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ABSTRACT IN ENGLISH: 
Normalizing flows are an elegant approximation to generative modelling. It can be shown that 
learning a probability distribution of a continuous variable X is equivalent to learning a 
mapping f from the domain where X is defined to Rn is such that the final distribution is a 
Gaussian. In “Glow: Generative flow with invertible 1x1 convolutions” Kingma et al introduced 
the Glow model. Normalizing flows arrange the latent space in such a way that feature 
additivity is possible, allowing synthetic image generation. For example, it is possible to take 
the image of a person not smiling, add a smile, and obtain the image of the same person 
smiling. Using the CelebA dataset we report new experimental properties of the latent space 
such as specular images and linear discrimination. Finally, we propose a mathematical 
framework that helps to understand why feature additivity works. 
 
 
ABSTRACT IN CATALAN/ SPANISH: 
Normalizing flows es una elegante aproximación al modelado generativo. Se puede demostrar 
que aprender una distribución de probabilidad de una variable continua X es equivalente a 
aprender un mapeo f del dominio donde X se define a Rn de forma que la densidad resultante 
sea una Gaussiana. En " Glow: Generative flow with invertible 1x1 convolutions", Kingma et al 
introdujeron el modelo Glow. Los flujos de normalización organizan el espacio latente de tal 
manera que es posible la adición de características, lo que permite la generación de imágenes 
sintéticas. Por ejemplo, es posible tomar la imagen de una persona que no sonríe, agregar una 
sonrisa y obtener la imagen de la misma persona sonriendo. Utilizando el conjunto de datos de 
CelebA encontramos nuevas propiedades experimentales del espacio latente, como imágenes 
especulares y discriminación lineal. Finalmente, proponemos un modelo matemático que 
ayuda a comprender por qué funciona la aditividad de características. 
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Abstract

Normalizing flows are an elegant approximation to generative modelling. It can

be shown that learning a probability distribution of a continuous variable X is

equivalent to learning a mapping f from the domain where X is defined to RN . In [1]

the authors introduced the Glow model, pushing forward previous work developed by

[2]. Normalizing flows arrange the latent space in such a way that feature additivity

is possible, allowing synthetic image generation. For example, it is possible to take

the image of a person not smiling, add a smile, and obtain the image of the same

person smiling. Using the CelebA dataset [3] we report new experimental properties

of the latent space such as specular images and linear discrimination. Finally, we

propose a mathematical framework that helps to understand why feature additivity

works.





Chapter 1

Introduction

Given a class of elements, for example, images of human faces, generative mod-

elling aims at learning its distribution and extract meaningful features with as little,

potentially unlabeled, data as possible. This goal is far more ambitious than dis-

criminative modelling, where a model is trained for classification or regression tasks

with, usually, labeled data.

The applications of generative modelling are two-fold. On one side, it would allow

artificial intelligent systems to better mimic some human cognitive capabilities. For

example, humans are able to recognize other humans by just looking at a single

picture. Furthermore, humans are able to extract features from a given domain

and mentally manipulate the features of a given element of the class. We can see

the picture of an unknown person not smiling and we can imagine how this person

would smile. On the other side, a wide range of applications are possible such as

semi-supervised learning or speech synthesis. In the domain of image synthesis,

Deepfakes are paramount. Deepfakes are synthetic media, images or video, in which

a person appearing in the image of video is replaced by a different one.

Generative modelling is a broad family of models starting with semi-analytical mod-

els such as Naive Bayes or Gaussian Mixture Models. In [4] the authors introduced

Latent Dirichlet Allocation, an influential paper that help foster the field of text

categorization and its applications, for example, to central banks speech analysis

1



2 Chapter 1. Introduction

[5, 6]. However, it has been in recent years when the field of Generative mod-

elling has leaped. Among the most relevant ones, we find Generative Adversarial

Networks (GANs), Variational AutoEncoders (VAEs) and Flow-Based Generative

Models. The following sections describe each one of them.

1.1 Generative Adversarial Networks

On one side of the spectrum we find smart approaches that are able to turn an un-

supervised problem into a supervised one. This is the case of Generative Adversarial

Networks (GANs) [7]. The objective in this case is to obtain a system capable of

synthetically generate new elements that seem to follow the original distribution.

For example, in the case of images, generating realistic ones of people, houses, ...,

where the user might be able to guide some features of the synthetic image such as

gender or hair style.

To achieve this goal, a Generator and a Discriminator are jointly trained competing

among each other. The Generator is entitled to create new data points that resemble

as much as possible to the original data distribution. The Discriminator’s task is

to identify which examples belong to the original data distribution and which have

been created by the Generator.

1.2 Variational AutoEncoders

AutoEncoders (AE) can be regarded as a generalization of Principal Component

Analysis (PCA) where the goal is finding a pair of functions ϕ, ψ such that:

ϕ : X −→ L,

ψ : L −→ X,

ϕ, ψ = argmin{|X − (ϕ ◦ ψ)X|}.

(1.1)

PCAs have been traditionally used for dimensionality reduction. In the context of

financial economics, a popular application is understanding the interest rate curve
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variations of a given currency, whose dimensionality can be in the order of 20, by

reducing it to a 3-dimensional (slope, parallel, and first order curvature) vector.

In the context of Neural Networks, AEs have been used for many image processing

tasks, including denoising, e.g., Figure 1 [8], super-resolution, or image swapping.

The face swapping task can be understood as applying ϕ ◦ψ to a new person’s face

not included in the training phase. The functions ϕ, ψ are trained such that their

composition ϕ ◦ ψ projects the initial image to one similar to that included in the

training set.

Figure 1: Image of Lena used in many image processing tasks, here for denoising1.

Originally, in equation 1.1 there is no structure imposed in the latent space L. There-

fore, a priori, there is no warranty that all possible configurations of L are meaningful

nor that there is some notion of similarity between close points in the feature space.

To overcome this difficulty, Kingma and Welling [9] introduced Variational Auto-

Encoders (VAE). Within the VAE framework, encoder ϕ and decoder ψ do not map

points into points but rather points into probability distribution functions.

1.3 Flow-Based Generative Models

Finally, we have Flow-based generative models, first described in [10] and extended

in [2]. Flow-based generative models have some advantages over prior approaches:

1https://en.wikipedia.org/wiki/Lenna.

https://en.wikipedia.org/wiki/Lenna


4 Chapter 1. Introduction

• Exact latent-variable inference and log-likelihood computation are tractable.

In VAEs, we need to make approximations in order to calculate the log-

likelihood of a given data point. GANs do not have an explicit likelihood

function.

• Efficient inference and synthesis. Sampling an image, as well as computing its

latent representation can be performed using simple calculations.

The objective of this work is to gain understanding of some properties of the latent

space structure of a particular normalizing flow model, the Glow model [11]. For

that, we provide experimental results and a theoretical analysis that aims to explain

why the Glow latent space structure is convenient for certain tasks.

In Chapter 2, we describe in detail the Glow model and compare it with previous

flows. Chapter 3 describes the CelebA data set used to carry on our experimental

studies. This data set comprises more that 200K celebrity images annotated with

40 attributes. Chapter 4 reports results on the structure of the latent space. Some

of these results are largely based on intuitions, while others provide a more rigorous

understanding of the latent space. Beyond the empirical findings, we aimed at

providing some theoretical grounding to the experimental results. This is done in

Chapter 5. Finally, Chapter 6 summarizes the work.



Chapter 2

Normalizing Flows and the Glow

Model

As the dimensionality increases, the task of directly learning the probability distri-

bution from real data, p(x) where x ∈ D becomes infeasible due to the curse of

dimensionality. Firstly, it becomes harder and harder to find sample data in big-

ger and bigger regions of the domain space. Secondly, the computations become

exponentially slower.

To overcome this difficulty, flow-based deep generative models take advantage of

an important fact: modelling any continuous probability distribution is equivalent

to finding an invertible mapping f : D → RN such that the resulting probability

distribution maximizes the following log-likelihood

L(f) =

∫
D

log

(
φ0,1 (f(x))

∣∣∣∣∂f∂x
∣∣∣∣) dµ, (2.1)

where:

• φ0,1(z) is the density function of an N -dimensional Gaussian distribution.

•
∣∣∂f
∂x

∣∣ is the determinant of the mapping f .

• dµ is the density in the original space.

5



6 Chapter 2. Normalizing Flows and the Glow Model

Chapter 5 describes with further detail this aspect and proves that essentially there

is only one such mapping.

2.1 Normalizing Flows

The maximization of the discrete version of equation can be written as

Ld(f) =
∑
x∈D′

log(φ0,1(f(x)))

∣∣∣∣∂f∂x
∣∣∣∣ . (2.2)

In contrast to equation (2.1), equation (2.2) is a little more subtle, since there are

uncountable many invertible mappings that bring all x ∈ D arbitrarily close to the

origin with
∣∣∂f
∂x

∣∣ arbitrarily high. That is, the maximization of equation (2.2) is

unbounded.

Thus, for optimizing this objective one has to take some regularizing conditions into

account. Normalizing flows consider a fixed number of invertible mappings within

a class such that z = f(x) = fL ◦ · · · ◦ f1(x) and the computation of
∣∣∣ ∂fi
∂fi−1

∣∣∣ can be

done efficiently. In [10] and [2] an initial class of normalizing flows was proposed.

2.2 The Glow Model

The Glow model [11] builds on the previous invertible normalizing flows, NICE [10]

and RealNVP [2] introducing the 1 × 1 invertible convolutions instead of reverse

permutations. A 1 × 1 convolution is a generalization of any permutation of the

channel ordering.

Glow creates a new building block consisting of three consecutive sub-layers, an

actnorm followed by an invertible 1× 1 convolution, followed by a coupling layer.

The following table summarizes the elements of the Glow model. The three main

components of the proposed flow, their reverses, and their log-determinants. For

each one of the proposed building blocks, the table describes the function, its inverse

and its determinant.
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Here, x denotes the input of the layer, and y denotes its output. Both x and y are

tensors of shape [h×w× c] with spatial dimensions (h,w) and channel dimension c.

With (i, j) we denote spatial indices into tensors x and y. The function NN(·)

is a nonlinear mapping, such as a (shallow) convolutional neural network like in

ResNets [2] and RealNVP [12]. Figure 2 represents the compositional architecture.

Figure 2: Block diagram corresponding to a layer of the Glow Architecture.
(left) One step of the flow. (right) Full architecture. For additional details, see [11].



Chapter 3

The CelebA Dataset

The Celeb Faces Attributes Dataset (CelebA) [3] is a large-scale face attributes

dataset with more than 200K celebrity images, each with 40 attribute annotations.

CelebA is highly diverse and contains rich annotations, including 10,177 individ-

ual identities, 202,599 number of face images, 5 landmark locations, and 40 binary

attributes annotations per image. The dataset is used widely employed as a bench-

mark for computer vision on different tasks such as face attribute recognition, face

detection and synthesis.

8



3.1. Image Pre-processing 9

Figure 3: Sample CelebA impages, illustrating 8 of the 40 annotated attributes.

3.1 Image Pre-processing

The CelebA data set consists of a broad range of images, all of them containing a

single person but gestures and poses vary across all of them. Ideally, this could be

the original source space to apply generative modelling. In practice, this is a huge

space, so it is necessary to take some restricting decisions.

The first one is defining a fixed size for all images. The Glow architecture was

calibrated against a set of 256 × 256 images. The second decision to be made is

locate the precise face within the image. For that, the original images are cropped

and resized to obtain a 256× 256 image where all faces share the same eye location.

Figure 3.1 shows a sample of original images and the aimed result after applying

cropping and resizing. We can observe, for example, that both processed images

share the similar eye location.
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Figure 4: Sample images before and after processing.

The former eye alignment has to be done for 200K images. In [3] the authors stated

that “Each image in CelebA and LFWA is annotated with forty face attributes

and five key points by a professional labeling company”. The CelebA includes an

additional file with face landmarks that helps the prepocessing task. Using the

landmark information, all 200K images were cropped to create a source space ready

for generative modelling.



Chapter 4

Empirical Properties of the Latent

Space

The latent space learned using the Glow model has several amazing properties such

as feature additivity that can be used for synthetic image generation, but we have

also found some additional ones.

In this chapter, we start from a learned Glow model and analyze experimentally some

properties of the latent representation. This chapter reproduces relevant properties

from [2, 9, 7, 13] and describes new findings, namely, specular symmetry and linear

discrimination.

4.1 The Latent Space under Gaussianity

As we will later discuss in Chapter 5, a mapping f that minimizes equation (2.1)

maps a distribution defined in the source space to a normal distribution (µ = 0, σ2 = 1)

in the latent space. Therefore, it is reasonable to assess how close does the normal-

izing flow gets to fulfill this task by calculating the sample values of µ and σ. Since

the latent space has dimension (256 × 256 × 3) it is hard to comprehend these to

values. µ is a (256×256×3) vector and σ is a (256×256×3)×(256×256×3) matrix.

Instead, we will use ‖E[x]‖ as proxy for µ. We will compare its sample value versus

11
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a distribution of randomly generated of E[‖x‖] drawn from a normal distribution.

That is, for 1000 trails, we will draw as many samples from a true (256× 256× 3)

dimensional normal distribution as we have drawn from the latent space, calculate

the mean and then the norm of that mean. Figure 5 represents the obtained results.

The distribution, generated from a normal one, has so little variance that seems like

a point mass distribution. This experiment helps us conclude that the normalizing

flow is biased.

Figure 5: Comparison between the histograms of the norm multi-variate Gaussian
distribution with zero mean and unit variance, and the norms of the learned latent
representation.

For σ2 we will make use of the fact that E [
∑
x2i ] = N when xi are independent nor-

mal distributions (µ = 0, σ2 = 1). In high dimensions there is very little convexity so

we can expect E[‖x‖] ≈
√

256× 256× 2563. Figure 6 represents these calculations.

Again, we sample from the final distribution defined in the latent space and for

each point we calculate the norm. We compare this distribution to the one than we

would obtain by following the same procedure when drawing samples from a normal

distribution.

While figure 5 is telling us that the final distribution is biased, figure 6 says that

that all points are mapped on a sphere just a little bigger that it would theoretically

be expected.

As suggested in Figure 5, the typical norm for a point that follows a high dimensional

normal distribution is of the order of
√
N . We can make use of this fact interpreting
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Figure 6: Distribution of norms drawn from a normal distribution vs Distribution
of norms drawn from the one generated by the normalizing flow.

that most of the points lay on an (N − 1)-dimensional sphere of radius
√
N . We

will denote this sphere as SN−1. Our next goal is to asses whether these points are

evenly distributed or not. We will project a set of points drawn from the distribution

of the latent space against the line L defined by the origin and the average of

the distribution µ̄. We will compare this distribution versus the one generated

by drawing points form a normal distribution and projecting them against L. By

comparing the results presented in Figure 7, we can conclude that the normalizing

flow maps all points to only to one hemisphere of SN−1.

Figure 7: Distribution of points drawn from a normal distribution projected against
the line L and distribution of points drawn from the distribution defined by the
normalizing flow. L is the line defined by zero and the average of the distribution
defined by the normalizing flow.
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4.2 Affine Structure of the Latent Space

We say that the latent space has an affine structure in the sense that one can take a

picture of a person who is not smiling, add a smile vector, and will obtain a picture

of the same person smiling. Furthermore, given two images, any convex linear

combination of them will create a realistic picture. This properties are well known

and reported in [10] and [2]. In this section we report experiments reproducing this

properties and some other that given the affine structure also hold.

4.2.1 Linear transition norm preserving

Figure 8 represents the result obtained by taking two given images, mapping them

to the latent space as imageA and imageB, creating in the latent space a linear path

from imageA to imageB, and mapping a set of points in this linear path back to the

original space. We can see that the resulting images, in general, are fairly realistic.

pt = (1− t) ∗ imageA + t ∗ imageB (4.1)

Figure 8: Linear transitions among two given images

As these images are farther apart, this straight line is farther and farther away from

SN−1. Therefore, one reasonable experiment would be to try to find a path that

goes from imageA to imageB but as close as possible to SN−1. We generate such
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path pt using the following equation:

na = ‖imageA‖

nb = ‖imageB‖

xt = (1− t) ∗ imageA + t ∗ imageB

nt = ‖xt‖

pt =
(1− t) ∗ na + t ∗ nb

nt
∗ xt.

(4.2)

Figure 9 presents the obtained results. Unfortunately, the results are slightly worse.

This result is some how counter-intuitive since we are generating points whose norm

is within the distribution of norms.

Figure 9: Norm preserving transitions among two given images. The obtained

images are nor as realistic as using the straight line path

Figure 10 compares the evolution of the norms of the point within the linear path

versus the norm of the points in the norm-preserving path. The linear path contains

points of norm close to 300, completely outside of the range of sampled norms

[450, 475].
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Figure 10: Norms for Linear and Norm preserving paths

4.2.2 Feature additivity

The CelebA data set contains 200K images, all labelled on 40 features. Some of

these features are, for example, smiling, young, or mustache. The first thing we can

do is calculate the mean of a class in the latent space and map this average to the

original space. Figure 11 shows the mean values of the bald, smiling, mustache and

glasses classes while figure 12 shows the mean of the elements of each opposite class.

We can see that while in figure 11 the average values differ from each other, in figure

12 the average values of the complementary classes look very much alike. This is so

because for these classes, True and False are not equally represented. That is, the

class mustache has very few representatives compared to not mustache. The same

happens for the classes Bald and Glasses.
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Figure 11: Average values for: Bald, Smiling, Mustache, Glasses

Figure 12: Average values for: Not-Bald, Not-Smiling, Not-Mustache, Not-Glasses
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This does not happen for the male and female classes since these two sets are equally

represented.

Figure 13: Male and Female prototypes

Feature additivity is a phenomenon that has been observed in different areas of

Machine Learning, for example, in Natural Language Processing, the authors of

Glove [14], reported their well-known formula:

Queen = King −man+ woman. (4.3)

In our domain, we aim at operating in a similar fashion but we would interpret

subtracting Man and adding Woman as subtracting the mean of the elements of

the class Man and adding the mean of the elements of the class Woman. For any

given class representing a feature, i.e. images of people smiling, we will calculate

the average of the the elements within that class µfeature and the average of the

elements in the complementary class µnotf eature. Ideally, we would like to perform

the following operation for any image without a given feature.

imagefeature = imagenot_feature − µnot_feature + µfeature. (4.4)

Notice that this formula is reversible, given an image with a given feature, we could

also try to remove it.

imagenot_feature = image
f eature − µfeature + µnot_feature. (4.5)
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We have found that adding a scaling factor improves the effectiveness of the resulting

operation.

imagefeature = imagenot_feature + α ∗ (µfeature − µnot_feature). (4.6)

Figures 14, 15 and 16 show the result of applying feature additivity for smiling,

mustache and old with α = [0, 0.5, 1, 2, 3]. We can conclude that a scaling factor

improves the final image, but finding the optimal α becomes a challenge.

Figure 14: Smile transition, α = [0, 0.5, 1, 2, 3]

Figure 15: Mustache transition, α = [0, 0.5, 1, 2, 3]

Figure 16: Old transition, α = [0, 0.5, 1, 2, 3]

4.2.3 Specular reflections

New now present a new experiment consistent with the affine structure of the latent

space, specular reflections. For any given image, we wonder what −image would be.

Figure 17 shows this exercise for values of α = 0.5. Using a value of α = 1 proved
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Figure 17: Results for specular imaging

to be off limits. That is, we recovered corrupted images. The specular image tends

to swap hair, gender, and pose. Images staring to the right have specular images

staring to the left and so on.

4.3 Linear Classifiers

When we approached ourselves to the challenge of understanding what was going on

under the hood of normalizing flows, one of the topics that came to our minds was

classification. If a normalizacing flow did indeed turn a given image distribution into

a multi-normal one, any correlation structure should be lost. Loosing correlation

would mean, for example, that CNN architectures would not work for tasks such

as classification. Linear classifiers should still work, but even this class seemed

too broad. The underlying reason is that the CelebA has 200K images, which is

approximately the dimension of the latent space. Thus, any partition of the image

set into two subsets is linearly separable. We needed an even smaller class. Given a

binary partition of the latent space, i.e., mustache and non-mustache, smiling and

non-smiling, we can calculate the average vector of the class µfeature and µnon_feature

and project any point of the distribution into the straight line defined by µfeature

and µnon_feature. We will refer to this projection as opposite-projection. We can also

define the straight line that goes through µfeature and zero. We will refer to the
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projection as zero-projection. We wondered if such a simple method would be useful

for classification tasks. The answer turned out to be positive. This linear classifiers

have predictive power and it’s higher in the latent space than in the original space.

Figures 18 and 19 report the obtained results for the smiling classification task. For

each image, a set of four histograms are shown, the top two histograms represent the

opposite-projection and zero-projection of both classes. The bottom two histograms

represent the opposite-projection and zero-projection of the hold image distribution

compared to a random normal distribution in the case of latent space and a uniform

distribution in the case of original space. These projection exercises also allow us to

understand a little bit more where the images are set on SN−1.

Generally speaking, discrimination of classes is best performed using the mean pro-

jection in the latent space. Furthermore, as we saw in figure 6, the image distribution

in the latent space fails to follow a normal distribution.
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Figure 18: Smiling Image Space

Figure 19: Smiling Glow Space
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Figure 20: Eyeglasses Image Space

Figure 21: Eyeglasses Glow Space
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4.4 Component corruption

In this section, we introduce the concept of component corruption. For a given

image, we will take a random component of the latent representation and assign a

value of 100. This is a value absolutely out of range since each component should

follow a distribution as close as possible to a Gaussian one. Most of the times the

result will be a tiny spot as shown in the left part of figure 22 a few will have a

global effect.

Figure 22: Result of corrupting one single component

Another interesting property is the additivity of component corruptions. In figure 23

we take a set of components and corrupt them all. This property will help us

understand what is going on in the following subsections.
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Figure 23: Result of corrupting many components

4.5 Some Failures

Sometimes, it is equality important to understand why something is working than

to understand why it is not. Figure 24 depicts the local structure of normalizing

flows. When the normalizing flow is asked to add the smiling feature it tends to

place it within the image coordinate system not relative to the given face.

Figure 24: Failed smile transition
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Mathematical Grounding

In chapter 4 we have reported some empirical properties of the Glow normalizing

flow. In this chapter we would like to address the following challenges:

• Gaussianity of the latent distribution: We would like to understand why

by minimizing expression 2.1, we should effectively obtain a normal distribu-

tion and how many different solutions might exist for this minimizing problem.

• Feature additivity: In a nutshell, why King −man+ woman = Queen

To answer these questions, we first prove that given a continuous distribution defined

in a connected domain of RN , essentially, there exists only one f that maps such

distribution to a normal distribution N (0, 1). Then we will discuss on the affine

structure of the latent space. In particular why feature additivity works by sketching

a simple calculation that helps us understand what is going on. Finally, we compile

a set of use cases that are useful to predict if a feature transition task might work

or not.

5.1 Mapping Uniqueness

Let φ0,1(x) be a normal distribution defined in RN . A mapping f : D → RN

induces a probability distribution in D as defined by equation 5.1. We will call such

26
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distribution, the pull-back of φ0,1 on f .

df(x) = φ0,1(f(x))

∣∣∣∣∂f∂x
∣∣∣∣ (5.1)

When calibrating the Glow model we are effectively finding a mapping such that:

f̂ = arg max
f

∫
D

log(φ0,1(f(x))

∣∣∣∣∂f∂x
∣∣∣∣)dµ (5.2)

= arg min
f
−
∫
D

log(φ0,1(f(x))

∣∣∣∣∂f∂x
∣∣∣∣)dµ (5.3)

Adding a constant won’t change the minimizer f̂ .

f̂ = arg min
f
−
∫
D

log(φ0,1(f(x)))

∣∣∣∣∂f∂x
∣∣∣∣ dµ+

∫
D

log(µ(x))dµ (5.4)

= arg min
f
−
∫
D

log(φ0,1(f(x)))

∣∣∣∣∂f∂x
∣∣∣∣ dµ+

∫
D

log(µ(x))dµ (5.5)

= arg min
f
−
∫
D

log(
µ(x)

φ0,1(f(x)))
∣∣∂f
∂x

∣∣)dµ (5.6)

= arg min
f

DKL(µ(x)‖φ0,1(f(x)))

∣∣∣∣∂f∂x
∣∣∣∣) (5.7)

Where DKL(P‖Q) =
∫
p log p

q
dx is the Kullback-Leibler divergence. The Kullback-

Leibler divergence has two important properties. First is positive. Second, 0 is only

reach when P = Q. Now let us suppose that we have two probability distributions

dµ1 and dµ2 defined over the same domain D. Then if both are absolutely continu-

ous, there exists a 1-to-1 homeomorphism h : D → D such that dµ1 is the pullback

of dµ2 on h and vice versa. Thus if f̂ minimizes expression 5.7, the pull-back distri-

bution of φ0,1 on f̂ is effectively dµ. This means, among other things, that all the

correlation structure that dµ might have is captured in f̂ .

Now, let us suppose there are two mapping f and g such that both pull-backs induce
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dµ then g ◦ f−1RN :→ RN induces a pull-back from φ0,1 to φ0,1. However, the set of

maps with such properties is well know. Is the orthogonal group O(N). Therefore,

up to an element o ∈ O(N), there exists only one minimizing mapping.

5.2 Affine Structure

In this section, we develop sketchy calculations that will help us to understand what

is going on. Mainly, why most points lay on the surface SN−1 and why feature

additivity works.

5.2.1 On the distribution of points on SN−1

As we saw in figure 6 of chapter 4 the distribution of the norms of the points

in the latent space is fairly concentrated on
√

265× 256× 3. This is consistent

with the fact that maximizing 2.1 produces a normal distribution. If X ∼ N (µ =

0, σ2 = 1) the sum of squares of its components follows a χ2 distribution and the

χ2 concentrates its probability around N as N →∞

Now, let us suppose that we have a continuous distribution over RN, an let f :

RN → RN normalizing-flow. Then if A and B are two sets defined over RN with

equal probability then f(A) and f(B) will have the same volume.

Furthermore, suppose we have a partition of RN in two half-spaces. A ∪ A = RN .

Then:

|EA[x]| = e

2
√

2π
≈ 0.6 (5.8)

Equation 5.8 comes from the fact that:

∫ ∞
0

x
e−x

2

√
2π

= − e−x
2

2
√

2π

∣∣∣∞
0

(5.9)

=
e

2
√

2π
(5.10)
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This value is independent of the dimension of N. So as N → ∞ the ratio between

expression 5.8 and the radius of SN−1 becomes smaller and smaller. Recall that the

radius of SN−1 tends to
√
N and N →∞.

Let BN+ε(0) = {x ∈ RN | ‖x‖ ≤ N + ε}. As the dimension of N grows, for any given

any partition of BN+ε(0) = A∪A defined by a hyper-plane that contains the origin,

with high probability we will have that if X ∈ A then X + EA[X]− EA[X] ∈ A.

To summarize the former derivations. If we define a Gaussian distribution over

RN , for high N , although the expected norm is N if we define a hyper-plane that

contains the origin. The expected distance of any point to that plane is e
2
√
2π
. This

means that, on average, if we take any point and add a vector orthogonal to the

hyper-plane of just e√
2π

pointing to the opposite site, we will effectively cross to the

other side.

5.3 A heuristic procedure to understand when does

Glow work

Glow is about deep learning, so any mathematics we might do is a poor man’s intent

to understand something that it is way too complex. However, we have compiled

this cheat sheet to know when feature translation should work.

5.3.1 Locality

Is the feature you would like to manipulate local? Such as smile, eyeglasses, or

mustache? Then feature additivity might work. Unlike hairstyle, eyeglasses is fairly

a local concept that occurs in a defined place on the face. Figure 27 shows that

while the eyeglasses placed are far from optimal, they are placed in the right place.

5.3.2 Feature Uniqueness

When you think about that feature, does it come a unique or very few images of

it? Like smiling or mustache? Then feature additivity might work. It is not the
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case of eyeglasses, necklaces, earrings, or hats, where there is a broad range of them.

Figure 28 shows that since mustache is quite a unique and local concept, mustaches

are correctly placed although there are no prior images with such a characteristic.

5.3.3 Feature Sampling

The feature is not local, might not be unique but it has been well sampled. Then

is when the mathematical machinery that we have presented kicks in. It should

work. Figure30 shows one of the most existing results where the color of the model

is changed without changing its shape.

5.3.4 How about the opposite?

Maybe the feature is not local, not unique, or is not well sampled, but the opposite

might be well sampled or unique. Then, removing that feature might be possible.

Figure 29 proves that it is possible to remove the eyeglasses of the model with

reasonable results.

5.3.5 Out of Norm

If the feature that we are trying to transfer has very little representation, things will

go wrong. Suppose an extreme case, we consider as feature a single person and we

want to transfer the person’s characteristics to another one. We would still perform

the following manipulation.

result = image1 −mean_images_not_image2 + image2 (5.11)

Figure 25 depicts for a given image the different results obtained when adding all

the characteristic of another person versus adding a smile.
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Figure 25: Adding a single person as a feature vs adding a smile

If we take a look at the norms we immediately see what is going on. In the first

operation, the obtained image has a norm outside of the learned range, while in the

second operation, the result’s norm is within range.

Figure 26: Resulting norms

Figure 27: Eyeglasses are a local concept but not unique
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Figure 28: Mustache is a local and fairly unique concept

Figure 29: Not glasses is a unique well sampled concept
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Figure 30: Blond, Black and Brown hair are well sampled classes

5.4 Domain of the normalizing flow

In chapter 4 we have made an empirical study of the properties of the Glow normalizing-

flow. In chapter 5, we have discussed some of the theoretical properties that the

limit normalizing flow should have. This let us depict, figure 31, where Glow is cur-

rently working. The vertexes represent each image properly mapped. On chapter

4, figures 8 and 10 showed us that while the original images are mapped on SN−1

transition from one image to another one worked best on linear paths than paths

that went from the original image to the source image on SN−1. Finally, specular

images worked but we had to correct for a α ≤ 1.

Figure 31: Representation of where Glow works
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Conclusions

Our original goal was to understand why feature additivity works in the Glow nor-

malizing flow. We have been able to spot a great deal of strengths and some possible

improvements. Chapter 4 presents some amazing properties such as feature addi-

tivity or image translation. We have reported two new property consistent with the

affine structure of the latent space, specular reflections. We have also reported that

while normalizing flows lose correlation structure, they exhibit great linear separa-

bility properties. We have also seen that although the optimizing flow should have

zero sample mean, the current normalizing flow is biased and all images are mapped

to one single hemisphere. This leaves some room for improvement. Nevertheless,

most of the images from the source space are properly mapped on SN−1. Performing

different paths from imagea to imageb showed us that Glow in not perfectly defined

in all SN−1 this is also some room for improvement. Finanly, in chapter 5 we devel-

oped some mathematical grounding of why should the latent space have and affine

structure.

34
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