

Bachelor’s Degree in Bioinformatics (UPF-UPC-UB)

Final Degree Project

Application and development of a CNN model to optimize an
OligoFISSEQ image obtention pipeline
Aina Martí Aranda
Scientific director: David Castillo1, Marc A. Marti-Renom1

1CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona,
Spain.

Abstract

Motivation: Imaging genomes is gaining importance due to the close relation between spatial genome
organization and many biological processes including cell differentiation, DNA replication, and development.
One of the latest developments in genome imaging is OligoFISSEQ, which is based on Fluorescence In Situ
Sequencing technologies (FISSEQ) and uses barcoded Oligopaint probes. OligoFISSEQ is high throughput
and has the potential to produce hundreds or thousands of images at high speed. In this project we have
explored the application of an artificial intelligence deep learning algorithm (DLA) in the OligoFISSEQ image
acquisition protocol to classify the obtained images according to their expected quality.

Results: In this project we developed and tested several DLA models to classify the images generated by
OligoFISSEQ, identifying the cells that are likely to provide rich structural information. Several approaches
for image preprocessing, model architecture, and data augmentation were assessed for this specific
scenario. Among the various methods tested, this study achieved the best regression models with mean
squared errors of 0.0149 for model 4, 0.0131 for model 3, 0.0109 for model 2, and 0.0169 for model 1, which
used as binary classifiers yielded accuracies of 0.64, 0.80, 0.88, and 0.88 in the external validation dataset,
respectively.

1. Introduction 

Genomes do not work as linear molecules but
instead, they are spatially organized and packaged
inside the nucleus2. Chromosomes are folded and
organized at different levels forming the 3D
structure of the genome, which regulates many
crucial biological processes such as gene expression,
cell differentiation, meiosis, DNA replication, and
development2,3,4. The 3D arrangement of the genome
is very dynamic and varies depending on the cell
state and type. Throughout cell differentiation, the
proper organization and structures of the genome
are crucial for many key molecular events. Therefore,
diverse defects in these specific conformations, i.e.
missorganizations, can produce developmental
abnormalities, diseases, and tumorigenesis2,3,4.
Consequently, this has carried importance to the
development of tools and methods to image the 3D
conformation of the genome. Images at high

resolution could aid study and better characterize
many human diseases.

Historically, the poor availability of tools studying
the 3D genome restricted the study of chromatin
architecture, leading to a huge challenge for
researchers trying to study multiple diseases
related to this field2. However, the current progress
in this area and the increasing amount of 3D
structure data provide an unprecedented resource
that can be used to re-examine the causes of many
diseases2. Researchers at CNAG and Harvard
Medical School have developed a potentially
enabling class of methods called OligoFISSEQ1,
which are the foundations of the current project.
OligoFISSEQ is based on fluorescence in situ
hybridization5, used previously, for example, to
demonstrate chromosome territories in interphase
cells6,7. This new technology is a suite of three
methods that use Fluorescence In Situ Sequencing
(FISSEQ)8,34 with barcoded Oligopaint9 probes to

1

enable the rapid 3D mapping of the targeted
genomic regions inside the nucleus1.

The usage of FISH technologies in previous studies
showed the labeling of up to 40 regions to study
chromosomal paths, chromatin spatial organization,
A-B chromatin compartments25,26, and the visualization
of nearly entire genomes by addressing one
chromosome arm at a time1,27,28. However, OligoFISSEQ
relies on the multiplexing of the signal between
different channels to maximize the number of
detected targets in a certain number of sequencing
rounds. Other methods that use the rounds
sequentially can target up to F·N regions, being F
the number of fluorophores and N the number of
rounds of sequencing. Contrarily, the OligoFISSEQ
strategy being discussed here has the potential to
target up to FN regions1 while obviating the need for
target amplification thanks to the incorporation of
Oligopaint9 probes. Furthermore, the usage of
diffraction-limited microscopy facilitates imaging the
same genomic region in thousands of cells and
therefore provide the statistical power required to
approach cell-to-cell variability1. As a result, we are
in front of a likely enabling class of methods
providing high throughput of images of thousands
of single-cell targets, which brings us closer to
whole-genome imaging explaining variability within
cells. Consequently, due to the potential of the
technology to generate huge amounts of data for
the downstream analysis, this technology requires
high levels of optimization and automatization.

Originally, the images obtained from sequencing
rounds were manually analyzed, but since manual
decoding is not reconcilable with high throughput,
the process was automatized by creating an every-
pixel automated pipeline, which was structured as a
two-tier system1. As shown by the authors of the
paper, the detection pipeline addresses the
decoding of the targets by analyzing every pixel
individually and grouping them to compare the
different signal intensities and sizes. Tier 1, which
corresponds to the preprocessing step, filters out
pixels below a minimum intensity and/or patch size.
Secondly, tier 2, which corresponds to chromosome
tracing, progressively lowers these requirements to
detect signals previously discarded in tier 1.
Moreover, in this case, a distance requirement is
applied: new signals from the same chromosome
are required to be within 4.5um of the euclidean
center of tier 1 detected targets. This new
condition takes into account both the tendency of
chromosomes to occupy specific territories7 and the

particular distances between targeted regions
within the same chromosome. The two-tier system
was shown to detect 80.2% ± 7.3% of targeted
regions in each nucleus with at least 70% of
targeted regions recovered in ~70% of the cells1.
Yet, this process reveals that many cells end up
with a low barcode recovery ratio and do not
contribute to the final analysis.

Since this technology generates huge amounts of
images representing the 3D conformational space
of the genome within a cell, it requires many hours
of imaging and high amounts of disk space.
Presently, researchers need to closely inspect the
wide-field images to select regions of interest
containing cells that, in the eyes of the researcher,
are likely to provide a decent amount of detected
barcodes. Nevertheless, although all cells selected
by the researchers are analyzed, not all of them are
finally providing useful information. This means that
an early automatic filtering stage could potentially
save time and disk space. Additionally, another
problem of this methodology is that, since samples
are taken and manipulated between rounds of
sequencing to carry out all the chemistry processes,
the position of the microscope fields of view (FOV)
need to be carefully maintained and annotated in
order to return back to the same location1. Changes
in the order of nanometers in the position of the
FOV, which are very common and difficult to
control, can produce the loss of valuable information
as well as difficulting the posterior analysis. All this
human involvement and sample manipulation adds
a lot of errors and variability to the different
experiments. In order to overcome all these
problems, one of the current goals to improve the
OligoFISSEQ methodology, as stated by the
members of the lab, is to build a self-driving
microscope. Such a microscope would optimize the
time and disk space needed for the experiment
while reducing the amount of human implication,
hence lowering part of the variability between
samples.

Artificial Neural Networks are gaining importance in
many scientific areas and they have already made
a huge impact in many fields14,20,21,33. In this
project, as a contribution to the discussed objective,
we searched for an artificial intelligence deep
learning algorithm (DLA) to provide time and disk
space optimization by avoiding the processing of
cells that will provide scarce information (i.e. cells
yielding low barcode recovery). At the same time,
this algorithm automatizes the acquisition of FOV,

2

thus reducing the level of human participation in the
process. Since the images are processed and
analyzed looking for shapes and peaks of
intensities1, it is logical to think that there might be
some kind of pattern, easily recognizable by a
convolutional neural network (CNN), that could
explain the amount of information (i.e. percentage
of barcode detection) that each image is providing
to the experiment. Thus, allowing us to automatically
drive the focus of the microscope towards regions
of the plate that contain cells that are likely to
provide rich structural information.

1.1 Objectives

In this project we test different image preprocessing
techniques, model architectures, and data
augmentation methods to identify the best
procedure to classify OligoFISSEQ single-cell
images using CNNs. The foremost aim is to be able
to automatically discard cells at the earliest
opportunity when predicted to yield low structural
information.

This recently developed technology is continuously
evolving and the protocols are still being improved.
As a result, the models trained in this project will
not be applicable to newer acquired datasets with
different characteristics and properties. However,
the aim of this project is not only to train the models
but also to find the best procedures to deal with this
type of information so that it will be straightforward
to implement and train the models with newly
acquired OligoFISSEQ images.

2. Methods

In this section, we detail the methods used to
classify OligoFISSEQ images by implementing
several Convolutional Neural Networks (CNN). This
procedure used 1171 images from two datasets
containing several biological and technical replicates
to train, validate and test the CNN models.
Features considered as key for the analysis of
these images were enhanced using image
preprocessing techniques. Three different
approaches were tested and compared. Secondly,
four model architectures of different complexities
were compared to identify the one that best fitted
the data size and type. Finally, in order to address
the limitations of data size in this particular project,
we addressed three data augmentation procedures
as an approach to improve the performances of the
models.

2.1 Datasets

For this project we used two datasets (36plex-5K
and 36plex-1K) generated in the Wu and Marti-
Renom labs. The two datasets together make up a
total of 1171 cell images and consist of several
biological and technical replicates (Supplementary
Table 2). Since this is the first project using and
developing this recent and innovative methodology,
there is no more data available. Both datasets
image six regions along six chromosomes (chr2,
chr3, chr5, chr16, chr19, and chrX), having a
unique barcode for each of those targets
(Supplementary Figure 1a). All targeted regions
were sequenced using ligation based identification
of targets (O-LIT), which is one of the chemistry
protocols that can be used for OligoFISSEQ1. Both
datasets targeted a total of 66 regions in PGPf1
cells (six regions for each homolog of the 5
chromosomes plus six regions in the single X
chromosome).

The 36plex-5K dataset targets were sequenced
using the SOLiD10 chemistry. This dataset was
targeting 66 regions, each bound by a constant
number of 5,000 Oligopaint nucleotide probes.
Targeted regions, in this case, were ranging in size
between 642kb and 1.22Mb (876kb on average).
Four rounds of O-LIT were sequenced using both
Oligopaint streets simultaneously. As part of the
validation of the technology the same barcode was
assigned to targets 3qR3 and 5pR3.

The 36plex-1K dataset was targeting the same
regions and it adopted the same barcodes with the
exception of 5pR3, which was given a new
barcode. In this case, a new sequencing strategy
named “just enough barcodes” (JEB) was designed
to replace SOLiD. This strategy used only 1,000
Oligopaint nucleotide probes per region with an
average of 173Kb of size by taking advantage of
the universal base deoxyinosine1,11. Five rounds of
O-LIT were sequenced assessing only one
Oligopaint street. This second dataset improved the
signal-to-nuclear background ratio, which also
improved genomic resolution and the percentage of
barcode detection.

Images from the microscope were initially aligned,
segmented, and deconvolved using 20 iterations of
the Richardson-Lucy algorithm to improve their
resolution40 (Supplementary Figure 2). After those
modifications, the images were analyzed by the
every-pixel pipeline to identify and decode the
barcode information. For the development of this

3

project, we will use the already deconvolved,
aligned and segmented images (a total of 1171
cells).

2.2 Data splitting

From the whole dataset with a total of 1171 cell
images, data splitting was performed to separate
the training, internal validation and external
validation datasets. The complete biological
replicate OFQv69, which consisted of 125
representative cell images from all cases, was
separated to be used as the external validation
(Supplementary Table 2). The remaining 1046 cell
images from the other replicates were used as the
training dataset. Those images were randomly
splitted into 4 different folds to perform cross
validation (CV)17.

Each iteration of CV used one fold of 261 or 262
images as the validation set while the other folds
were used for the training process. This resulted in
training sets of 785 or 784 images depending on
the folds used as validation sets (Supplementary
Figure 3). The images used in each fold were the
same for all models developed in this project.

Then, the performances were estimated by
averaging the performances over folds. In this
project, the metr ic used to quant i fy the
performances of the models was the mean squared
error, as stated in section 2.12.

2.3 Data structure

The images used in this project were the output of
4 (36plex-5K) and 5 (36plex-1K) rounds of
sequencing where the targets in each cell were
visualized in the 3D space. At each round, the cells
were imaged at five different wavelengths of colors,
representing the four color coding for the barcodes
plus the staining of the nucleus: Alexa Fluor 647,
Texas Red, Cy3, Alexa Fluor 488 and DAPI
(Supplementary Figure 1b). The cells were also
imaged along the axial dimension in a series of z
slices. Hence, the images used in this project
consisted of 5 different dimensions representing the
x and y axis, the channels imaged, z-slices, and
finally the rounds of sequencing.

2.4 Data visualization

The images used in this project were previously
processed using ImageJ/FIJI29 to align and
segment the cells1. Moreover, in this project we

also used ImageJ/FIJI, and matplotlib30 (v3.3.4) to
analyze and visualize the cells individually.

2.5 Data labels

In this project, we aimed to classify the images in
accordance with the percentages of barcodes
detected with each of them. The labels ranged
between 0 and 1, being 1 the 100% of barcodes
identified in a specific cell.

The labels were obtained by applying the every-
pixel pipeline1 to the images given to the models.
The number of barcodes detected with this pipeline
was used to compute the percentage of barcode
recovery.

2.6 Models built

As stated previously, the foremost aim of this
project was to discard cells at the earliest
opportunity. Given that the rounds of sequencing
are obtained progressively in the OligoFISSEQ
methodology, we repeated all our tests to train four
different DLA models. The first model tried to
discard the low recovery cells with only the images
from the first round of sequencing. Once the
second round was already sequenced, the second
DLA used the new information together with the
previous one to make a better prediction and
discard the cells that were likely to yield a low
recovery ratio at this new step. Finally, we did the
same with the next two rounds of sequencing and
their corresponding DLA models.

For the sake of simplicity, we will refer to those
models as model 1, model 2, model 3, and model 4
corresponding to the number of rounds of
sequencing that they are taking into account.

2.7 Convolutional Neural Networks

The methods being deployed in this project focus
on Convolutional Neural networks (CNN), a type of
DLA used to work with images searching for
complex and hierarchically organized patterns15.
This type of neural network falls into the discriminative
category, which means that it follows a bottom-up
approach in which data flows from the input layer
via the hidden layers to the output layer, using
supervised training15.

This type of network usually consists of three types
of layers: convolutional and pooling, which perform
feature extraction, and fully connected layers,
which generate the final output14,35. Usually,

4

convolutional and pooling layers are alternated in
the first part of the model and are followed by one
or several fully connected layers at the end. Lastly,
those models require a final layer where the
number of neurons matches the number of outputs
that need to be obtained (i.e. the probability for
each class or one single neuron when building a
regression model14). The order of these layers and
their corresponding parameters define the model
architecture. The more layers, the more complex
patterns the CNN will be able to identify. However
the lowered number of neurons and layers usually
reduces the training time and also the probability of
overfitting15,18.

2.8 Model architecture

In this project, several model architectures of
different complexities were tested and compared in
order to find the best model architecture that fitted
the data used. All of them consisted of several
pooling and convolutional layers alternated between
them. Their main difference focused on the number
of layers and the number of neurons in each layer,
which defined their complexity. Among the different
architectures addressed, the one leading to the
best model performances (Figure 1) consisted of:
one convolutional layer with 32 neurons, two
convolutional layers of 64 neurons, two convolutional
layers of 126 neurons and two fully connected
layers of 32 neurons with a pooling layer in
between each of those groups of layers. Finally the
architecture had a final dense layer of 1 neuron to
generate the final output of the regression model
(i.e. the percentage of barcode recovery per
image).

In all convolutional layers and the two fully
connected layers of 32 neurons, the activation
function applied was the Rectified Linear Unit
(ReLU) as shown in equation 1. Activation functions
are used because of their easy computable partial

derivatives of the error15. This particular function
applies a nonlinear transformation to the given
values, and is currently the most commonly one14.
On the contrary, we used the sigmoid activation
function for the final layer. This nonlinear
transformation (equation 2) narrows the range of
outputs to 0/1. This activation function fulfilled the
model requirements since the aim of the model was
to predict the fraction of barcodes that would be
identified with each given image.

2.9 Image preprocessing

In the implementation of CNNs it is crucial to
preprocess the images in order to prepare them for
the model. In this project, we applied image
preprocessing to normalize the image dimensions
across samples and do some modifications to
enhance the key features. For the sake of feature
enhancement and noise reduction, we applied pixel
modifications such as thresholding36,37 and
normalization. The image preprocessing step is
crucial for any CNN model development since it
has a strong impact in the model performance37,38.
So as to find the best image preprocessing
procedure, it is important to understand the images
and accurately identify the features that need to be
enhanced. We designed di fferent image
preprocessing methods that could fit our image
requirements and we compared their performances.
Among the several approaches addressed, the one
reaching the best results consisted of 6 different
steps.

In the first step of the procedure, all images in the
z-slices were projected by selecting the maximum
intensities at each pixel position. This was done in
order to reduce the complexity of the data that was

5Figure 1. Best performing model architecture used in this project.

given to the model while keeping the most
important information. At the same time, since
models need to receive all the images with the
same dimensions13,31, we used this step to
overcome the variability produced by the non-
constant number of z-slices. In addition, the
channel showing the DAPI staining of the whole
nucleus was discarded together with the fifth round
of sequencing from the second dataset.

In the second step of the procedure, we normalized
all the pixel values across channels, converting
their values to a range between 0 and 1.
Subsequently, in the third step, we projected the
channel images using again the maximum
intensities, which resulted in all samples having
one image per round of sequencing.

After this, zero padding was applied to the images
in the fourth step. This process refers to the
addition of pixels with value 0 to the borders of the
image31. In our case, padding was added to the
right and bottom sides, leaving the original image at
the left-top corner. This step was applied with the
only aim of resizing and reshaping the images.
Given that the conventional cropping approach was
not applicable in this case (due to the loss of
information that it would imply), we chose to apply
zero-padding. Moreover, zero padding does not
affect the performance of the models while it
suppresses the risk of deforming the key patterns31.

Afterwards, the fifth step applied the thresholding
technique36. In the images used, we were
interested in the patches of highest intensity of the
images, which had a higher probability of belonging

to a barcode. In order to enhance those pixels, the
thresholding step set to 0 all the pixel intensities
that fell below the specified threshold. In this case,
we applied a threshold of 0.90 to the images from
the 36plex-5K dataset, and a threshold of 0.87 to
the samples from the 36plex-1K dataset. Such
difference was due to the fact that the second
dataset used less oligopaint probes (1K vs 5K) and
addressed target regions of shorter length, thus
resulting in patches with lower intensity in general.
The values used were based on the same values
applied in the every-pixel pipeline when it filters the
patches by intensity. However, in this case, we
lowered the thresholds in order to reduce the
strictness of the method.

Finally, the last step of the image processing
procedure applied a normalization to the pixels that
were left with high intensities in order to enhance
the differences between them. (Figure 2)

To apply this process we used numpy12 (v1.19.2)
and pandas (v1.2.1), which are open-source data
analysis and manipulation tools for the Python
programming language. We used numpy to store
the images (lists of pixel values) and the image
labels, and pandas to store the different information
associated with each cell.

2.10 Data augmentation

The training of any Artificial Neural Network
requires lots of data samples in the training dataset
in order to achieve a good performance32. In this
project we addressed several data augmentation
procedures as an approach to overcome the
problem of data scarcity. This process creates new
artificial images based on the original data by
performing several random modifications such as
rotation, flipping, thresholding and others23. Every
copied image, even though it is based on the
original one with simple modifications, has a unique
pixel value distribution, which allows the model to
learn from new examples and learn meaningful
patterns from them19. Models trained with few
samples are prompt to detect the noise and specific
characteristics of the example images instead of
focusing on the real meaningful patterns.
Therefore, the generation of new artificial examples
usually helps the model to achieve best performances
on new datasets, thus it improves its robustness.
Among the different modifications that could be
applied to the images, we played with the variations
that were not affecting nor altering the main key
information of the image. Hence, we generated

6

Figure 2: Image preprocessing part 2. Images from the
first round of sequencing (channels and z-slices projected
with maximum intensity) at each step of the image
preprocessing procedure used. Images from the first
column correspond to the output from step 3 of the
method. Next step applies padding to normalize the size
and shape of all images to 150x150 pixels. Step 5 applies
thresholding, and finally step 6 applies a 0/1 normalization
of the pixels different to 0.

new artificial images without introducing unrealistic
changes that would not be seen in new real
images.

As a result, we built three different approaches
using different types of modifications. Finally, the
one leading to the best performances carried out 3
simple modifications: flipping/reflection, rotation,
and size modification. For each original image, we
generated 9 copies with different alterations, thus
ending with 10 images from the same cell. For
each copy, random values were generated to
determine the angle of rotation, and the level of
size modification while never generating bigger
images than 150x150 pixels (Figure 3). Finally, only
60% of the copies were flipped.

This procedure was applied only to the training set
in order to generate new images. The validation
data was not augmented nor modified given that it
was used to test how the model would perform in
real world data.

2.11 Model training

The parameters of the model that can be learned,
which are the so called weight values, are trained
by using some mathematical methods such as
backpropagation and gradient descent20,35, which

efficiently explore the space of solutions and return
the optimal set of weight values that will lead to the
best possible solutions24. This optimal set of
parameters is found when the cost function
reaches its minimum value15. This training process
is performed by forcing the model to learn from
various image examples that are already labeled.
Therefore, the more examples in the training set,
the more robust the model will be towards new
acquired data, thus reducing overfitting32.

To build and train the models we used the python
open source library Tensorflow13 (v2.2.0) and
Keras, the most used library for Deep Learning
development in python. To train the models, we
used the optimizer Adam16,22, which is a general-
purpose system since it uses a stochastic gradient
descent method that can train the model via back-
propagation. According to Kingma et al., 2015, the
Adam optimizer method is "computationally
efficient, has little memory requirement, is invariant
to diagonal rescaling of gradients, and is well suited
for problems that are large in terms of data/
parameters”16,22.

The loss function used was the mean squared error
as shown in equation 3, which computes the mean
of squares of errors between labels and predictions.

In order to prevent overfitting, we applied the early
stop callback tool offered by keras. This function
takes as argument the number of epochs after
which the process will stop training if the monitored
metric has stopped improving, as it can be
understood from the documentation of the package13.

2.12 Model performances

The performances of the models were quantified by
using the loss function mean squared error as
shown in equation 3. This metric applied to the
validation datasets has been used to compare
the model performances between the different
approaches performed. Each model tested was
repeated for all folds in order to apply cross
validation, and the final performance comparisons
were made with the mean values across the folds.

In this project, the usage of the area under the
curve (AUC) for model comparison as binary
classifiers was not recommended due to the small
dataset size. Small sample sizes produce stepped
ROC curves, which make each sample have a high

Figure 3: Data augmentation. Three examples of
augmented images. First row shows the original image
after passed through the image preprocessing
procedure 1. Next rows show the same cell images with
several modifications. Rotations, size modifications and
reflections were applied.

7

contribution to the sensitivity and specificity
measures39, thus seeing a huge variability in the
AUC value with small changes in the predictions.
However, the ROC curve was used to compute the
optimal class separator threshold for the final
binary classifiers.

After identifying the best models (i.e. the ones with
lowest average loss value across folds), the model
built from the fold with best performance was taken
to carry out the external validation test. In this test,
we computed the mean squared error and the
accuracy for the classification. We binarized the
labels used for each model by applying a threshold
of 0.5 for model 4, 0.6 for model 3, 0.7 for model 2,
and 0.25 for model 1. On the contrary, the
thresholds used with the prediction scores
corresponded to the optimal thresholds defined by
the ROC39 curve as mentioned previously.
Binarizing both sets of values we computed the
accuracy of the models and used this metric as the
final quantification of the performance of the
models to make a binary classification.

2.13 Code script

All code generated and used in this project is
available at the following link: https://github.com/
ainamarti/FDP_bioinformatics.

3. Results

In this project, applying the proposed model
architectures, image preprocessing methods and
data augmentation procedures, 15 different model
approaches were evaluated for each of the four
models assessed. The results for the best
performing models have been presented in Table 1.
Moreover, the results from all approaches tested
have can be found at Supplementary table 1. The
best performing approach found used image
preprocessing procedure 1, model architecture 3,
and data augmentation method 1, which have been
explained in detail in the methods section. The
combination of these methodologies achieved an

averaged mean squared error of 0.014749 for
model 4, 0.013753 for model 3, 0.010929 for model
2 in the CV internal validations. In contrast, most of
the approaches tested for model 1 did not perform
as expected retrieving the same output for all
samples in the internal validation and training tests,
as discussed in the next section. Between the
working approaches, the best performance showed
an MSE of 0.00993 by using image preprocessing
procedure 1, model architecture 1, and data
augmentation 1. Plots showing the performances
mentioned are shown in Figure 4.

For validation purposes, these models were tested
against the external dataset and the results have
been presented in Table 2. In addition, the visual
representations for the external dataset are also
shown in Figure 5.

Finally, by binarizing the labels and predictions, we
tested the performance of these models as binary
classifiers. For this we computed accuracies, true
positive rates (TPR) and true negative rates (TNR).
Results are shown in tables 1 and 2 together with
the previously mentioned metrics. The final models
selected achieved accuracies of 0.766, 0.797,
0.858, and 0.821 in the internal validation dataset
and accuracies of 0.640, 0.800, 0.880, and 0.880 in
the external dataset for models 4, 3, 2, and 1
respectively.

8

Figure 4: Performances of the final selected models.
Each one show the observed percentages of barcode
detected vs the predictions made by the regression
models. Each individual dot in the presented plots
represent a single cell.

Table 1: Performance values from the best working
models when tested against the internal validation
sets.

https://github.com/ainamarti/FDP_bioinformatics
https://github.com/ainamarti/FDP_bioinformatics

Lastly, responding to the foremost aim of this
project, we applied the four models to test the
progressive exclusion of cells (Figure 6). Moreover,

due to the low precision of model 1, we tested the
progressive riddance of cells without the usage of
this first model, and finally compared this to the
usage of model 4 alone.

4. Discussion

The models built and the performances achieved
demonstrate that, despite data scarcity, it is
possible to build regression models to explain the
amount of structural information contained in each
image. Yet, with the availability of more input data,
the models could be potentially improved in the
future. Here, we discuss the results collected in this
project and potential methods to refine the
methodology in further explorations.

So as to compare the achievements of the models,
we compared the Mean Squared Error (MSE)
values between the different approaches, which
computes the differences between predicted and
observed values, as detailed in the methods
section 2.11. Since the labels used for each of the
four models built had different distributions of
values, the final MSE values should not be
compared between models 1, 2, 3 and 4.

In the results obtained, we could detect that some
model approaches failed to work as expected
(Supplementary table 1). Those models produced
invalid results, giving the same values for all
samples in the training and the internal validation
sets. The reasons for the failure of these models to
predict accurate values and detect key patterns in
the input data could be related to the usage of
wrong techniques for the model, or the poor
relation between the inputs and the labels. When
the labels used for the DLA are not fully
explanatory of the information contained in the
images, it is extremely complex to identify the
patterns that define the relation between them.

9

Table 2: this table shows the performance values from
the best working models when tested against the
external validation sets.

a) b)

c) d)

Figure 5: Performances of the final selected models
when tested against the external dataset. Each one
show the observed percentages of barcode detected vs
the predictions made by the regression models. Each
individual dot in the presented plots represent a single
cell. Horizontal lines presented in red show the optimal
threshold computed from the AUC with the internal
validation

Figure 6: Cells discarded at each round of sequencing.

Therefore, in those cases, the model is prone to
find a suboptimal solution where all samples get
the same output, being this one close to the
average of the labels. In addition, weight
initialization could also play a key role in this
phenomenon, which can drive the model towards
this suboptimal and very simple solution.

By building two models with the same parameters
(approaches 1 and 2) but changing the final size of
the images, we tested the effect of image padding
for the model performances. Here, we confirmed that
it was not affecting the final model achievements
since we did not observe a significant change in
MSE values. This stems from the fact that
neighboring zero pixels do not add new information
for the model, consequently they do not contribute
to the identification of the key patterns while not
hindering the process. Since the percentage of
padding added depends on the size of the cell, we
also tested the correlation between the errors of the
models and the areas of the cells. We obtained
values of -0.090 (P<0.147), -0.0004 (P<0.995),
0.105 (P<0.09), and 0.098 (P<0.12) in the
Pearson's correlation coefficient test for the
corre lat ion between those two var iables
(Supplementary Figure 4). This confirms that the
accuracy of the model does not depend on the
amount of padding added to the image. With this
background, we decided to continue our project
resizing all images to 150x150 since it allowed us
to accommodate all cell shapes and sizes present
in the datasets while reducing execution time.

Thereafter, the next models showed how we could
improve the performances by increasing the
complexity of the model architecture. Third approach,
which used the least complex architecture was the
worst performing, being followed by approach 1, 3
and 4, which progressively increased architecture
complexity and improved the performance, ending
with approach 4 retrieving the best MSE results of
0.01420, 0.01505, and 0.01599 for models 2, 3,
and 4. Contrarily, model 1 only achieved valid
results with architectures 1 and 2, being 1 the best
performing one with an MSE of 0.01037. Finally,
approach 5, which used the most complex
architecture, showed worse performances as
compared to the previous approach, with the
exception being model 2. This reveals the potential
limit of model architecture complexity to allow
sophisticated pattern recognition while reducing the
effect of overfitting. However, since our problem of
data scarcity could be masking the need of bigger

architectures for better performances, we can not
guarantee that the best model architecture found
here is the best one for the solution of this problem.
Nevertheless, we can use this as a base for further
experiments.

Subsequently, once identified the best model
architecture, we tested several image preprocessing
techniques. Among the approaches tested, we saw
the large impact that this step had on the
performance of the final models. Firstly, we tested
the approach detailed in the methods section 2.9
(approach 4), which at the end resulted in the best
performances seen for the models as discussed
previously. For the purpose of finding better
procedures, we examined image preprocessing
methods that applied distinct simplifications of the
data. Higher simplification of the images, which
projected the round images, was tested (image
preprocessing 2). This test yielded invalid results
since the models forecasted the same output
values for all samples in every model and fold
assessed. Thus, we could straightaway discard this
procedure while understanding that the key
information for the classification of those images
was centered on the specific information at each
round.

With this background in mind, we tested the
opposite. In this case (approach 7), we removed
the z-slices projection to keep more information for
the models (image preprocessing 3). Contrarily to
the previous system, this time the models could
find a way to properly classify the images with the
exception of model 1. Yet, this approach resulted in
worse performance than earlier models. Considering
the fact of using more complex images as input, we
tested the same approach with a higher complexity
architecture (approach 8). However, we did not see
an improvement as compared to the prior method.
Nevertheless, since more complex images need
more training data, we propose to repeat this
approach when having more data available to
examine if the cause of poor performance was due
to data scarcity.

In that behalf, we proceeded the experiments using
model architecture 1 and image preprocessing
procedure 1. Due to our limitation in the number of
images available for the training process, we
addressed several data augmentation procedures
as an approach to improve the models. We started
by generating 10 and 20 copies of each image with
very simple modifications (approaches 9 and 10):

10

rotation, flipping, and resizing. The results of
the approach using 10 copies improved the
performances seen previously, showing MSE
averaged values of 0.01093, 0.01375, and 0.01475
for models 2, 3 and 4. Therefore, in this case, the
generation of new artificial examples helped the
model to achieve better performances. On the
contrary, the second approach generating 20
copies did perform very similarly but not better.

So as to search for better models, we tested
other data augmentation procedures with more
modifications (approaches 11, 12, 13 and 14) such
as blurring, denoising, and sharpening. However,
those image variations did not help the models,
revealing that they could have been altering the key
patterns of the images, leading to worse results.
We could see that the random change of the
threshold used at step 5 was highly downgrading
the model performances. This effect could be
explained by the fact that the constant threshold
used for the images removes the background noise
at the same level for all the images in the dataset.
By randomly modifying the threshold of intensity,
we are changing the amount of noise present in
every sample. Since the noise acts as a key
pattern for the classification of the images, such
modification of the threshold could have prevented
the correct recognition of common patterns
resulting in worse performances. The results from
approaches 13 and 14, which applied the same
alterations without modifying the threshold,
confirmed this hypothesis by revealing better
performances.

Finally, since model 1 didn’t return valid results for
none of the models applying data augmentation, we
repeated approach 1 including data augmentation
procedure 1 (approach 15). As a result, we
obtained the best performances seen for model 1
with MSE value of 0.00993. In the light of these
results, we can conclude that data augmentation
procedure 1, which has been explained in detail
section 2.10, was the best performing one.

Lastly, as already mentioned, the best approach for
each model was selected and tested against the
external dataset. As it can be seen from the results
of tables 1 and 2, model 1 was the worst
performing one with a big difference as compared
to the other models. This model also showed low
capacity to generalize towards a new external
dataset. Seeing the differences in MSE, accuracy,
TPR and FPR between internal and external

validation sets for model 1, we can confirm an
overfitting effect produced by the model. Moreover,
by making a visual inspection of the plots resulting
from model 1 (Figures 4a and 5a) we can see that
the performance of this model showed higher levels
of error as compared to the other models when
taking into account the distribution of observed
percentages. This observation can be confirmed
with the low accuracies presented in tables 1 and 2
for this model. Contrary to this, models provided
with more information such as models 3 and 4 gave
better results.

Bearing in mind these results, a possible failure of
the labels used for the first models was analyzed.
As it is known, the signal needed to detect the final
barcodes is being added progressively throughout
the rounds of sequencing. This means that it may
not be easy to predict the percentage of barcode
detection only with the first rounds of sequencing
since we are missing most of the information. By
only analyzing the images from the first rounds,
several patches of the same channel might appear
close together, driving the method to detect it as a
single barcode patch. This drives the pipeline to
retrieve low barcode recoveries, as it can be seen
in figure 4a, while indeed more barcode patch digits
are identifiable. Only by the addition of more round
images, we can improve and tune the barcode
identification process, which will reach the optimal
state when using all the rounds of sequencing
designed for the experiment. Moreover, with partial
information, many barcodes remain not unique.
This presents a challenge for the usage and
performance of the first models constructed in the
project. Here, as a potential future improvement,
we suggest the usage of the number of patches
detected in each image, taking into consideration
the average patch size in the dataset, being
independent of the number of targeted regions or
uniqueness of the barcodes.

Once the models were constructed, we proceeded
to make a visual examination of the images and
their predictions. As mentioned earlier, the results
obtained through the different approaches hinted
that the decisive information was somehow hidden
into the images obtained at each round. By
analyzing the results and images from model 4, we
could detect that numerous cells yielding low
barcode recovery and low percentage predictions
showed high noise levels and low signals at round
4. As we can understand from the methodology
used in OligoFISSEQ, progressive decrease in

11

the signal and increase in the noise is already
expected. This occurrence is, in part, a consequence
of the low efficiency of ligation methods together
with the lack of efficiency in the fluorophore
removal process. This effect is expected to happen
progressively through rounds. However, it has been
detected to happen abruptly in the last round of
multiple cells (Supplementary Figure 5). Moreover,
there have also been detected a punctual increase
of background noise at round 2, and a decrease of
signal in multiple cells at this same round of
sequencing (Supplementary Figure 6). With the
methodology used in this project and the analysis
made, we constructed a way to identify this type of
behavior in sequenced cells. Since this effect might
be potentially caused by errors in the chemistry
protocol or wrong sample manipulation, recognizing
this type of defects in the images would allow
researchers to promptly identify errors in the
process and act accordingly.

These findings and the previous results reveal that
the low quality in some round images can be a
potential determining factor for low barcode
recognition, while demonstrating that it may not be
possible to detect defective cell images in the early
steps of the method due to the lack of information.

Regarding the progressive exclusion of cells, as
shown in figure 6a, it can be seen that most of the
wrong cell riddance happens in round 1. As
discussed earlier, this confirms the bad precision of
this model. In addition, the same applies for models
2 and 3, yet those reveal better results.

To reduce the downgrading effect of model 1, we
tested the progressive riddance of cells without the
usage of this model (Figure 6b). In this case we
can see fewer false negatives, while also detecting
that all true negatives were already discarded at
round 2. Thereafter, when comparing to the usage
of model 4 alone, we can see a decrease in the
number of false negatives.

All things considered, both methods offer different
advantages. Despite the better accuracy of the
usage of the last model alone, the usage of models
2, 3, and 4 together would allow the exclusion of
deficient cells in the early stages of the process,
thus providing higher time optimization. Nevertheless,
it would also mean the loss of potentially useful
information. Given this evidence, lab researchers
could apply each method depending on their
specific needs in each experiment.

Furthermore, taking into account the data limitation
and the performance improvement achieved with
data augmentation, the project shows the potential
of improving these models with more data and less
limitations. Ultimately, in case the first models
do not achieve better performances in future
experiments, model 4 can be potentially used alone
for time and disk optimizations at the end of the
sequencing experiments. With only this model,
researchers could immediately detect errors in the
process without the need to wait for results that
take hours of computational analysis. Moreover, it
would provide a way to keep track of the number of
sequenced cells with rich structural information.
Finally, it could optimize the disk space used by
automatically discarding the cells predicted to yield
low structural information, which at the same time
would avoid unfruitful analysis time.

5. Conclusion

In this project, as a contribution to the construction
of an OligoFISSEQ self-driving microscope, we
searched for an artificial intelligence deep learning
algorithm (DLA) to provide time and disk space
optimization while reducing the amount of human
intervention in the acquisition of FOV. The results
obtained demonstrate that, despite data scarcity, it
is possible to build regression DLA models to
explain the amount of structural information
contained in the cell images generated with
the OligoFISSEQ technology. Moreover, they
demonstrate the potential of the methodology to be
improved in future investigations with less data
limitations.

Despite the poor performance of the first model, the
work developed in this project enables the
automatic riddance of cells even at the second
round of sequencing. At the same time, by the
usage of the last model alone at the end of the
experiments, researchers could also achieve disk
space and analysis time optimization.

Yet, since this technology is continuously evolving
and the protocols are still being improved, the
models provide the first starting point for future
investigations for the search of improved
methodologies for OligoFISSEQ cell image
classification.

12

6. Supplementary material
The supplementary material generated in this
project is available at the following link: https://
drive.google.com/file/d/1jgr3RRLUDLpgk5CJOgQpC3q-
KmvbzaPu/view?usp=sharing

7. Acknowledgements

I would like to express my thanks to David Castillo
and Marc A. Marti-Renom for their patience and
guidance throughout all the steps of this project.
Also, I wanted to express my gratitude to the
researchers at Ting Wu lab from Harvard Medical
School for the data supply and their help and
guidance towards understanding OligoFISSEQ
technologies.

In addition, I would like to extend my thanks to all
the members of both labs for giving me the huge
opportunity to work and learn with all of them.

8. References
1. Nguyen, H. Q., Chattoraj, S., Castillo, D., Nguyen,

S. C., Nir, G., Lioutas, A., … Wu, C. ting. (2020).
3D mapping and accelerated super-resolution
imaging of the human genome using in situ
sequencing. Nature Methods, 17(8). https://
doi.org/10.1038/s41592-020-0890-0

2. Zheng, H., & Xie, W. (2019). The role of 3D
genome organization in development and cell
differentiation. Nature Reviews Molecular Cell
Biology. https://doi.org/10.1038/
s41580-019-0132-4

3. Krumm A, Duan Z. Understanding the 3D
genome: Emerging impacts on human disease.
Semin Cell Dev Biol. 2019;90:62-77. https://
doi:10.1016/j.semcdb.2018.07.004

4. Pombo, A., & Dillon, N. (2015). Three-dimensional
genome architecture: Players and mechanisms.
Nature Reviews Molecular Cell Biology. https://
doi.org/10.1038/nrm3965

5. Hu, Q., Maurais, E. G., & Ly, P. (2020). Cellular
and genomic approaches for exploring structural
chromosomal rearrangements. Chromosome
Research. https://doi.org/10.1007/
s10577-020-09626-1

6. Bolzer, A., Kreth, G., Solovei, I., Koehler, D.,
Saracoglu, K., Fauth, C., … Cremer, T. (2005).
Three-dimensional maps of all chromosomes in
human male fibroblast nuclei and prometaphase
rosettes. PLoS Biology, 3(5). https://doi.org/
10.1371/journal.pbio.0030157

7. Cremer, T., & Cremer, M. (2010). Chromosome
territories. Cold Spring Harbor Perspectives in
Biology. https://doi.org/10.1101/
cshperspect.a003889

8. Ke, R., Mignardi, M., Pacureanu, A., Svedlund, J.,
Botling, J., Wählby, C., & Nilsson, M. (2013). In
situ sequencing for RNA analysis in preserved
tissue and cells. Nature Methods, 10(9). https://
doi.org/10.1038/nmeth.2563

9. Beliveau, B. J., Joyce, E. F., Apostolopoulos, N.,
Yilmaz, F., Fonseka, C. Y., McCole, R. B., … Wu,
C. T. (2012). Versatile design and synthesis

platform for visualizing genomes with Oligopaint
FISH probes. Proceedings of the National
Academy of Sciences of the United States of
America, 109(52). https://doi.org/10.1073/
pnas.1213818110

10. Metzker, M. L. (2010). Sequencing technologies
the next generation. Nature Reviews Genetics.
https://doi.org/10.1038/nrg2626

11. Watkins, N. E., & SantaLucia, J. (2005). Nearest-
neighbor thermodynamics of deoxyinosine pairs in
DNA duplexes. Nucleic Acids Research, 33(19).
https://doi.org/10.1093/nar/gki918

12. Harris, C. R., Millman, K. J., van der Walt, S. J.,
Gommers, R., Virtanen, P., Cournapeau, D., …
Oliphant, T. E. (2020). Array programming with
NumPy. Nature. https://doi.org/10.1038/
s41586-020-2649-2

13. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis,
A., Dean, J., … Zheng, X. (2016). TensorFlow: A
system for large-scale machine learning. In
Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation,
OSDI 2016.

14. Yamashita, R., Nishio, M., Do, R. K. G., &
Togashi, K. (2018). Convolutional neural
networks: an overview and application in
radiology. Insights into Imaging. https://doi.org/
10.1007/s13244-018-0639-9

15. Shrestha, A., & Mahmood, A. (2019). Review of
deep learning algorithms and architectures. IEEE
Access. https://doi.org/10.1109/
ACCESS.2019.2912200

16. Chilimbi, T., Suzue, Y., Apacible, J., &
Kalyanaraman, K. (2014). Project ADAM: Building
an efficient and scalable deep learning training
system. In Proceedings of the 11th USENIX
Symposium on Operating Systems Design and
Implementation, OSDI 2014.

17. Xu, Y., & Goodacre, R. (2018). On Splitting
Training and Validation Set: A Comparative Study
of Cross-Validation, Bootstrap and Systematic
Sampling for Estimating the Generalization
Performance of Supervised Learning. Journal of
Analysis and Testing, 2(3). https://doi.org/10.1007/
s41664-018-0068-2

18. Ying, X. (2019). An Overview of Overfitting and its
Solutions. In Journal of Physics: Conference
Series (Vol. 1168). https://doi.org/
10.1088/1742-6596/1168/2/022022

19. -Shanthi, P. B., Faruqi, F., Hareesha, K. S., &
Kudva, R. (2019). Deep Convolution Neural
Network for malignancy detection and
classification in microscopic uterine cervix cell
images. Asian Pacific Journal of Cancer
Prevention, 20(11). https://doi.org/10.31557/
APJCP.2019.20.11.3447

20. Lecun, Y., Bengio, Y., & Hinton, G. (2015, May
27). Deep learning. Nature. Nature Publishing
Group. https://doi.org/10.1038/nature14539.

21. Sabanayagam, C., Xu, D., Ting, D. S. W.,
Nusinovici, S., Banu, R., Hamzah, H., … Wong, T.
Y. (2020). A deep learning algorithm to detect
chronic kidney disease from retinal photographs
in community-based populations. The Lancet
Digital Health, 2(6). https://doi.org/10.1016/
S2589-7500(20)30063-7

22. Kingma, D. P., & Ba, J. L. (2015). Adam: A method
for stochastic optimization. In 3rd International
Conference on Learning Representations, ICLR
2015 - Conference Track Proceedings.

23. Mikołajczyk, A., & Grochowski, M. (2018). Data
augmentation for improving deep learning in

13

https://doi.org/10.1038/s41592-020-0890-0
https://doi.org/10.1038/s41592-020-0890-0
https://doi.org/10.1038/s41580-019-0132-4
https://doi.org/10.1038/s41580-019-0132-4
about:blank
about:blank
https://doi.org/10.1038/nrm3965
https://doi.org/10.1038/nrm3965
https://doi.org/10.1007/s10577-020-09626-1
https://doi.org/10.1007/s10577-020-09626-1
https://doi.org/10.1371/journal.pbio.0030157
https://doi.org/10.1371/journal.pbio.0030157
https://doi.org/10.1101/cshperspect.a003889
https://doi.org/10.1101/cshperspect.a003889
https://doi.org/10.1038/nmeth.2563
https://doi.org/10.1038/nmeth.2563
https://doi.org/10.1073/pnas.1213818110
https://doi.org/10.1073/pnas.1213818110
https://doi.org/10.1038/nrg2626
https://doi.org/10.1093/nar/gki918
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1109/ACCESS.2019.2912200
https://doi.org/10.1109/ACCESS.2019.2912200
https://doi.org/10.1007/s41664-018-0068-2
https://doi.org/10.1007/s41664-018-0068-2
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.1088/1742-6596/1168/2/022022
https://doi.org/10.31557/APJCP.2019.20.11.3447
https://doi.org/10.31557/APJCP.2019.20.11.3447
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/S2589-7500(20)30063-7
https://doi.org/10.1016/S2589-7500(20)30063-7

image classification problem. 2018 International
Interdisciplinary PhD Workshop, IIPhDW 2018.
https://doi.org/10.1109/IIPHDW.2018.8388338

24. Rawat, W., & Wang, Z. (2017). Deep
convolutional neural networks for image
classification: A comprehensive review. Neural
Computation. https://doi.org/10.1162/
NECO_a_00990

25. Wang, S., Su, J. H., Beliveau, B. J., Bintu, B.,
Moffitt, J. R., Wu, C. T., & Zhuang, X. (2016).
Spatial organization of chromatin domains and
compartments in single chromosomes. Science,
353(6299). https://doi.org/10.1126/
science.aaf8084

26. Sawh, A. N., Shafer, M. E. R., Su, J. H., Zhuang,
X., Wang, S., & Mango, S. E. (2020). Lamina-
Dependent Stretching and Unconventional
Chromosome Compartments in Early C. elegans
Embryos. Molecular Cell, 78(1). https://doi.org/
10.1016/j.molcel.2020.02.006

27. Rosin, L. F., Nguyen, S. C., & Joyce, E. F. (2018).
Condensin II drives large-scale folding and spatial
partitioning of interphase chromosomes in
Drosophila nuclei. PLoS Genetics, 14(7). https://
doi.org/10.1371/journal.pgen.1007393

28. Fields, B. D., Nguyen, S. C., Nir, G., & Kennedy,
S. (2019). A multiplexed dna fish strategy for
assessing genome architecture in caenorhabditis
elegans. ELife, 8. https://doi.org/10.7554/
eLife.42823

29. Schindelin, J., Arganda-Carreras, I., Frise, E.,
Kaynig, V., Longair, M., Pietzsch, T., … Cardona,
A. (2012). Fiji: An open-source platform for
biological-image analysis. Nature Methods.
https://doi.org/10.1038/nmeth.2019

30. Hunter, J. D. (2007). Matplotlib: A 2D graphics
environment. Computing in Science and
Engineering, 9(3). https://doi.org/10.1109/
MCSE.2007.55.

31. Hashemi, M. (2019). Enlarging smaller images
before inputting into convolutional neural network:
zero-padding vs. interpolation. Journal of Big
Data, 6(1). https://doi.org/10.1186/
s40537-019-0263-7

32. Shorten, C., & Khoshgoftaar, T. M. (2019). A
survey on Image Data Augmentation for Deep
Learning. Journal of Big Data, 6(1). https://doi.org/
10.1186/s40537-019-0197-0

33. Shen, D., Wu, G., & Suk, H. Il. (2017). Deep
Learning in Medical Image Analysis. Annual
Review of Biomedical Engineering, 19. https://
doi.org/10.1146/annurev-bioeng-071516-044442

34. Lee, J. H., Daugharthy, E. R., Scheiman, J.,
Kalhor, R., Yang, J. L., Ferrante, T. C., … Church,
G. M. (2014). Highly multiplexed subcellular RNA
sequencing in situ. Science, 343(6177). https://
doi.org/10.1126/science.1250212

35. Schmidhuber, J. (2015). Deep Learning in neural
networks: An overview. Neural Networks. https://
doi.org/10.1016/j.neunet.2014.09.003

36. Goh, T. Y., Basah, S. N., Yazid, H., Aziz Safar, M.
J., & Ahmad Saad, F. S. (2018). Performance
analysis of image thresholding: Otsu technique.
Measurement: Journal of the International
Measurement Confederation, 114. https://doi.org/
10.1016/j.measurement.2017.09.052

37. Singh, S. P., Wang, L., Gupta, S., Goli, H.,
Padmanabhan, P., & Gulyás, B. (2020, September
2). 3d deep learning on medical images: A review.
Sensors (Switzerland). MDPI AG. https://doi.org/
10.3390/s20185097

38. Sudeep, K. S., & Pal, K. K. (2017). Preprocessing
for image classification by convolutional neural
networks. In 2016 IEEE International Conference
on Recent Trends in Electronics, Information and
Communication Technology, RTEICT 2016 -
Proceedings. https://doi.org/10.1109/
RTEICT.2016.7808140

39. Janssens, A. C. J. W., & Martens, F. K. (2020).
Reflection on modern methods: Revisiting the
area under the ROC Curve. International Journal
of Epidemiology, 49(4). https://doi.org/10.1093/ije/
dyz274

40. Rawat, W., & Wang, Z. (2017). Deep
convolutional neural networks for image
classification: A comprehensive review. Neural
Computation. https://doi.org/10.1162/
NECO_a_00990

14

https://doi.org/10.1109/IIPHDW.2018.8388338
https://doi.org/10.1162/NECO_a_00990
https://doi.org/10.1162/NECO_a_00990
https://doi.org/10.1126/science.aaf8084
https://doi.org/10.1126/science.aaf8084
https://doi.org/10.1016/j.molcel.2020.02.006
https://doi.org/10.1016/j.molcel.2020.02.006
https://doi.org/10.1371/journal.pgen.1007393
https://doi.org/10.1371/journal.pgen.1007393
https://doi.org/10.7554/eLife.42823
https://doi.org/10.7554/eLife.42823
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1186/s40537-019-0263-7
https://doi.org/10.1186/s40537-019-0263-7
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1126/science.1250212
https://doi.org/10.1126/science.1250212
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.measurement.2017.09.052
https://doi.org/10.1016/j.measurement.2017.09.052
https://doi.org/10.1109/RTEICT.2016.7808140
https://doi.org/10.1109/RTEICT.2016.7808140
https://doi.org/10.1162/NECO_a_00990
https://doi.org/10.1162/NECO_a_00990

