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Abstract

Motivation: Imaging genomes is gaining importance due to the close relation between spatial genome 
organization and many biological processes including cell differentiation, DNA replication, and development. 
One of the latest developments in genome imaging is OligoFISSEQ, which is based on Fluorescence In Situ 
Sequencing technologies (FISSEQ) and uses barcoded Oligopaint probes. OligoFISSEQ is high throughput 
and has the potential to produce hundreds or thousands of images at high speed. In this project we have 
explored the application of an artificial intelligence deep learning algorithm (DLA) in the OligoFISSEQ image 
acquisition protocol to classify the obtained images according to their expected quality.

Results: In this project we developed and tested several DLA models to classify the images generated by 
OligoFISSEQ, identifying the cells that are likely to provide rich structural information. Several approaches 
for image preprocessing, model architecture, and data augmentation were assessed for this specific 
scenario. Among the various methods tested, this study achieved the best regression models with mean 
squared errors of 0.0149 for model 4, 0.0131 for model 3, 0.0109 for model 2, and 0.0169 for model 1, which 
used as binary classifiers yielded accuracies of 0.64, 0.80, 0.88, and 0.88 in the external validation dataset, 
respectively.

1. Introduction 

Genomes do not work as linear molecules but 
instead, they are spatially organized and packaged 
inside the nucleus2. Chromosomes are folded and 
organized at different levels forming the 3D 
structure of the genome, which regulates many 
crucial biological processes such as gene expression, 
cell differentiation, meiosis, DNA replication, and 
development2,3,4. The 3D arrangement of the genome 
is very dynamic and varies depending on the cell 
state and type. Throughout cell differentiation, the 
proper organization and structures of the genome 
are crucial for many key molecular events. Therefore, 
diverse defects in these specific conformations, i.e. 
missorganizations, can produce developmental 
abnormalities, diseases, and tumorigenesis2,3,4. 
Consequently, this has carried importance to the 
development of tools and methods to image the 3D 
conformation of the genome. Images at high 

resolution could aid study and better characterize 
many human diseases.

Historically, the poor availability of tools studying 
the 3D genome restricted the study of chromatin 
architecture, leading to a huge challenge for 
researchers trying to study multiple diseases 
related to this field2. However, the current progress 
in this area and the increasing amount of 3D 
structure data provide an unprecedented resource 
that can be used to re-examine the causes of many 
diseases2. Researchers at CNAG and Harvard 
Medical School have developed a potentially 
enabling class of methods called OligoFISSEQ1, 
which are the foundations of the current project. 
OligoFISSEQ is based on fluorescence in situ 
hybridization5, used previously, for example, to 
demonstrate chromosome territories in interphase 
cells6,7. This new technology is a suite of three 
methods that use Fluorescence In Situ Sequencing 
(FISSEQ)8,34 with barcoded Oligopaint9 probes to 
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enable the rapid 3D mapping of the targeted 
genomic regions inside the nucleus1. 

The usage of FISH technologies in previous studies 
showed the labeling of up to 40 regions to study 
chromosomal paths, chromatin spatial organization, 
A-B chromatin compartments25,26, and the visualization 
of nearly entire genomes by addressing one 
chromosome arm at a time1,27,28. However, OligoFISSEQ 
relies on the multiplexing of the signal between 
different channels to maximize the number of 
detected targets in a certain number of sequencing 
rounds. Other methods that use the rounds 
sequentially can target up to F·N regions, being F 
the number of fluorophores and N the number of 
rounds of sequencing. Contrarily, the OligoFISSEQ 
strategy being discussed here has the potential to 
target up to FN regions1 while obviating the need for 
target amplification thanks to the incorporation of 
Oligopaint9 probes. Furthermore, the usage of 
diffraction-limited microscopy facilitates imaging the 
same genomic region in thousands of cells and 
therefore provide the statistical power required to 
approach cell-to-cell variability1. As a result, we are 
in front of a likely enabling class of methods 
providing high throughput of images of thousands 
of single-cell targets, which brings us closer to 
whole-genome imaging explaining variability within 
cells. Consequently, due to the potential of the 
technology to generate huge amounts of data for 
the downstream analysis, this technology requires 
high levels of optimization and automatization.

Originally, the images obtained from sequencing 
rounds were manually analyzed, but since manual 
decoding is not reconcilable with high throughput, 
the process was automatized by creating an every-
pixel automated pipeline, which was structured as a 
two-tier system1. As shown by the authors of the 
paper, the detection pipeline addresses the 
decoding of the targets by analyzing every pixel 
individually and grouping them to compare the 
different signal intensities and sizes. Tier 1, which 
corresponds to the preprocessing step, filters out 
pixels below a minimum intensity and/or patch size. 
Secondly, tier 2, which corresponds to chromosome 
tracing, progressively lowers these requirements to 
detect signals previously discarded in tier 1. 
Moreover, in this case, a distance requirement is 
applied: new signals from the same chromosome 
are required to be within 4.5um of the euclidean 
center of tier 1 detected targets. This new 
condition takes into account both the tendency of 
chromosomes to occupy specific territories7 and the 

particular distances between targeted regions 
within the same chromosome. The two-tier system 
was shown to detect 80.2% ± 7.3% of targeted 
regions in each nucleus with at least 70% of 
targeted regions recovered in ~70% of the cells1. 
Yet, this process reveals that many cells end up 
with a low barcode recovery ratio and do not 
contribute to the final analysis.

Since this technology generates huge amounts of 
images representing the 3D conformational space  
of the genome within a cell, it requires many hours 
of imaging and high amounts of disk space. 
Presently, researchers need to closely inspect the 
wide-field images to select regions of interest 
containing cells that, in the eyes of the researcher, 
are likely to provide a decent amount of detected 
barcodes. Nevertheless, although all cells selected 
by the researchers are analyzed, not all of them are 
finally providing useful information. This means that 
an early automatic filtering stage could potentially 
save time and disk space. Additionally, another 
problem of this methodology is that, since samples 
are taken and manipulated between rounds of 
sequencing to carry out all the chemistry processes, 
the position of the microscope fields of view (FOV) 
need to be carefully maintained and annotated in 
order to return back to the same location1. Changes 
in the order of nanometers in the position of the 
FOV, which are very common and difficult to 
control, can produce the loss of valuable information 
as well as difficulting the posterior analysis. All this 
human involvement and sample manipulation adds 
a lot of errors and variability to the different 
experiments. In order to overcome all these 
problems, one of the current goals to improve the 
OligoFISSEQ methodology, as stated by the 
members of the lab, is to build a self-driving 
microscope. Such a microscope would optimize the 
time and disk space needed for the experiment 
while reducing the amount of human implication, 
hence lowering part of the variability between 
samples.

Artificial Neural Networks are gaining importance in 
many scientific areas and they have already made 
a huge impact in many fields14,20,21,33. In this 
project, as a contribution to the discussed objective, 
we searched for an artificial intelligence deep 
learning algorithm (DLA) to provide time and disk 
space optimization by avoiding the processing of 
cells that will provide scarce information (i.e. cells 
yielding low barcode recovery). At the same time, 
this algorithm automatizes the acquisition of FOV, 
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thus reducing the level of human participation in the 
process. Since the images are processed and 
analyzed looking for shapes and peaks of 
intensities1, it is logical to think that there might be 
some kind of pattern, easily recognizable by a 
convolutional neural network (CNN), that could 
explain the amount of information (i.e. percentage 
of barcode detection) that each image is providing 
to the experiment. Thus, allowing us to automatically 
drive the focus of the microscope towards regions 
of the plate that contain cells that are likely to 
provide rich structural information.

1.1   Objectives

In this project we test different image preprocessing 
techniques, model architectures, and data 
augmentation methods to identify the best 
procedure to classify OligoFISSEQ single-cell 
images using CNNs. The foremost aim is to be able 
to automatically discard cells at the earliest 
opportunity when predicted to yield low structural 
information.

This recently developed technology is continuously 
evolving and the protocols are still being improved. 
As a result, the models trained in this project will 
not be applicable to newer acquired datasets with 
different characteristics and properties. However, 
the aim of this project is not only to train the models 
but also to find the best procedures to deal with this 
type of information so that it will be straightforward 
to implement and train the models with newly 
acquired OligoFISSEQ images.

2. Methods

In this section, we detail the methods used to 
classify OligoFISSEQ images by implementing 
several Convolutional Neural Networks (CNN). This 
procedure used 1171 images from two datasets 
containing several biological and technical replicates 
to train, validate and test the CNN models. 
Features considered as key for the analysis of 
these images were enhanced using image 
preprocessing techniques. Three different 
approaches were tested and compared. Secondly, 
four model architectures of different complexities 
were compared to identify the one that best fitted 
the data size and type. Finally, in order to address 
the limitations of data size in this particular project, 
we addressed three data augmentation procedures 
as an approach to improve the performances of the 
models.

2.1   Datasets


For this project we used two datasets (36plex-5K 
and 36plex-1K) generated in the Wu and Marti-
Renom labs. The two datasets together make up a 
total of 1171 cell images and consist of several 
biological and technical replicates (Supplementary 
Table 2). Since this is the first project using and 
developing this recent and innovative methodology, 
there is no more data available. Both datasets 
image six regions along six chromosomes (chr2, 
chr3, chr5, chr16, chr19, and chrX), having a 
unique barcode for each of those targets 
(Supplementary Figure 1a). All targeted regions 
were sequenced using ligation based identification 
of targets (O-LIT), which is one of the chemistry 
protocols that can be used for OligoFISSEQ1. Both 
datasets targeted a total of 66 regions in PGPf1 
cells (six regions for each homolog of the 5 
chromosomes plus six regions in the single X 
chromosome).


The 36plex-5K dataset targets were sequenced 
using the SOLiD10 chemistry. This dataset was 
targeting 66 regions, each bound by a constant 
number of 5,000 Oligopaint nucleotide probes. 
Targeted regions, in this case, were ranging in size 
between 642kb and 1.22Mb (876kb on average). 
Four rounds of O-LIT were sequenced using both 
Oligopaint streets simultaneously. As part of the 
validation of the technology the same barcode was 
assigned to targets 3qR3 and 5pR3. 


The 36plex-1K dataset was targeting the same 
regions and it adopted the same barcodes with the 
exception of 5pR3, which was given a new 
barcode. In this case, a new sequencing strategy 
named “just enough barcodes” (JEB) was designed 
to replace SOLiD. This strategy used only 1,000 
Oligopaint nucleotide probes per region with an 
average of 173Kb of size by taking advantage of 
the universal base deoxyinosine1,11. Five rounds of 
O-LIT were sequenced assessing only one 
Oligopaint street. This second dataset improved the 
signal-to-nuclear background ratio, which also 
improved genomic resolution and the percentage of 
barcode detection.


Images from the microscope were initially aligned, 
segmented, and deconvolved using 20 iterations of 
the Richardson-Lucy algorithm to improve their 
resolution40 (Supplementary Figure 2). After those 
modifications, the images were analyzed by the 
every-pixel pipeline to identify and decode the 
barcode information. For the development of this 
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project, we will use the already deconvolved, 
aligned and segmented images (a total of 1171 
cells). 


2.2   Data splitting


From the whole dataset with a total of 1171 cell 
images, data splitting was performed to separate 
the training, internal validation and external 
validation datasets. The complete biological 
replicate OFQv69, which consisted of 125 
representative cell images from all cases, was 
separated to be used as the external validation 
(Supplementary Table 2). The remaining 1046 cell 
images from the other replicates were used as the 
training dataset. Those images were randomly 
splitted into 4 different folds to perform cross 
validation (CV)17. 


Each iteration of CV used one fold of 261 or 262 
images as the validation set while the other folds 
were used for the training process. This resulted in 
training sets of 785 or 784 images depending on 
the folds used as validation sets (Supplementary 
Figure 3). The images used in each fold were the 
same for all models developed in this project.


Then, the performances were estimated by 
averaging the performances over folds. In this 
project, the metr ic used to quant i fy the 
performances of the models was the mean squared 
error, as stated in section 2.12. 


2.3   Data structure


The images used in this project were the output of 
4 (36plex-5K) and 5 (36plex-1K) rounds of 
sequencing where the targets in each cell were 
visualized in the 3D space. At each round, the cells 
were imaged at five different wavelengths of colors, 
representing the four color coding for the barcodes 
plus the staining of the nucleus: Alexa Fluor 647, 
Texas Red, Cy3, Alexa Fluor 488 and DAPI 
(Supplementary Figure 1b). The cells were also 
imaged along the axial dimension in a series of z 
slices. Hence, the images used in this project 
consisted of 5 different dimensions representing the 
x and y axis, the channels imaged, z-slices, and 
finally the rounds of sequencing.


2.4   Data visualization


The images used in this project were previously 
processed using ImageJ/FIJI29 to align and 
segment the cells1. Moreover, in this project we 

also used ImageJ/FIJI, and matplotlib30 (v3.3.4) to 
analyze and visualize the cells individually.


2.5   Data labels


In this project, we aimed to classify the images in 
accordance with the percentages of barcodes 
detected with each of them. The labels ranged 
between 0 and 1, being 1 the 100% of barcodes 
identified in a specific cell.


The labels were obtained by applying the every-
pixel pipeline1 to the images given to the models. 
The number of barcodes detected with this pipeline 
was used to compute the percentage of barcode 
recovery.


2.6   Models built

As stated previously, the foremost aim of this 
project was to discard cells at the earliest 
opportunity. Given that the rounds of sequencing 
are obtained progressively in the OligoFISSEQ 
methodology, we repeated all our tests to train four 
different DLA models. The first model tried to 
discard the low recovery cells with only the images 
from the first round of sequencing. Once the 
second round was already sequenced, the second 
DLA used the new information together with the 
previous one to make a better prediction and 
discard the cells that were likely to yield a low 
recovery ratio at this new step. Finally, we did the 
same with the next two rounds of sequencing and 
their corresponding DLA models. 


For the sake of simplicity, we will refer to those 
models as model 1, model 2, model 3, and model 4 
corresponding to the number of rounds of 
sequencing that they are taking into account.


2.7   Convolutional Neural Networks

The methods being deployed in this project focus 
on Convolutional Neural networks (CNN), a type of 
DLA used to work with images searching for 
complex and hierarchically organized patterns15. 
This type of neural network falls into the discriminative 
category, which means that it follows a bottom-up 
approach in which data flows from the input layer 
via the hidden layers to the output layer, using 
supervised training15. 


This type of network usually consists of three types 
of layers: convolutional and pooling, which perform 
feature extraction, and fully connected layers, 
which generate the final output14,35. Usually, 

4



convolutional and pooling layers are alternated in 
the first part of the model and are followed by one 
or several fully connected layers at the end. Lastly, 
those models require a final layer where the 
number of neurons matches the number of outputs 
that need to be obtained (i.e. the probability for 
each class or one single neuron when building a 
regression model14). The order of these layers and 
their corresponding parameters define the model 
architecture.  The more layers, the more complex 
patterns the CNN will be able to identify. However 
the lowered number of neurons and layers usually 
reduces the training time and also the probability of 
overfitting15,18. 


2.8   Model architecture


In this project, several model architectures of 
different complexities were tested and compared in 
order to find the best model architecture that fitted 
the data used. All of them consisted of several 
pooling and convolutional layers alternated between 
them. Their main difference focused on the number 
of layers and the number of neurons in each layer, 
which defined their complexity. Among the different 
architectures addressed, the one leading to the 
best model performances (Figure 1) consisted of: 
one convolutional layer with 32 neurons, two 
convolutional layers of 64 neurons, two convolutional 
layers of 126 neurons and two fully connected 
layers of 32 neurons with a pooling layer in 
between each of those groups of layers. Finally the 
architecture had a final dense layer of 1 neuron to 
generate the final output of the regression model 
(i.e. the percentage of barcode recovery per 
image).


In all convolutional layers and the two fully 
connected layers of 32 neurons, the activation 
function applied was the Rectified Linear Unit 
(ReLU) as shown in equation 1. Activation functions 
are used because of their easy computable partial 

derivatives of the error15. This particular function 
applies a nonlinear transformation to the given 
values, and is currently the most commonly one14. 
On the contrary, we used the sigmoid activation 
function for the final layer. This nonlinear 
transformation (equation 2) narrows the range of 
outputs to 0/1. This activation function fulfilled the 
model requirements since the aim of the model was 
to predict the fraction of barcodes that would be 
identified with each given image.





2.9   Image preprocessing

In the implementation of CNNs it is crucial to 
preprocess the images in order to prepare them for 
the model. In this project, we applied image 
preprocessing to normalize the image dimensions 
across samples and do some modifications to 
enhance the key features. For the sake of feature 
enhancement and noise reduction, we applied pixel 
modifications such as thresholding36,37 and 
normalization. The image preprocessing step is 
crucial for any CNN model development since it 
has a strong impact in the model performance37,38. 
So as to find the best image preprocessing 
procedure, it is important to understand the images 
and accurately identify the features that need to be 
enhanced. We designed di fferent image 
preprocessing methods that could fit our image 
requirements and we compared their performances. 
Among the several approaches addressed, the one 
reaching the best results consisted of 6 different 
steps. 


In the first step of the procedure, all images in the 
z-slices were projected by selecting the maximum 
intensities at each pixel position. This was done in 
order to reduce the complexity of the data that was 

5Figure 1. Best performing model architecture used in this project.



given to the model while keeping the most 
important information. At the same time, since 
models need to receive all the images with the 
same dimensions13,31, we used this step to 
overcome the variability produced by the non-
constant number of z-slices. In addition, the 
channel showing the DAPI staining of the whole 
nucleus was discarded together with the fifth round  
of sequencing from the second dataset.


In the second step of the procedure, we normalized 
all the pixel values across channels, converting 
their values to a range between 0 and 1. 
Subsequently, in the third step, we projected the 
channel images using again the maximum 
intensities, which resulted in all samples having 
one image per round of sequencing.


After this, zero padding was applied to the images 
in the fourth step. This process refers to the 
addition of pixels with value 0 to the borders of the 
image31. In our case, padding was added to the 
right and bottom sides, leaving the original image at 
the left-top corner. This step was applied with the 
only aim of resizing and reshaping the images. 
Given that the conventional cropping approach was 
not applicable in this case (due to the loss of 
information that it would imply), we chose to apply 
zero-padding. Moreover, zero padding does not 
affect the performance of the models while it 
suppresses the risk of deforming the key patterns31.


Afterwards, the fifth step applied the thresholding 
technique36. In the images used, we were 
interested in the patches of highest intensity of the 
images, which had a higher probability of belonging 

to a barcode. In order to enhance those pixels, the 
thresholding step set to 0 all the pixel intensities 
that fell below the specified threshold. In this case, 
we applied a threshold of 0.90 to the images from 
the 36plex-5K dataset, and a threshold of 0.87 to 
the samples from the 36plex-1K dataset. Such 
difference was due to the fact that the second 
dataset used less oligopaint probes (1K vs 5K) and 
addressed target regions of shorter length, thus 
resulting in patches with lower intensity in general. 
The values used were based on the same values 
applied in the every-pixel pipeline when it filters the 
patches by intensity. However, in this case, we 
lowered the thresholds in order to reduce the 
strictness of the method.


Finally, the last step of the image processing 
procedure applied a normalization to the pixels that 
were left with high intensities in order to enhance 
the differences between them. (Figure 2)


To apply this process we used numpy12 (v1.19.2) 
and pandas (v1.2.1), which are open-source data 
analysis and manipulation tools for the Python 
programming language. We used numpy to store 
the images (lists of pixel values) and the image 
labels, and pandas to store the different information 
associated with each cell.


2.10   Data augmentation

The training of any Artificial Neural Network 
requires lots of data samples in the training dataset 
in order to achieve a good performance32. In this 
project we addressed several data augmentation 
procedures as an approach to overcome the 
problem of data scarcity. This process creates new 
artificial images based on the original data by 
performing several random modifications such as 
rotation, flipping, thresholding and others23. Every 
copied image, even though it is based on the 
original one with simple modifications, has a unique 
pixel value distribution, which allows the model to 
learn from new examples and learn meaningful 
patterns from them19. Models trained with few 
samples are prompt to detect the noise and specific 
characteristics of the example images instead of 
focusing on the real meaningful patterns. 
Therefore, the generation of new artificial examples 
usually helps the model to achieve best performances 
on new datasets, thus it improves its robustness. 
Among the different modifications that could be 
applied to the images, we played with the variations 
that were not affecting nor altering the main key 
information of the image. Hence, we generated 
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Figure 2: Image preprocessing part 2. Images from the 
first round of sequencing (channels and z-slices projected 
with maximum intensity) at each step of the image 
preprocessing procedure used. Images from the first 
column correspond to the output from step 3 of the 
method. Next step applies padding to normalize the size 
and shape of all images to 150x150 pixels. Step 5 applies 
thresholding, and finally step 6 applies a 0/1 normalization 
of the pixels different to 0.



new artificial images without introducing unrealistic 
changes that would not be seen in new real 
images.


As a result, we built three different approaches 
using different types of modifications. Finally, the 
one leading to the best performances carried out 3 
simple modifications: flipping/reflection, rotation, 
and size modification. For each original image, we 
generated 9 copies with different alterations, thus 
ending with 10 images from the same cell. For 
each copy, random values were generated to 
determine the angle of rotation, and the level of 
size modification while never generating bigger 
images than 150x150 pixels (Figure 3). Finally, only 
60% of the copies were flipped.


This procedure was applied only to the training set 
in order to generate new images. The validation 
data was not augmented nor modified given that it 
was used to test how the model would perform in 
real world data. 


2.11   Model training

The parameters of the model that can be learned, 
which are the so called weight values, are trained 
by using some mathematical methods such as 
backpropagation and gradient descent20,35, which 

efficiently explore the space of solutions and return 
the optimal set of weight values that will lead to the 
best possible solutions24. This optimal set of 
parameters is found when the cost function 
reaches its minimum value15. This training process 
is performed by forcing the model to learn from 
various image examples that are already labeled. 
Therefore, the more examples in the training set, 
the more robust the model will be towards new 
acquired data, thus reducing overfitting32. 


To build and train the models we used the python 
open source library Tensorflow13 (v2.2.0) and 
Keras, the most used library for Deep Learning 
development in python. To train the models, we 
used the optimizer Adam16,22, which is a general-
purpose system since it uses a stochastic gradient 
descent method that can train the model via back-
propagation. According to Kingma et al., 2015, the 
Adam optimizer method is "computationally 
efficient, has little memory requirement, is invariant 
to diagonal rescaling of gradients, and is well suited 
for problems that are large in terms of data/
parameters”16,22. 


The loss function used was the mean squared error 
as shown in equation 3, which computes the mean 
of squares of errors between labels and predictions.




In order to prevent overfitting, we applied the early 
stop callback tool offered by keras. This function 
takes as argument the number of epochs after 
which the process will stop training if the monitored 
metric has stopped improving, as it can be 
understood from the documentation of the package13.


2.12   Model performances

The performances of the models were quantified by 
using the loss function mean squared error as 
shown in equation 3. This metric applied to the 
validation datasets has been used to compare 
the model performances between the different 
approaches performed. Each model tested was 
repeated for all folds in order to apply cross 
validation, and the final performance comparisons 
were made with the mean values across the folds.


In this project, the usage of the area under the 
curve (AUC) for model comparison as binary 
classifiers was not recommended due to the small 
dataset size. Small sample sizes produce stepped 
ROC curves, which make each sample have a high 

Figure 3: Data augmentation. Three examples of 
augmented images. First row shows the original image 
after passed through the image preprocessing 
procedure 1. Next rows show the same cell images with 
several modifications. Rotations, size modifications and 
reflections were applied.
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contribution to the sensitivity and specificity 
measures39, thus seeing a huge variability in the 
AUC value with small changes in the predictions. 
However, the ROC curve was used to compute the 
optimal class separator threshold for the final 
binary classifiers.


After identifying the best models (i.e. the ones with 
lowest average loss value across folds), the model 
built from the fold with best performance was taken 
to carry out the external validation test. In this test, 
we computed the mean squared error and the 
accuracy for the classification. We binarized the 
labels used for each model by applying a threshold 
of 0.5 for model 4, 0.6 for model 3, 0.7 for model 2, 
and 0.25 for model 1. On the contrary, the 
thresholds used with the prediction scores 
corresponded to the optimal thresholds defined by 
the ROC39 curve as mentioned previously. 
Binarizing both sets of values we computed the 
accuracy of the models and used this metric as the 
final quantification of the performance of the 
models to make a binary classification. 


2.13   Code script

All code generated and used in this project is 
available at the following link: https://github.com/
ainamarti/FDP_bioinformatics. 

3. Results


In this project, applying the proposed model 
architectures, image preprocessing methods and 
data augmentation procedures, 15 different model 
approaches were evaluated for each of the four 
models assessed. The results for the best 
performing models have been presented in Table 1. 
Moreover, the results from all approaches tested 
have can be found at Supplementary table 1. The 
best performing approach found used image 
preprocessing procedure 1, model architecture 3, 
and data augmentation method 1, which have been 
explained in detail in the methods section. The 
combination of these methodologies achieved an 

averaged mean squared error of 0.014749 for 
model 4, 0.013753 for model 3, 0.010929 for model 
2 in the CV internal validations. In contrast, most of 
the approaches tested for model 1 did not perform 
as expected retrieving the same output for all 
samples in the internal validation and training tests, 
as discussed in the next section. Between the 
working approaches, the best performance showed 
an MSE of 0.00993 by using image preprocessing 
procedure 1, model architecture 1, and data 
augmentation 1. Plots showing the performances 
mentioned are shown in Figure 4. 


For validation purposes, these models were tested 
against the external dataset and the results have 
been presented in Table 2. In addition, the visual 
representations for the external dataset are also 
shown in Figure 5. 


Finally, by binarizing the labels and predictions, we 
tested the performance of these models as binary  
classifiers. For this we computed accuracies, true 
positive rates (TPR) and true negative rates (TNR). 
Results are shown in tables 1 and 2 together with 
the previously mentioned metrics. The final models 
selected achieved accuracies of 0.766, 0.797, 
0.858, and 0.821 in the internal validation dataset 
and accuracies of 0.640, 0.800, 0.880, and 0.880 in 
the external dataset for models 4, 3, 2, and 1 
respectively.
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Figure 4: Performances of the final selected models. 
Each one show the observed percentages of barcode 
detected vs the predictions made by the regression 
models.  Each individual dot in the presented plots 
represent a single cell.

Table 1: Performance values from the best working 
models when tested against the internal validation 
sets. 

https://github.com/ainamarti/FDP_bioinformatics
https://github.com/ainamarti/FDP_bioinformatics


Lastly, responding to the foremost aim of this 
project, we applied the four models to test the 
progressive exclusion of cells (Figure 6). Moreover, 

due to the low precision of model 1, we tested the 
progressive riddance of cells without the usage of 
this first model, and finally compared this to the 
usage of model 4 alone. 


4. Discussion

The models built and the performances achieved 
demonstrate that, despite data scarcity, it is 
possible to build regression models to explain the 
amount of structural information contained in each 
image. Yet, with the availability of more input data, 
the models could be potentially improved in the 
future. Here, we discuss the results collected in this 
project and potential methods to refine the 
methodology in further explorations. 

So as to compare the achievements of the models, 
we compared the Mean Squared Error (MSE) 
values between the different approaches, which 
computes the differences between predicted and 
observed values, as detailed in the methods 
section 2.11. Since the labels used for each of the 
four models built had different distributions of 
values, the final MSE values should not be 
compared between models 1, 2, 3 and 4.

In the results obtained, we could detect that some 
model approaches failed to work as expected 
(Supplementary table 1). Those models produced 
invalid results, giving the same values for all 
samples in the training and the internal validation 
sets. The reasons for the failure of these models to 
predict accurate values and detect key patterns in 
the input data could be related to the usage of 
wrong techniques for the model, or the poor 
relation between the inputs and the labels. When 
the labels used for the DLA are not fully 
explanatory of the information contained in the 
images, it is extremely complex to identify the 
patterns that define the relation between them. 
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Table 2: this table shows the performance values from 
the best working models when tested against the 
external validation sets. 

a) b)

c) d)

Figure 5: Performances of the final selected models 
when tested against the external dataset. Each one 
show the observed percentages of barcode detected vs 
the predictions made by the regression models. Each 
individual dot in the presented plots represent a single 
cell. Horizontal lines presented in red show the optimal 
threshold computed from the AUC with the internal 
validation

Figure 6: Cells discarded at each round of sequencing.



Therefore, in those cases, the model is prone to 
find a suboptimal solution where all samples get 
the same output, being this one close to the 
average of the labels. In addition, weight 
initialization could also play a key role in this 
phenomenon, which can drive the model towards 
this suboptimal and very simple solution.


By building two models with the same parameters 
(approaches 1 and 2) but changing the final size of 
the images, we tested the effect of image padding 
for the model performances. Here, we confirmed that 
it was not affecting the final model achievements 
since we did not observe a significant change in 
MSE values. This stems from the fact that 
neighboring zero pixels do not add new information 
for the model, consequently they do not contribute 
to the identification of the key patterns while not 
hindering the process. Since the percentage of 
padding added depends on the size of the cell, we 
also tested the correlation between the errors of the 
models and the areas of the cells. We obtained 
values of -0.090 (P<0.147), -0.0004 (P<0.995), 
0.105 (P<0.09), and 0.098 (P<0.12) in the 
Pearson's correlation coefficient test for the 
corre lat ion between those two var iables 
(Supplementary Figure 4). This confirms that the 
accuracy of the model does not depend on the 
amount of padding added to the image. With this 
background, we decided to continue our project 
resizing all images to 150x150 since it allowed us 
to accommodate all cell shapes and sizes present 
in the datasets while reducing execution time.

Thereafter, the next models showed how we could 
improve the performances by increasing the 
complexity of the model architecture. Third approach, 
which used the least complex architecture was the 
worst performing, being followed by approach 1, 3 
and 4, which progressively increased architecture 
complexity and improved the performance, ending 
with approach 4 retrieving the best MSE results of 
0.01420, 0.01505, and 0.01599 for models 2, 3, 
and 4. Contrarily, model 1 only achieved valid 
results with architectures 1 and 2, being 1 the best 
performing one with an MSE of 0.01037. Finally, 
approach 5, which used the most complex 
architecture, showed worse performances as 
compared to the previous approach, with the 
exception being model 2. This reveals the potential 
limit of model architecture complexity to allow 
sophisticated pattern recognition while reducing the 
effect of overfitting. However, since our problem of 
data scarcity could be masking the need of bigger 

architectures for better performances, we can not 
guarantee that the best model architecture found 
here is the best one for the solution of this problem. 
Nevertheless, we can use this as a base for further 
experiments.


Subsequently, once identified the best model 
architecture, we tested several image preprocessing 
techniques. Among the approaches tested, we saw 
the large impact that this step had on the 
performance of the final models. Firstly, we tested 
the approach detailed in the methods section 2.9 
(approach 4), which at the end resulted in the best 
performances seen for the models as discussed 
previously. For the purpose of finding better 
procedures, we examined image preprocessing 
methods that applied distinct simplifications of the 
data. Higher simplification of the images, which 
projected the round images, was tested (image 
preprocessing 2). This test yielded invalid results 
since the models forecasted the same output 
values for all samples in every model and fold 
assessed. Thus, we could straightaway discard this 
procedure while understanding that the key 
information for the classification of those images 
was centered on the specific information at each 
round. 

With this background in mind, we tested the 
opposite. In this case (approach 7), we removed 
the z-slices projection to keep more information for 
the models (image preprocessing 3). Contrarily to 
the previous system, this time the models could 
find a way to properly classify the images with the 
exception of model 1. Yet, this approach resulted in 
worse performance than earlier models. Considering 
the fact of using more complex images as input, we 
tested the same approach with a higher complexity 
architecture (approach 8). However, we did not see 
an improvement as compared to the prior method. 
Nevertheless, since more complex images need 
more training data, we propose to repeat this 
approach when having more data available to 
examine if the cause of poor performance was due 
to data scarcity. 


In that behalf, we proceeded the experiments using 
model architecture 1 and image preprocessing 
procedure 1. Due to our limitation in the number of 
images available for the training process, we 
addressed several data augmentation procedures 
as an approach to improve the models. We started 
by generating 10 and 20 copies of each image with 
very simple modifications (approaches 9 and 10): 
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rotation, flipping, and resizing. The results of 
the approach using 10 copies improved the 
performances seen previously, showing MSE 
averaged values of 0.01093, 0.01375, and 0.01475 
for models 2, 3 and 4. Therefore, in this case, the 
generation of new artificial examples helped the 
model to achieve better performances. On the 
contrary, the second approach generating 20 
copies did perform very similarly but not better. 


So as to search for better models, we tested 
other data augmentation procedures with more 
modifications (approaches 11, 12, 13 and 14) such 
as blurring, denoising, and sharpening. However, 
those image variations did not help the models, 
revealing that they could have been altering the key 
patterns of the images, leading to worse results.  
We could see that the random change of the 
threshold used at step 5 was highly downgrading 
the model performances. This effect could be 
explained by the fact that the constant threshold 
used for the images removes the background noise 
at the same level for all the images in the dataset. 
By randomly modifying the threshold of intensity, 
we are changing the amount of noise present in 
every sample. Since the noise acts as a key 
pattern for the classification of the images, such 
modification of the threshold could have prevented 
the correct recognition of common patterns 
resulting in worse performances. The results from 
approaches 13 and 14, which applied the same 
alterations without modifying the threshold, 
confirmed this hypothesis by revealing better 
performances.


Finally, since model 1 didn’t return valid results for 
none of the models applying data augmentation, we 
repeated approach 1 including data augmentation 
procedure 1 (approach 15). As a result, we 
obtained the best performances seen for model 1  
with MSE value of 0.00993. In the light of these 
results, we can conclude that data augmentation 
procedure 1, which has been explained in detail 
section 2.10, was the best performing one. 


Lastly, as already mentioned, the best approach for 
each model was selected and tested against the 
external dataset. As it can be seen from the results 
of tables 1 and 2, model 1 was the worst 
performing one with a big difference as compared 
to the other models. This model also showed low 
capacity to generalize towards a new external 
dataset. Seeing the differences in MSE, accuracy, 
TPR and FPR between internal and external 

validation sets for model 1, we can confirm an 
overfitting effect produced by the model. Moreover, 
by making a visual inspection of the plots resulting 
from model 1 (Figures 4a and 5a) we can see that 
the performance of this model showed higher levels 
of error as compared to the other models when 
taking into account the distribution of observed 
percentages. This observation can be confirmed 
with the low accuracies presented in tables 1 and 2 
for this model. Contrary to this, models provided 
with more information such as models 3 and 4 gave 
better results.


Bearing in mind these results, a possible failure of 
the labels used for the first models was analyzed. 
As it is known, the signal needed to detect the final 
barcodes is being added progressively throughout 
the rounds of sequencing. This means that it may 
not be easy to predict the percentage of barcode 
detection only with the first rounds of sequencing 
since we are missing most of the information. By 
only analyzing the images from the first rounds, 
several patches of the same channel might appear 
close together, driving the method to detect it as a 
single barcode patch. This drives the pipeline to 
retrieve low barcode recoveries,  as it can be seen 
in figure 4a, while indeed more barcode patch digits 
are identifiable. Only by the addition of more round 
images, we can improve and tune the barcode 
identification process, which will reach the optimal 
state when using all the rounds of sequencing 
designed for the experiment. Moreover, with partial 
information, many barcodes remain not unique. 
This presents a challenge for the usage and 
performance of the first models constructed in the 
project. Here, as a potential future improvement, 
we suggest the usage of the number of patches 
detected in each image, taking into consideration 
the average patch size in the dataset, being 
independent of the number of targeted regions or 
uniqueness of the barcodes.


Once the models were constructed, we proceeded 
to make a visual examination of the images and 
their predictions. As mentioned earlier, the results 
obtained through the different approaches hinted 
that the decisive information was somehow hidden 
into the images obtained at each round. By 
analyzing the results and images from model 4, we 
could detect that numerous cells yielding low 
barcode recovery and low percentage predictions 
showed high noise levels and low signals at round 
4. As we can understand from the methodology 
used in OligoFISSEQ, progressive decrease in 
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the signal and increase in the noise is already 
expected. This occurrence is, in part, a consequence 
of the low efficiency of ligation methods together 
with the lack of efficiency in the fluorophore 
removal process. This effect is expected to happen 
progressively through rounds. However, it has been 
detected to happen abruptly in the last round of 
multiple cells (Supplementary Figure 5). Moreover, 
there have also been detected a punctual increase 
of background noise at round 2, and a decrease of 
signal in multiple cells at this same round of 
sequencing (Supplementary Figure 6). With the 
methodology used in this project and the analysis 
made, we constructed a way to identify this type of 
behavior in sequenced cells. Since this effect might 
be potentially caused by errors in the chemistry 
protocol or wrong sample manipulation, recognizing 
this type of defects in the images would allow 
researchers to promptly identify errors in the 
process and act accordingly.

These findings and the previous results reveal that 
the low quality in some round images can be a 
potential determining factor for low barcode 
recognition, while demonstrating that it may not be 
possible to detect defective cell images in the early 
steps of the method due to the lack of information. 

Regarding the progressive exclusion of cells, as 
shown in figure 6a, it can be seen that most of the 
wrong cell riddance happens in round 1. As 
discussed earlier, this confirms the bad precision of 
this model. In addition, the same applies for models 
2 and 3, yet those reveal better results.

To reduce the downgrading effect of model 1, we 
tested the progressive riddance of cells without the 
usage of this model (Figure 6b). In this case we 
can see fewer false negatives, while also detecting 
that all true negatives were already discarded at 
round 2. Thereafter, when comparing to the usage 
of  model 4 alone, we can see a decrease in the 
number of false negatives. 


All things considered, both methods offer different 
advantages. Despite the better accuracy of the 
usage of the last model alone, the usage of models 
2, 3, and 4 together would allow the exclusion of 
deficient cells in the early stages of the process, 
thus providing higher time optimization. Nevertheless, 
it would also mean the loss of potentially useful 
information. Given this evidence, lab researchers 
could apply each method depending on their 
specific needs in each experiment.

Furthermore, taking into account the data limitation 
and the performance improvement achieved with 
data augmentation, the project shows the potential 
of improving these models with more data and less 
limitations. Ultimately, in case the first models 
do not achieve better performances in future 
experiments, model 4 can be potentially used alone 
for time and disk optimizations at the end of the 
sequencing experiments. With only this model, 
researchers could immediately detect errors in the 
process without the need to wait for results that 
take hours of computational analysis. Moreover,  it 
would provide a way to keep track of the number of 
sequenced cells with rich structural information. 
Finally, it could optimize the disk space used by 
automatically discarding the cells predicted to yield 
low structural information, which at the same time 
would avoid unfruitful analysis time.

5. Conclusion

In this project, as a contribution to the construction 
of an OligoFISSEQ self-driving microscope, we 
searched for an artificial intelligence deep learning 
algorithm (DLA) to provide time and disk space 
optimization while reducing the amount of human 
intervention in the acquisition of FOV. The results 
obtained demonstrate that, despite data scarcity, it 
is possible to build regression DLA models to 
explain the amount of structural information 
contained in the cell images generated with 
the OligoFISSEQ technology. Moreover, they 
demonstrate the potential of the methodology to be 
improved in future investigations with less data 
limitations.

Despite the poor performance of the first model, the 
work developed in this project enables the 
automatic riddance of cells even at the second 
round of sequencing. At the same time, by the 
usage of the last model alone at the end of the 
experiments, researchers could also achieve disk 
space and analysis time optimization.

Yet, since this technology is continuously evolving 
and the protocols are still being improved, the 
models provide the first starting point for future 
investigations for the search of improved 
methodologies for OligoFISSEQ cell image 
classification.
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6. Supplementary material
The supplementary material generated in this 
project is available at the following link: https://
drive.google.com/file/d/1jgr3RRLUDLpgk5CJOgQpC3q-
KmvbzaPu/view?usp=sharing
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