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Abstract
Motivation: During the past years, the number of compounds needed to identify a suitable lead have
continuously rivesn. In order to innovate and accelerate the drug discovery process, we present Feed
Forward Frag (F3), a new algorithm for filtering external molecule databases combining iterative searches
and fragment growing to identify promising leads for the drug discovery process. The method is based on
our in-house software FragPELE, a tool for in-silico hit-to-lead drug design, capable of growing a fragment
from a bound core, adapted from PELE which uses implicit models to speed up conformational explorations.
F3 successfully analyses millions of molecules in a few hours and identifies the bound core to enable the
growth of the query ligand.
Results: Results show that the F3 algorithm could be useful to identify novel hits for a system and
successfully explore the conformational space of the system at each iteration with PELE and efficiently
sample the re-arrangement of the protein as the fragment is grown.
Supplementary information: The code of the algorithm is available at GitHub.

1 Introduction
The drug discovery process is initiated when,

because of a clinical condition, there is a need to
develop suitable medical products. The initial stage
of research aims to define a hypothesis where a
variation of a metabolic pathway results in a
therapeutic effect in a disease state. Later on, in the
basic research phase, a suitable target is selected.
During this phase, an extensive search is performed
in order to find a drug-like molecule, which after an
exhaustive validation, will progress into preclinical
and, if successful, into clinical development to
finally be marketed. (Hughes et al., 2011)

Computational-aided drug design (CADD)
methods play a major role in accelerating and
economizing the drug discovery process. (Ou-Yang
et al., 2012). The goal in drug discovery is to
identify candidate molecules with improved
biological potency and physicochemical properties.

A drug target is a biomolecule involved in
signaling or metabolic pathways that are specific to a
disease process. Modulation of the biological

function performed by these molecules for
therapeutic applications could be achieved by
inhibiting their function with competitive molecules
whose binding affinity is greater than the natural
ligand, inhibiting the molecular interactions with
small molecules or activating functionally
deregulated molecules in some diseases. (Kumar S,
2013)

However, the number of compounds needed to
identify a suitable lead has continuously risen over
the past years. To reduce attrition and improve the
productivity of the process it is crucial to have the
best quality and quantity of hit classes in order to
improve the efficiency and reduce the time required
for successful hit identification. (Hao et al., 2016)
The fundamental issue in this process is the high
failure rate in clinical trials and the increase of
development costs caused by molecules with
inadequate properties. (Colombo and Peretto, 2008)
Therefore, molecular properties such as toxicity,
excretion, absorption and distribution must be
considered at early stages of drug design. (Lagorce et
al., 2008).

https://github.com/nostrumbiodiscovery/pele_platform/blob/PELE-486/pele_platform/Frag/filtering.py
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Figure 1: Schematic representation of HTS hits and FBDD hits as starting points for the drug discovery process. 1)
Cartoon representation of a protein active site where there are three pockets for inhibitors to bind. 2) Cartoon
representation of HTS hit binding to the active site. The hit is functionally complex and makes several but low-quality
interactions with the protein. 3) Cartoon representation of a fragment making few but highly efficient interactions with
one of the pockets in the active site. 4, 5) The lead has evolved by linking other fragments to it and makes further highly
efficient interactions in the active site while retaining the key interactions from the first fragment.

Furthermore, during the drug discovery process,
there is an enormous chemical space to explore.

Therefore, screening approaches for assessing
good ligand candidates require advanced
techniques since small structural changes may
result in huge differences in the interaction pattern
between the ligand and the protein. The vast
search space combined with the complexity of
ranking each candidate easily leads to very
challenging studies that require strategies to
simplify and rationalize them. For example, in
ligand-based methods, similarity and dissimilarity
of previously known ligands is used to predict
activity, develop molecular descriptors,
quantitative structure-activity relationships, etc. to
rationalize, reduce, and diversify the chemical
space that is explored. (Sliwoski et al., 2013)

High-throughput screening (HTS) is the use of
automated equipment to rapidly test millions of
samples for biological activity at an organism,
cellular, pathway or molecular level. HTS is
commonly used in pharmaceutical and
biotechnology companies to identify compounds
with pharmacological or biological activity.
(Wexler et al., 2014)

Due to their speed and low cost, computational
models are an interesting approach to perform
in-silico HTS on thousands or millions of
compounds. During the drug discovery process,
the industry has traditionally built large collections
of highly functionalized compounds in an attempt

to identify a sufficient number of hits, but even the
largest conceivable compound collection falls far
short of potential chemical diversity space. As
molecular size decreases, the number of possible
molecules decreases exponentially, so in theory it
would be more efficient to screen collections of
very small molecules and subsequently expand and
merge them. (Erlanson, McDowell and O’Brien,
2004)

Fragment-based drug discovery (FBDD) has
arisen as an alternative to HTS. (Murray and Rees,
2009) Fragments are small molecules that present
low binding affinities against the target protein and
therefore, would not be identified during a HTS
strategy. However, once a hit has been identified,
the attachment of small fragments to the molecular
core can provide derivatives that might make
further high-efficiency interactions in the active
site while retaining the key interactions from the
original ligand, thereby boosting the potency.
Figure 1 schematically represents the FBDD
approach. In order to identify the best fragments
and attaching points, a large library of small
fragments with a diverse set of chemical scaffolds
needs to be screened. (Fattori, 2004) To properly
study and rank each fragment we also need to
explore the conformational space of the small
molecule and the protein residues that surround it
in the binding site. (Congreve, Murray and
Blundell, 2005) (Carr et al., 2005)
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Figure 2: FragPELE simulation workflow.

In this scenario, we decided to utilise PELE,
Protein Energy Landscape Exploration, as it is one of
the leading algorithms to rapidly map protein–ligand
interactions. (Borrelli et al., 2005) PELE relies on a
Monte Carlo (MC) stochastic approach and a
collection of algorithms that account for the
flexibility of the protein, including the backbone and
side chains, and small molecules. Its algorithm has
been largely used in explorations of ligand binding
and migration processes but also as a successful
induced-fit docking approach.

In order to evolve the hits by merging other
fragments, we used FragPELE, an algorithm that
automatically grows one or more fragments onto
different hydrogens of a ligand in multiple steps.
(Perez et al., 2020) In order to allow the environment
to adapt to the new fragment, it applies a
slow-growing scheme based on running successive
PELE simulations following an alchemical pathway;
ie, the atoms of the fragment are shrinked in the first
steps and then, progressively increased until reaching
the regular atomic parameters.We have recently
developed a new workflow for FragPELE in an
attempt to ease and automatize the search, ranking
and validation of new molecular fragments coming
from external datasets. Specifically, our method
takes as input hit compounds and looks for
similar molecules from an external database, such as
ZINC, in order to suggest fragments that can be

incorporated to them in a FBDD routine. Then,
employing FragPELE we can accordingly rank the
resulting fragments to see whether the potency of our
initial hit is improved with each of them or not. We
can also concatenate multiple iterations of this
algorithm to further increase the potency of our hit
by adding multiple fragments on it.

Define objectives
The goal of the project is to develop an algorithm,

working with PELE and FragPELE software, aiming
to be a fast tool to locate and grow fragments to an
initial seed compound from a protein-ligand complex
to find suitable leads during the drug discovery
process.

2     Methods
■ Protein preparation: The workflow requires a
crystallographic structure corresponding to the hit
already bound to the protein target. In order to use
this complex structure in a FragPELE simulation, we
need to represent it with a PDB that must have a
proper format. Missing atoms and residues are
handled with Schrodinger’s Protein Preparation
Wizard. (Madhavi Sastry et al., 2013) This tool is
also used to fix wrong atom and residue names,
protonate the system and remove water molecule
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5A aways from the binding site. It is mandatory to
ensure that the non-standard ligand has a unique
chain ID and unique atom names. Non-standard
residues are parameterized with OPLS2005.
Solvent is considered using the surface-generalized
Born implicit model with a variable dielectric
parameter.
■ PELE: PELE explores the conformational space
of a biochemical system using a custom MC
algorithm that relies on the following steps that
can be executed in a multi-CPU infrastructure:
(1) Perturbation: PELE performs the local
perturbation of the ligand. It can also perturb the
protein backbone applying the normal modes
found with the Anisotropic Network Model. If any
contacts are found between the ligand and the
backbone of the protein or with the ligand itself,
the perturbation is directly rejected. Clashes
between atoms that belong to rotatable groups or
side chains are permitted since they can be
relieved in the next steps.
(2) Relaxation: This step involves a side chain
prediction algorithm and a global minimization.
Firstly, bad contacts between the ligand and
neighboring side chains are relieved by finding the
best combination of rotamers. Finally, the global
minimization applies a general relaxation to all the
atoms of the system.
(3) Acceptance or rejection of the step: the
new state of the system is only accepted if it
fulfills the Metropolis criterion.
Recently, the exploration capabilities of PELE
were improved with a protocol called
Adaptive-PELE. (Lecina, Gilabert and Guallar,
2017) It relies on running short PELE simulations
while combining them with a clustering/spawning
algorithm to promote the exploration in the regions
that have been less-explored in the previous runs.
■ FragPELE: FragPELE is based on the PELE
software, it grows an R-group to a bound ligand in
a series of steps, and is the basis of our approach.
As shown in Figure 2, the steps followed on a
FragPELE simulation are:

(1) Fragment Linkage: At this stage, a given
fragment is covalently linked to the chemical core
at a position specified by the user.

(2) Fragment Reduction: The parameters of the
atoms of the fragment are reduced to later be
grown again within the binding site.

(3) Fragment Growing: during a series of steps,
the fragment is grown iteratively increasing its
parameters. This strategy along with the
algorithms of PELE that account for the flexibility
of both the ligand and the protein allows the
binding site to adapt to the new chemical structure.

(4) Sampling and scoring: In this step, a PELE
simulation is performed to score the grown
molecule.
The combination of MC sampling with the
growing algorithm used in FragPELE allows the
complex to adapt while exploring the significant
areas of the potential energy surface. FragPELE is
based on the PELE software, which combines an
MC stochastic approach with protein structure
prediction techniques.
Several PELE simulations are run at each step to
efficiently sample the re-arrangement of the
system as the fragment is grown.
■ Similarity search: The similarity search within
the algorithm uses the Tanimoto coefficient to
calculate the degree of similarity between the
query compound and the target structures.
The Tanimoto coefficient gives a value in the
range of zero to one, one being the maximum
similarity value, that is, the two molecules are
equal. (Willett, 2006)
Thus, the Tanimoto coefficient takes the ratio of
intersection over union, measuring the similarity
between finite sample sets, being the molecular
fingerprints in this project. It is defined as the size
of the intersection divided by the size of the union
of the fingerprints.

3    Results and Discussion
■ The Feed Forward Frag algorithm: Feed
Forward Frag (F3) has been implemented as a new
functionality of FragPELE. Our aim was to design
a workflow able to locate, in an external dataset,
new compounds similar to the small molecule
(seed compound) that is already a known binder to
a particular target. These new compounds must
include the full molecular structure of the initial hit
and only differ on the terminal molecular branches
since it is important that we identify new
molecules that can preserve the key interactions
that the hit compound already has. New terminal
branches will then be added to the ligand
simulating its progressive growth with FragPELE.
Finally, the new molecular candidates are ranked
according to an energetic score, so we can identify
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Figure 3: Diagram of the Feed Forward Frag algorithm steps.

those that could interact stronger with the protein
cavity.
The illustration in Figure 3 exhibits the main
stages of the algorithm.

1. Similarity Assessment: The procedure starts with
the computation of molecular fingerprints to
encode the structure of the molecules and
determine the similarity with the initial seed
compound and the dataset compounds.
Molecular fingerprints are representations of
chemical structures that facilitate searching a
substructure in a database and are used in
multiple tasks such as similarity analysis,
clustering and classification. (Hert et al., 2005)
In this project we used extended connectivity
fingerprints for similarity assessment during the
filtering process.
To collect the similarity value for each molecule
without consuming the memory available, we
used a heap queue algorithm. We
used min heap algorithms to keep a list in a
nearly sorted order as items are inserted and
extracted. The nearly sorted order supported by
heap queue algorithms is good for implementing
priority queues but faster to establish and
maintain than fully sorted data structures.
(Martelli, 2017)
Since FragPELE is only capable of growing one
fragment at a time, we filtered out the molecules
that had more than one R-group bound to the
substructure by performing a substructure search
of the query ligand in the database compound.

The substructure search was also used to identify
the core and the fragment of every potential hit.

2. Identification of linker atoms: FragPELE
requires the information about the linker atoms
from both the core and the fragment structures
in order to attach them properly. To correctly
identify the linker atoms, the structure of every
molecule was represented as a network using
the indexes of the core and the fragment
obtained from the substructure search. Since
linker atoms are identified through their PDB
atom names., we aligned the core of the
database compound with the query ligand to
obtain the PDB atom name of the linker atom in
the initial structure.

3. Generation of the fragment library: For each of
the most similar compounds, the fragment
extracted from the core in the previous step was
stored as SDF format into an individual
directory to create a library of fragments which
FragPELE takes as input to run the growing
simulation.

4. Growing Simulation: The last step consists of
linking each one of the fragments of the
fragment library to the query ligand with
FragPELE.
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Table 1: List of top results for T4 lysozyme (181L). List of results with lowest binding energies from the first iteration of
the F3 algorithm.

5. Sampling and Scoring: Once the ligand is
grown, a final PELE simulation is performed to
score the molecule. The score is computed as
the mean of the 25% lowest values of
interaction energies.

■ Use Case: T4 Lysozyme
In order to study the capabilities of the F3
algorithm to suggest promising fragments that can
be attached to the initial seed compound, along
with the sampling potential of FragPELE, we
applied our method to find new derivatives for the
T4 Lysozyme. It is an endoacetyl-murmidase
produced late in the infection of Escherichia coli
by T4 bacteriophage (Madhavi et al., 2013). The
structure consists of two domains with hydrolase
activity, The interface between the two domains
forms the active-site cleft.
A dataset of 13.827.221 compounds was analysed
taking the ligand of the reference crystal structure
(PDB id: 181L) as the initial seed compound,
which is a benzene ring. A total of 38 compounds
were selected according to their similarity with
respect to the benzene. Then, extra chemical
groups belonging to these compounds were grown
and ranked with FragPELE. Table 1 shows the
best candidates according to the binding energy
(BE) metric in the similarity assessment stage of
the first iteration of the algorithm.
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A total of 3 iterations were performed. The best
molecular candidates that were obtained after the
full run are shown in Figure 5b. Thus, all the
resulting structures contain a unique branch
connected to the original benzene ring with some
chemical groups able to establish hydrogen bonds.
Moreover, results represented in Figure 5a shows
that fragments occupied a similar binding mode
after their growth with FragPELE. Particularly, all
grown fragments are oriented towards the same
cavity as seen in Figure 5. Besides, some of the
polar groups in the grown branch could participate
in new hydrogen bonds with the receptor. On the
other hand, the same orientation predicted by our
method is observed on crystallographic structures
2RBR, 2RB1, 2RAY and 2OTZ when similar
fragments are attached to the benzene ring, as
shown in Figure 6, thereby validating the binding
modes founds by our FragPELE.
During the execution of the algorithm, we
observed that as more iterations were performed,
the BE values of the F3 results decreased, as
shown in Figure 8. These results suggest that our
method could improve the complementarity and
specificity of the ligand towards the target after
each iteration. In addition, since at each iteration
the molecular weight of the initial seed compound
increases, less results were obtained.
In the original protein-ligand system shown in
Figure 7a, there are no interactions reported to be
potent against the T4 lysozyme. The optimization
of the initial seed compound (Figure 4), using the
F3 algorithm, induces two new hydrogen bonds
between Val-111 and the hydroxyl group, and
Ser-117 and the amine group of the ligand as
shown in Figure 7b. Moreover, in the native
structure of the protein, Ser-117 and Asn-132 form
a short hydrogen bond causing a steric strain.
(Shoichet et al., 1995) However, the flexible
induced-fit docking done by FragPELE is able to
reorient Ser-117 to participate in a hydrogen bond
with the ligand (Figure 9) in the majority of the
top candidates that were obtained. In this way, this
conformational change will probably improve the
general stability of the protein.
In conclusion, the F3 method can be used not only
to identify novel hits for a particular system, but
also to open known pockets with new candidates
of higher molecular weight suggested by the

similarity-based searching algorithm. The
conformational exploration power of the
algorithms built in PELE provide the means to
adapt the binding site to each of the molecules that
are tried.
Regarding the computational time, the F3
algorithm takes 3 hours to scan the compound
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database and an average of 1 hour per fragment to
run the fragPELE simulation using 20 CPUs on a
Xeon Gold Processor.

4    Conclusions

FBDD has arisen as a powerful technique for
identifying novel lead compounds. In this project,
we have presented a novel algorithm to perform
feed forward fragment searches to identify
alternative lead compounds during the drug
discovery process.
We tested the potential of the algorithm for finding
suitable molecules and correctly identifying the
linker atoms to efficiently perform the growing
phase with FragPELE.
The early results of the F3 algorithm with the
ZINC (Sterling and Irwin, 2015) database showed
that it is a promising tool to identify new lead
compounds being able to control the physical
properties of the fragments and drug candidates.
Early structural results show that the F3 algorithm,
along with PELE and FragPELE, show good
identification of binding modes and improvement
of the interactions in the protein-ligand complex.
However, further validation of the approach is
needed. Some aspects to be improved are
summarized in Table 2, such as the
implementation of a cavity-wise growing that will
allow the user to specify the cavity of the
protein-ligand system that the new fragment must
fill. This new feature is currently under
development and will promote the adoption of a
particular binding mode during the growing

simulation of new fragments while opening any
cryptic pocket that the studied target might have.
Finally, the combination of AquaPELE (Municoy
et al., 2020) and FragPELE to account for the
perturbation of explicit water molecules during a
growing simulation, could allow us to consider the
mediation and displacement of buried water
molecules. Therefore, we expect that the
perturbation of water molecules at each iteration of
the algorithm can boost the accuracy of the results
on protein-ligand systems where interfacial water
plays crucial roles.

Table 2. Aspects of improvement of the F3 algorithm.
Improvement points for the F3 algorithm

1 For a given set of molecules, improve the
assessment of the best result instead of only
focusing on BE values

2 Parallelization of the similarity assessment step

3 Add pharmacophore analysis to filter out specific
chemical groups

4 Include point analysis to choose fragments with a
specific orientation inside the protein pocket
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