger or equal to seven. See the Online Appendix for exact definitions of variables and Section 2 for the empirical strategy and the data. We always include the lower level of interactions or standalone variables, unless they are absorbed by fixed effects. Fixed effects are either included (“Yes”), not included (“No”), or spanned by another set of effects (“-”). Standard errors are double-clustered at the bank and firm-time level and are reported in parentheses. *** \(p<0.01 \), ** \(p<0.05 \), * \(p<0.1 \).

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Granting a loan application, (i,b,t)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Softer MP</td>
<td>-1.311</td>
</tr>
<tr>
<td></td>
<td>(1.304)</td>
</tr>
<tr>
<td>Capital ratio*Softer MP</td>
<td>1.003*</td>
</tr>
<tr>
<td></td>
<td>(0.567)</td>
</tr>
<tr>
<td>Capital ratioSofter MPFirm high risk</td>
<td>-0.849</td>
</tr>
<tr>
<td></td>
<td>(0.701)</td>
</tr>
<tr>
<td>Capital ratioSofter MPLoan yield</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital ratio*Firm high risk</td>
<td>0.672**</td>
</tr>
<tr>
<td></td>
<td>(0.324)</td>
</tr>
<tr>
<td>Capital ratio*Loan yield</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td>(10.333)</td>
</tr>
<tr>
<td>Macro controls</td>
<td>Yes</td>
</tr>
<tr>
<td>Bank controls</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm fixed effects</td>
<td>Yes</td>
</tr>
<tr>
<td>Firm*Time fixed effects</td>
<td>No</td>
</tr>
<tr>
<td>Bank fixed effects</td>
<td>Yes</td>
</tr>
<tr>
<td>Bank*Time fixed effects</td>
<td>No</td>
</tr>
<tr>
<td>Observations</td>
<td>377,441</td>
</tr>
</tbody>
</table>
Table 7

Unconventional monetary policy, bank capital, and the choice between securities and loans: aggregate evidence.

The table shows regressions of the ratio between securities and loans by bank b at time t, as a function of a set of macroeconomic and bank variables at time $t-1$. Macro controls include changes in Italian unemployment and inflation. Bank controls include capital ratio, interbank debt/total assets, liquidity ratio, bad loans/total assets, and size. In this table, the variable Soft MP is the total assets of the ECB minus autonomous factors divided by the Italian GDP. The sample includes observations from December 2008 to December 2013 and data are recorded at the end of each semester. Bank balance sheet data are from the supervisory reports submitted to the Bank of Italy. The first three columns report OLS estimates. The last three columns report WLS estimates where the weight is the size of the bank. See the Online Appendix for exact definitions of variables and Section 2 for the empirical strategy and the data. Standard errors are double-clustered at bank and time level and are reported in parentheses. *** $p<0.01$, ** $p<0.05$, * $p<0.1$.

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>OLS</th>
<th></th>
<th></th>
<th>WLS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>Softer MP</td>
<td>6.050</td>
<td>5.298</td>
<td>5.619</td>
<td>5.198</td>
<td>5.198</td>
<td>5.198</td>
</tr>
<tr>
<td></td>
<td>(8.993)</td>
<td>(8.265)</td>
<td>(8.469)</td>
<td>(8.185)</td>
<td>(8.185)</td>
<td>(8.185)</td>
</tr>
<tr>
<td></td>
<td>(0.921)</td>
<td>(0.975)</td>
<td>(0.715)</td>
<td>(0.903)</td>
<td>(0.970)</td>
<td>(0.694)</td>
</tr>
<tr>
<td>Macro controls</td>
<td>No</td>
<td>Yes</td>
<td>-</td>
<td>No</td>
<td>Yes</td>
<td>-</td>
</tr>
<tr>
<td>Bank controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Bank fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time fixed effects</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>845</td>
<td>845</td>
<td>845</td>
<td>845</td>
<td>845</td>
<td>845</td>
</tr>
</tbody>
</table>
Table 8
Unconventional monetary policy, bank capital, and firm real effects.

The table shows OLS regressions of the year-over-year change in log credit (column 1), investment rate (columns 2-4), change in log of wage bill (column 5), and change in log of sales (column 6) at a firm level at time t, on a set of macroeconomic and firm variables at time $t-1$. In this table, the variable *Softer MP* is the total assets of the ECB minus autonomous factors divided by the Italian GDP. The sample includes yearly observations from 2008 to 2013. The sample is restricted to firms included in the Bank of Italy Survey of Industrial and Service Firms (SISF). Data on firm characteristics are from the official balance sheet data deposited to the Chambers of Commerce, from SISF and from the Italian Credit Register. See the Online Appendix for exact definitions of variables and Section 2 for the empirical strategy and the data. Standard errors are clustered at firm level and are reported in parentheses. *** $p<0.01$, ** $p<0.05$, * $p<0.1$.

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Δ Log (Credit)</th>
<th>Investment rate</th>
<th>Investment rate (no adjust.)</th>
<th>Investment rate (flow)</th>
<th>Δ Log (Wage bill)</th>
<th>Δ Log (Sales)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>Weighted capital ratio*Softer MP</td>
<td>2.985**</td>
<td>1.746**</td>
<td>2.568***</td>
<td>1.900**</td>
<td>0.844*</td>
<td>1.215**</td>
</tr>
<tr>
<td>(1.361)</td>
<td>(0.722)</td>
<td>(0.972)</td>
<td>(0.950)</td>
<td>(0.500)</td>
<td>(0.559)</td>
<td></td>
</tr>
<tr>
<td>Weighted capital ratio</td>
<td>1.190***</td>
<td>0.203</td>
<td>0.209</td>
<td>-0.325</td>
<td>0.043</td>
<td>0.221</td>
</tr>
<tr>
<td>(0.460)</td>
<td>(0.370)</td>
<td>(0.454)</td>
<td>(0.442)</td>
<td>(0.202)</td>
<td>(0.226)</td>
<td></td>
</tr>
<tr>
<td>Firm expected demand</td>
<td>0.146***</td>
<td>0.105**</td>
<td>0.124***</td>
<td>0.143***</td>
<td>0.373***</td>
<td>0.822***</td>
</tr>
<tr>
<td>(0.032)</td>
<td>(0.042)</td>
<td>(0.047)</td>
<td>(0.035)</td>
<td>(0.017)</td>
<td>(0.027)</td>
<td></td>
</tr>
<tr>
<td>Firm ROA</td>
<td>0.806***</td>
<td>0.354***</td>
<td>0.170</td>
<td>0.050</td>
<td>0.502***</td>
<td>0.388***</td>
</tr>
<tr>
<td>(0.084)</td>
<td>(0.119)</td>
<td>(0.137)</td>
<td>(0.101)</td>
<td>(0.042)</td>
<td>(0.063)</td>
<td></td>
</tr>
<tr>
<td>Firm high risk</td>
<td>-10.030***</td>
<td>-0.822</td>
<td>-0.888</td>
<td>-0.670</td>
<td>-2.902***</td>
<td>-3.246***</td>
</tr>
<tr>
<td>(1.359)</td>
<td>(1.325)</td>
<td>(1.529)</td>
<td>(1.313)</td>
<td>(0.631)</td>
<td>(0.888)</td>
<td></td>
</tr>
<tr>
<td>Firm size</td>
<td>-0.868***</td>
<td>-1.238***</td>
<td>-1.901***</td>
<td>-3.367***</td>
<td>0.369***</td>
<td>-0.296*</td>
</tr>
<tr>
<td>(0.330)</td>
<td>(0.362)</td>
<td>(0.415)</td>
<td>(0.404)</td>
<td>(0.122)</td>
<td>(0.166)</td>
<td></td>
</tr>
<tr>
<td>Industry*Time fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Province*Time fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>11,078</td>
<td>11,110</td>
<td>11,107</td>
<td>11,123</td>
<td>11,101</td>
<td>11,109</td>
</tr>
</tbody>
</table>
Table 9

Unconventional monetary policy, bank profitability, capital, and future lending: intertemporal effects.

Panel A shows regressions of ROA (columns 1-3) and Capital ratio (columns 4-6) of bank \(b \) at time \(t \), as a function of a set of macroeconomic and bank variables at time \(t-1 \). Macro controls include changes in Italian unemployment and inflation. Bank controls include capital ratio, interbank debt/total assets, liquidity ratio, bad loans/total assets, and size. The variable \(\text{Softer MP} \) is the total assets of the ECB minus autonomous factors divided by the Italian GDP. The sample includes observations from December 2008 to December 2013 and data are recorded at the end of each semester. Bank balance sheet data are from the supervisory reports submitted to the Bank of Italy. Standard errors are double-clustered at bank and time level and are reported in parentheses. Panel B shows a set of linear probability model regressions of the probability of a loan application being granted by bank \(b \) to firm \(i \) over the quarter starting in month \(t \), when the application was posted, as a function of variables at bank level. \(\Delta(\text{Profits plus capital}) \) is calculated as the sum of profits plus equity divided by total assets. Since bank-level balance sheet variables are recorded every six months, each lag corresponds to six months: the first variable considers a six-month lag, and the second considers a one-year lag. Bank controls include capital ratio, interbank debt/total assets, liquidity ratio, bad loans/total assets, and size at \(t-1 \). The sample includes monthly observations from September 2008 to December 2013. Data on loan applications and the granting of the applications are from the Italian Credit Register. Standard errors are double-clustered at the bank and firm-time level and are reported in parentheses. We always include the lower level of interactions or standalone variables, unless they are absorbed by fixed effects. Fixed effects are either included ("Yes"), not included ("No"), or spanned by another set of effects ("-".). See the Online Appendix for exact definitions of variables. *** \(p < 0.01 \), ** \(p < 0.05 \), * \(p < 0.1 \), + \(p < 0.15 \).

<table>
<thead>
<tr>
<th>Panel A</th>
<th></th>
<th>Panel B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROA(_{b,t})</td>
<td>Capital ratio(_{b,t})</td>
</tr>
<tr>
<td>Dependent variable</td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Softer MP</td>
<td>0.346*</td>
<td>0.360*</td>
</tr>
<tr>
<td></td>
<td>(0.167)</td>
<td>(0.165)</td>
</tr>
<tr>
<td>Capital ratio*Softer MP</td>
<td>-0.043*</td>
<td>-0.043*</td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
<td>(0.020)</td>
</tr>
<tr>
<td>Macro controls</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Bank controls</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Bank fixed effects</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time fixed effects</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Observations</td>
<td>828</td>
<td>828</td>
</tr>
</tbody>
</table>

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
Table 10

Unconventional monetary policy and future lending: aggregate evidence.

The table shows regressions of the Lending (log of loans) by bank b at time t, as a function of a set of macroeconomic and bank variables at time $t-1$. Macro controls include changes in Italian unemployment and inflation. Bank controls include capital ratio, interbank debt/total assets, liquidity ratio, bad loans/total assets, and size. In this table, the variable *Softer MP* is the total assets of the ECB minus autonomous factors divided by the Italian GDP. The sample includes observations from December 2008 to December 2013 and data are recorded at the end of each semester. Bank balance sheet data are from the supervisory reports submitted to the Bank of Italy. The first two columns report OLS estimates. The last two columns report WLS estimates where the weight is the size of the bank. See the Online Appendix for exact definitions of variables. Fixed effects are either included (“Yes”) or not included (“No”). Standard errors are double-clustered at bank and time level and are reported in parentheses. *** $p<0.01$, ** $p<0.05$, * $p<0.1$.

<table>
<thead>
<tr>
<th>Dependent variable</th>
<th>OLS (1)</th>
<th>OLS (2)</th>
<th>WLS (3)</th>
<th>WLS (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softer MP 6M lag</td>
<td>0.085</td>
<td>0.019</td>
<td>0.042</td>
<td>0.026</td>
</tr>
<tr>
<td></td>
<td>(0.120)</td>
<td>(0.110)</td>
<td>(0.116)</td>
<td>(0.104)</td>
</tr>
<tr>
<td>Softer MP 1Y lag</td>
<td>0.201*</td>
<td>0.287**</td>
<td>0.216*</td>
<td>0.255**</td>
</tr>
<tr>
<td></td>
<td>(0.108)</td>
<td>(0.112)</td>
<td>(0.103)</td>
<td>(0.107)</td>
</tr>
<tr>
<td>Macro controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Bank controls</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Bank fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations</td>
<td>845</td>
<td>845</td>
<td>845</td>
<td>845</td>
</tr>
</tbody>
</table>
Table 11
Recovery period: bank security trading and quantitative easing.

The table shows regressions of trading of security s by bank b at time t, as a function of a set of macroeconomic, security, and bank variables at time $t-1$. The variable Softer MP_{QE} is a dummy variable equal to one after January 2015. High gain is a dummy equal to one if the gains (due to changes in prices of individual securities multiplied by the holdings in each bank portfolios) divided by assets is larger than the 75th percentile. Bank controls include capital ratio, interbank debt/total assets, liquidity ratio, bad loans/total assets, and size. We fix the bank variables in June 2014 (i.e., the closest preperiod that we have for bank-level variables). The sample includes monthly observations and we consider a one-year time window around the announcement of QE in January 2015. Data on security holdings are from the Italian Security Register and includes all debt securities traded by banks. Data on security characteristics are from Datastream. Balance sheet data are from the supervisory reports submitted to the Bank of Italy. We always include the lower level of interactions or standalone variables, unless they are absorbed by fixed effects. Fixed effects are either included ("Yes") or not included ("No"). Standard errors are double-clustered at bank and security level and are reported in parentheses. *** $p<0.01$, ** $p<0.05$, * $p<0.1$.

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>Trading$_{b,s}$</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softer MP$_{QE}$</td>
<td>0.076</td>
<td>0.100*</td>
<td>0.086</td>
<td>0.106**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.081)</td>
<td>(0.057)</td>
<td>(0.077)</td>
<td>(0.046)</td>
<td></td>
</tr>
<tr>
<td>Capital ratio*Softer MP$_{QE}$</td>
<td>0.029</td>
<td>0.021</td>
<td>0.021</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td>(0.015)</td>
<td>(0.019)</td>
<td>(0.016)</td>
<td></td>
</tr>
<tr>
<td>Capital ratio*Softer MP$_{QE}$*Yield</td>
<td>0.024*</td>
<td>0.021***</td>
<td>0.022</td>
<td>0.0219*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td>(0.007)</td>
<td>(0.020)</td>
<td>(0.012)</td>
<td></td>
</tr>
<tr>
<td>High gain*Softer MP$_{QE}$</td>
<td>-0.252***</td>
<td>-0.125**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.068)</td>
<td>(0.057)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital ratio*Softer MP$_{QE}$*High gain</td>
<td>-0.051*</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.021)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High gain*Softer MP$_{QE}$*Yield</td>
<td>-0.261***</td>
<td>-0.064</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.040)</td>
<td>(0.052)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital ratio*Softer MP$_{QE}$High gainYield</td>
<td>-0.054*</td>
<td>-0.023</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.019)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bank controls	Yes	Yes	Yes	Yes
Security fixed effects	No	Yes	No	Yes
Observations	8,901	8,876	8,901	8,876