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Abstract 

Motivation: Next-generation sequencing (NGS) has become a revolutionary technology in clinical 
genetics and diagnostics. Nevertheless, the interpretation of the vast amount of data generated by NGS 
remains a challenging task since it requires expert assistance to distinguish the small number of clinically 
relevant variants among a large number of non-clinically significant ones. This project focuses on two 
closely related strategies: the improvement in the detection specificity of copy number variants (CNVs) 
and the development and implementation of a machine learning (ML) tool for the classification of single-
nucleotide variants (SNVs) and short insertions/deletions (INDELs). 

Results: A substantial impact on the efficiency of genomic analysis procedures of clinical samples has 
been shown. By recognising incompatible scenarios of CNVs, the number of dubious deletion calls has 
been reduced by a 5.86%, and thus the overall analysis time per sample has been slightly shortened. To 
aid in variant classification, we have designed a machine learning tool using the Random Forest 
algorithm since it has been the most beneficial predictive model. Our evaluation on a large set has 
confirmed that our approach successfully predicts variant classification by a percentage above 96%. 
Furthermore, the benign and risk factor variants could be filtered out, accounting for approximately 
10.17% of total variants, due to their excellent performance measures. Consequently, this project 
significantly impacts variant interpretation efficiency, which is a hugely relevant achievement as many 
human resources are devoted to interpretation. Both implementations provide countless advantages, 
from automation to efficiency and continuous improvement, among other benefits. 

———————————————————
1. Introduction

Notwithstanding nearly all children are born 

healthy, about 5% of couples with no family 

history or any unhealthy suspicion possible have a 

high risk of sharing a mutation in the same gene 

(Abulí et al., 2016). Therefore, it is highly 

recommended that couples planning to have 

children consider undergoing a genetic test to 

determine the carrier status of the significant 

recessive genetic diseases. Although each of these 

diseases is rare and uncommon, the at-risk 

couples can be identified and provided with 

appropriate genetic counselling.  
1 
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The qCarrier Plus (Abulí et al., 2016) is a laboratory 

test developed by qGenomics, in collaboration 

with Dexeus, which uses next-generation 

sequencing (NGS) technology to detect +9,000 

mutations reported in the databases being the 

cause of +300 recessive diseases. In a single 

analysis, the NGS allows the study of several types 

of mutations: single nucleotide variants (SNVs), 

minor insertions/deletions, copy number variants, 

and rearrangements at selected genes.  

Classification and interpretation of those variants 

is a crucial step in reporting clinical results. 

Nevertheless, the numerous variants detected, 

many of which have never been seen before, 

make the interpretation of clinically relevant 

variants challenging (Cutting, 2014). As a result, 

clinical laboratories worldwide have widely 

adopted recommendations by the American 

College of Medical Genetics and Genomics (ACMG) 

and the Association for Molecular Pathology 

(AMP) (Richards et al., 2015) to guide clinical 

interpretation of sequence variants (Zhang et al., 

2020). Despite this, manual curation is time-

consuming on large amounts of variants, being 

among the many challenges that expert 

interpreters face, thus requiring the need for 

automation (Pandey et al., 2012).  

CNVs, by definition, consist of a gain or loss of 

genomic DNA, giving rise to an abnormal number 

of copies in a region ranging from tens to millions 

of bases long (Eichler, 2008). With the advent of 

NGS, many bioinformatics and statistical tools 

have been developed for CNV detection from the 

sequencing data (Zare et al., 2017). While most of 

them struggle with small CNVs, which are 

frequently involved in several genetic diseases, 

these tools perform well for large CNVs (Moreno-

Cabrera et al., 2020). The software tested in this 

work belongs to the read depth methodology, 

which identifies the presence or absence of CNVs 

and determines their number of copies. A 

standard read depth approach uses a combination 

of samples (or a single one) as a reference to 

control for the variability at the capture and 

sequencing steps (Plagnol et al., 2012). Despite 

this, technical variability between samples makes 

the analysis complicated and can give rise to 

spurious CNV calls. ExomeDepth (Plagnol, 2019), 

the CNV calling algorithm we have focused on 

during this project, is meant to handle this 

technical variability (Plagnol et al., 2012). 

ExomeDepth is effective across many exome 

datasets, even for small (e.g. one to two exons) 

and heterozygous deletions. It utilises a robust 

model for the read count data to build an 

optimised reference set to maximise the CNV 

detection capability (Plagnol et al., 2012). 

Importantly, ExomeDepth assumes that the CNV 

of interest is absent from the aggregate reference 

set, which combines exomes from the same batch 

and is optimised for each exome. Thus, this tool is 

noteworthily suited to detect rare CNV calls, 

commonly for rare Mendelian disorder analysis 

(Plagnol, 2019). 

Typically, qGenomics experts start the variant 

interpretation journey with an annotated list of 

identified high-quality variants that must be 

interpreted to determine whether they are 

causative for disease. The interpretation 

procedure includes looking if the variant has direct 

entries in several databases, including ClinVar, 

LOVD, HGMD and the Genome Aggregation 
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Database (GnomAD), to annotate the quantity and 

frequency of homozygous and hemizygous the 

variant has. Interpretation also requires extensive 

literature searches, which at present cannot be 

easily automated. With all of this information 

uncovered, the interpreters make a judgment call 

on reporting each variant based on the evidence 

and their deep clinical expertise. The time 

required to review and validate each variant 

depends on certain factors, including the number 

of papers available. About 3 minutes need to be 

spent for each novel variant that has no entry in 

the University of California, Santa Cruz (UCSC); 

about 15 minutes for those having one or a few 

papers; and variants with several papers, 

especially if they have conflicting information 

between them, can take up to 30 minutes. 

Sometimes, if the variant is complicated, that time 

may increase up to an hour. Thus, it takes much 

time to analyse all variants of each test. 

Therefore, this project has been motivated by the 

need for robust clinical decision support solutions 

at qGenomics. With this background in mind, this 

project aims to improve the efficiency of NGS 

variants interpretation by reducing the time spent 

by experts analysing SNPs, INDELs and CNVs 

variants. 

1.1 Objectives 

The motivation behind this project is to reduce the 

time spent by the experts analysing the variants 

through two related strategies. The first, the 

improvement in the detection of copy number 

variants by assessing their credibility. The second, 

improved efficiency in the tertiary analysis of NGS 

data by implementing machine learning tools to 

predict their clinical importance. In essence, both 

parts are aimed at improving the efficiency of NGS 

processes in the interpretation part. 

1.1.1 CNVs part 

The proposal is to develop a strategy that predicts 

whether a copy number variant has been correctly 

called or not by taking advantage of the potential 

presence of small variants (SNV and INDEL) in a 

CNV. This strategy aims at providing a more 

accurate CNVs filtering strategy, so looking for 

incompatible cases will be the key. 

While the work presented in this project focuses 

on the establishment and validation of a method 

able to assign a score to each CNV prediction in the 

dataset, the main goal will be to use this 

evaluation method to systematically reduce the 

number of dubious calls that need to be 

interpreted and thus should shorten the overall 

analysis time per sample. In other words, the 

challenge is to identify the reliable calls of Exome 

Depth with sufficient sensitivity and specificity to 

be used as a screening step in a diagnostic setting.  

The research plan objectives consist of: i) 

developing and implementing a method that 

readily identifies ExomeDepth’s false positive 

CNVs calls; ii) validation of the results 

against array data to examine how well the 

strategy performs. 

1.1.2 ML part 

The objective is to develop and implement a 

machine learning algorithm for predicting SNPs 

and INDELs variant classification. This predicted 

classification aims to reduce the time spent by the 

experts in the interpretation process. The purpose 
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is to make predictions with a probability score and 

use successful predictions as a hard filter in the 

interpretation pipeline. 

The aim is to reduce the number of variants that 

need to be interpreted since a large number of 

SNPs and INDEL variants exist, and only a few of 

them end up being reported concerning a 

particular phenotype due to their known or 

potential clinical relevance. The primary purpose 

is to predict their classification based on 

thousands of variants already labelled by experts 

at qGenomics. Several approaches for data 

preprocessing, data architecture, and algorithms 

will be assessed, including Decision Trees, Random 

Forest and Artificial Neural Networks. The 

machine-learned approach is designed to have 

access to underlying data used in manual variant 

classification, including functional prediction, 

splice prediction, quality filters, allelic balance, 

read depth, among many more. The resulting 

software will predict specific categories — 

“artefact”, “benign”, “pathogenic”, “riskfactor”, 

“polymorphism”, “vous”, and “others”— to 

describe the variants identified. 

Since the objective is to design a machine learning 

algorithm, the research plan objectives consist of: 

i) searching and selecting the algorithms to be 

analysed; ii) collecting and preprocessing the data; 

iii) training and evaluating model performances; 

iv) hyperparameter tuning; v) making predictions. 

2. Methods 

2.1 NGS data generation 

Throughout this project, we have taken advantage 

of data already generated by qGenomics, which 

uses NGS technology to detect variants. The 

sequencing is performed on Illumina NextSeq500 

and NovaSeq6000 instruments, and the reads are 

aligned against the human reference genome 

(b37) using the Burrows-Wheeler Aligner (BWA-

MEM) algorithm (Li, 2013). Alignment post-

processing is performed according to Genome 

Analysis Toolkit (GATK) (McKenna et al., 2010) 

best practice guidelines. Variant calling of SNPs 

and INDELs is performed using both GATK 

HaplotypeCaller v3.7 and UnifiedGenotyper. In 

contrast, CNVs calls are performed using 

ExomeDepth (Plagnol, 2019), which identifies 

CNVs based on variations in depth of coverage 

(DOC) of aligned sequence reads against the 

reference genome (Kadalayil et al., 2014).  

The dataset comprising SNPs and INDELs data of a 

single sample is made up of approximately 10,000 

variants and a total of 35 features for the 

enrichment panel qCarrier. Variant interpretation 

specialists examine an annotated dataset and 

majorly classify each variant as one of the six 

following categories: “pathogenic”, “benign”, 

“vous”, “polymorphism”, “artefact”, and 

“riskfactor”. This dataset is distinguished for 

carrying all sample variants reported: single 

nucleotide variants, minor insertions/deletions, 

copy number variants and specific 

rearrangements coming from distinct procedures. 

It likewise includes a number of annotations that 

help interpreters determine which sort of variant 

they are in front of, and this is the knowledge we 

will use to train a supervised machine learning 

algorithm. 
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2.2 CNVs detection 

The scripts developed, programmed in python, 

take advantage of a broadly used package: pandas 

(v0.23.1) (McKinney, 2010), which is extremely 

useful for storing and efficiently dealing with all 

datasets. We also import NumPy (v1.19.5) (Harris 

et al., 2020) since it contains an extensive 

collection of high-level mathematical functions to 

operate with, the Matplotlib package (v2.1.2) 

(Hunter, 2007) for making visualisations, and the 

binom function from Scipy package (v1.5.4) 

(Virtanen et al., 2020), which allows us to apply a 

binomial discrete random variable.  

2.2.1 ExomeDepth 

ExomeDepth (Plagnol et al., 2012) is a CNV calling 

algorithm that uses a robust beta-binomial model 

with GC correction and a hidden Markov model 

(HMM) to combine likelihood across samples. This 

tool is suitable for pooled data, where changes in 

the number of copies are detected as deviations 

from reading counts concerning the average 

depth of coverage profile of a region. In other 

words, the model develops an aggregated 

reference dataset, which is optimised from a set 

of samples iteratively. At the exon level, it is 

provided with the read count ratio between a test 

sample and reference dataset and the likelihood 

of the read count data being a duplication or 

deletion in the test sample. These probability 

values are combined using HMM to call CNVs. 

Thus, ExomeDepth is best suited for datasets 

where the normalised read counts of samples are 

highly correlated, and for small and rare CNVs. 

However, its high sensitivity comes at the expense 

of reduced specificity.  

qGenomics’ custom CNV detection pipeline is 

based on the R package ExomeDepth and is 

already programmed so that it receives as input 

the Binary Alignment Map (BAM) and Browser 

Extensible Data (BED) files of all samples, and it 

outputs a text file with the CNVs identified. The 

programming language used is R, and some 

libraries required to execute it are 

GenomicRanges (Lawrence et al., 2013), IRanges 

(Lawrence et al., 2013) and, obviously, 

ExomeDepth (Plagnol, 2019). 

2.2.2 CNV detection workflow 

The proposed strategy, represented as a tree 

diagram in Figure 1, is based on a number of 

assumptions given the biology of the different 

situations that can take place. For example, since 

deletions involve loss of alleles, when considering 

heterozygous deletions of a diploid region, we 

expect all variants to become homozygous within 

the deleted regions. Thus, the presence of 

heterozygous variants is incompatible with any 

deletion, be it a homozygous or a heterozygous 

deletion. Following the same logic, if we have a 

hemizygous region or a homozygous deletion, we 

do not expect variants at all. 

For each CNV, we first consider whether we face a 

deletion or a duplication, which is assessed by 

taking into account the observed versus expected 

reads, as computed by ExomeDepth. When 

deletion is being considered, we first need to 

assess whether the deletion is homozygous or 

heterozygous since, as we introduced above, our 

expectations on the type (homozygous, 

heterozygous or absent) of variants must be 

modulated based on this observation.  
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When considering a homozygous deletion, we do 

expect the CNV not to have variants; if this is 

satisfied, we would be in front of a compatible 

homozygous deletion. Otherwise, we would 

compute the probability of those variants being 

bona fide variants or otherwise artefactual. This 

computation is performed using the error rate of 

the methodology (around 1%), the allele balance, 

and each variant's depth. If the detected variants 

are considered to be artefactual, the CNV would 

still be compatible; alternatively, the presence of 

bona fide variants would be incompatible with a 

homozygous deletion. 

Having a heterozygous deletion implies that all the 

variants, if present, must be homozygous within 

the deleted region. We have considered that a 

minimum of three homozygous variants within the 

deletion is needed to have enough statistical 

support, as well as three control variants that we 

know have no CNV. Thanks to this, we observe 

how much our observation deviates from the 

distribution of the controls, and we can state if our 

CNV keeps being compatible with a heterozygous 

deletion. If we detect no variants, or not enough, 

we cannot report information about those CNVs. 

In case it has heterozygous variants, we compute 

the probability of those variants being 

Figure 1. Copy number variants workflow. Showing the CNV strategy for detecting accurate deletions (a) and duplications (b) 
predictions.  

A. B. 
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heterozygous by chance. The theory declares that 

there cannot be heterozygous variants within a 

deletion, but the reading depth comes into play. If 

the depth is low enough, there may be sequencing 

read errors detected as heterozygous variants 

with a low allele balance (well below the expected 

50%). Using the error probability, the number of 

alternatives and the depth, we can compute the 

probability of those heterozygous variants 

appearing at random, and with that, we can 

compute how much we can rely on the CNV 

prediction. It is crucial to notice that the 

relationship between the presence of 

heterozygous variants and the absence of deletion 

is quite powerful.  

We need to look for incompatibility points for 

duplication cases since there is no biological 

presupposition related to variants at first glance. 

The proposed strategy is represented as a tree 

diagram in Figure 1b. If we have a duplication, we 

can only inform those having three copies and 

heterozygous variants within the region; 

otherwise, it would be compatible with a 

duplication. Having three copies and a 

heterozygous variant implies an increment of the 

allele balance of 30% approximately. Therefore, 

given this situation, we have to compute the 

probability of two distinct null hypotheses: having 

two copies and observing the altered allele 

balance by chance, or having three copies and 

observing at random an allele balance of 0.5. This 

will let us decide if we are in front of a compatible 

duplication or not. However, notice that most 

duplications lack significant clinical relevance, and 

we do not have enough information to make more 

specific detections. Therefore, although the 

strategy has been proposed and implemented, it 

will not be validated.  

2.2.3 Prior considerations 

As stated above, the overall strategy consists of 

taking advantage of biological knowledge to state 

how much we can rely on the CNVs predictions 

made by ExomeDepth using the information of 

small variants (SNV and INDELs) contained within 

the CNV. However, since NGS methodologies are 

not error-free, we must assess the possibility that 

any given variant is not a true variant (sequencing 

error) or does not belong to the region of interest 

(mapping error). In the following paragraphs, 

different situations that lead to the exclusion of 

SNV and INDEL variants are presented. 

The first consideration taken has been that the 

variants coming from segmental duplication 

regions need to be excluded from the analysis. 

Segmental duplications are hard to map because 

the reads matching in that region can have 

recurring matches in other genome regions (Zeng 

et al., 2015). Thus, we cannot provide information 

on any CNV falling entirely into a segmental 

duplication region. Therefore, only variants falling 

outside these regions should be considered when 

deciding whether the CNV call is true or not. 

Similarly, pseudogenes result in a limitation in 

detection and validation of the variants present in 

the associated genes (Torrents et al., 2003); thus, 

they should also be filtered out. 

We must also consider if an INDEL variant falls 

within a low complexity or a simple repeat region 

or is otherwise located in a unique genomic 

region. This is assessed by comparing the INDEL 

variants with the RepeatMasker database. It is 
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crucial since INDELs mapping to tandem repeats or 

low complexity regions have a very high 

probability of being sequencing artefacts 

(Treangen and Salzberg, 2012) and therefore must 

be excluded. In addition, we have also filtered all 

those variants that not have not passed filters 

initially set during variant calling. 

Another factor that must be taken into account is 

related to the pseudoautosomal regions (PARs) in 

sexual chromosomes since they are the only male 

sexual chromosome regions that can be 

heterozygous (Helena Mangs and Morris, 2007). 

The Y chromosome in the GRCh37 assembly 

contains two PARs that map to regions in the X 

chromosome: 10001-2649520 and 59034050-

59363566 for chromosome Y, and 60001-2699520 

and 154931044-155260560 for chromosome X. 

This denotes that if the CNV we are examining 

belongs to a chromosome X of a male and it does 

not fall within the PARs, we can only expect to find 

homozygous variants or no variants at all. If it falls 

within the PARs, we will consider it to behave the 

same way as having two copies. 

All these data have been extracted from the UCSC 

genome browser (Karolchik et al., 2004) database 

using the GRCh37 assembly. 

2.2.4 Validation 

A validation step is required to test the reliability 

of our approach. By comparing ExomeDepth calls 

to CNV calls from the same samples using an 

alternative methodology (DNA microarrays), we 

check if the predictions based on the 

presence/absence of variants can help filter out 

dubious ExomeDepth calls. 

To perform the validation, we need to identify 

samples with a complete analysis of CNVs by 

arrays and the NGS test. Once identified, we can 

only validate those ExomeDepth CNV calls that are 

sufficiently covered in the arrays. This is, Exome 

Depth CNV call regions that are covered by at least 

three probes on the arrays, independent of the 

array resolution. At this point, the strategy 

proposed is applied to ExomeDepth CNVs, and the 

result is then compared to CNVs coming from 

arrays. 

2.3 SNPs and INDELs classification 

We take advantage of the most used libraries for 

Deep and Machine Learning throughout this 

project: Keras (v2.3.1) (Chollet, 2015) and sklearn 

(v0.24.2) (Pedregosa et al., 2011), respectively. 

Furthermore, we likewise use Tensorflow (v1.14.0) 

(Abadi et al., 2016) to make basic machine 

learning tasks with Keras. Pandas (v0.23.1) 

(McKinney, 2010), NumPy (v1.19.5) (Harris et al., 

2020), Matplotlib (v2.1.2) (Hunter, 2007) and 

Scipy (v1.5.4) (Virtanen et al., 2020) packages are 

also used. 

2.3.1 Algorithms  

For the selection of the algorithms, three 

characteristics were taken into account: i) the 

need for a supervised learning algorithm since we 

have the data already labelled by specialists; ii) to 

be a multiclass classification algorithm; and iii) 

usage in the scientific community and 

methodological relevance. All algorithms selected 

—Decision Trees, Random Forest and Artificial 

Neural Networks— are supervised learning 

methods and can be used for multiclass data. Once 

the algorithms have been trained, they determine 
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which label corresponds to new data by 

associating patterns with unlabelled new data. 

Next, the three methods used are explained in 

more detail. 

2.3.1.1 Decision Trees 

A Decision Tree (Quinlan, 1986) is characterised 

for building classification models in a tree 

structure. The dataset is broken into smaller 

subsets while simultaneously, an associated 

decision tree is incrementally developed. Entropy, 

which is the degree of uncertainty in the 

randomness of elements, and information gain, 

which quantifies the relative variation in entropy 

regarding the independent attribute, are used to 

construct a decision tree. Its weakness is 

overfitting, as it tries to fit the model by going 

deeper in the training set and thereby reducing 

test accuracy; nevertheless, overfitting can be 

minimised by applying pruning nodes. 

2.3.1.2 Random Forest 

Random Forest (Biau, 2012) is a combination of 

learning models based on bagging. In this 

algorithm, overfitting is prevented by creating 

trees on random subsets since it takes the average 

of all the predictions and thus cancels out the 

biases. Besides, while growing the tree, it searches 

for the best feature among a random subset of 

features, and this adds randomness to the model, 

resulting in a wide diversity that generally benefits 

the model. 

2.3.1.3 Artificial Neural Networks 

An Artificial Neural Network (Amato et al., 2013) 

is a simulation of the neurons network that make 

up the human brain. Neurons can be modelled as 

mathematical functions represented as nodes, 

and their connections have weights associated 

with them. The weighted sum of each neuron 

input is calculated, and it is passed through the 

activation function, which is a nonlinear function, 

to produce an output. Hence, neurons translate 

inputs into a single output, which can then be 

picked up as input for another layer of neurons 

later on. Thus, there can be several hidden layers, 

and there are also called biased units, which are 

neurons that provide a value of 1. 

2.3.2 Data summary     

The performance of a model is directly 

proportional to the amount of data the model 

learns from. For this reason, we have gathered all 

data generated by qGenomics from October 2020 

to May 2021, resulting in 121,425 interpreted 

variants from 2944 samples in 40 sequencing runs 

(average 41 interpreted variants per sample). 

Considering the raw dataset, the variant types we 

are interested in are classified as follows: 21.47% 

refer to artefact, 10.08% to benign, 4,74% 

to pathogenic, 25.00% to polymorphism, 16.67% 

to vous, 0.1% to riskfactor, and the 1,2% to other; 

the rest of variants will not be used either for 

training or testing. The cleaned and formatted 

dataset, after data preprocessing, is composed of 

67506 variants and 86 features. Most of the 

features used to learn are frequencies from 

databases or directly related to the run: 

FreqGnomAD, NHomHemGnomAD, RunCount, 

X1000G_ALL, ESP6500siv2_ALL, qExFreqInd, 

qGenFreq_536, qCarFreqInd, ExAcFreqObs, pLi 

and RunFreq. Some others inform about 

remarkable prediction algorithms: SIFT_pred, 
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Polyphen2_HDIV_pred, Polyphen2_HVAR_pred, 

LRT_pred, MutationTaster_pred, FATHMM_pred, 

MutationAssessor_pred, RadialSVM_pred and 

LR_pred. Many others are variant’s characteristics 

like the AB (allele balance), DP (read depth), Ref, 

Alt, State, Fun_refGene, ExonicFun_refGene, 

Clinvar_20170905, genomicSuperSups and 

Indel_length. Finally, some others are more 

specific: Procedencia, syn_z, mis_z, Num_qMales, 

Num_qFemales and Filter.  

2.3.3 Data preprocessing 

Machine Learning models need the data cleaned 

and formatted, so the raw data cannot be directly 

used (Kotsiantis and Kanellopoulos, 2006). This 

preprocessing step includes handling missing 

values, feature encoding and feature selection 

(García, Luengo and Herrera, 2016).  

To deal with missing values, we have performed a 

distinct procedure depending on each feature 

since a given general methodology can introduce 

biases in the dataset. In particular, for the read 

depth feature, using a specific value can adversely 

influence the rest, so we have better used the 

mean. Notice that this replacement has been 

performed after splitting the train and test to 

avoid leaking information. For allelic balances, 

since the 0 value corresponds to the homozygous 

alternative and the 1 to the homozygous 

reference, we have assigned a value of -1 for 

missing values. In categorical features, missing 

values are interpreted as a specific category. All 

these parameters have been selected for 

producing the optimum global accuracy after 

performing many combinations in a trial-and-error 

manner. 

Dimension reduction has been performed by 

simplifying categorical features. Instead of using 

all specific INDELs annotated on Alt and Ref, we 

have assigned them the category indel, and a new 

feature containing its length has been created. In 

the case of Clinvar, the assignment has been done 

depending on the combination of categories they 

had and giving priority to the less relevant clinical 

ones, so the priority order is uncertain significance 

> likely benign > benign > likely pathogenic > 

pathogenic > drug response. For the segmental 

duplication feature, its genome position has not 

been considered, but the fact of overlapping one 

or not. The other features have been simplified 

with almost no effect on dimensionality reduction. 

Extra features informing about specific prediction 

algorithms, such as SIFT (Sort intolerant from 

tolerated), Polyphen v2 (Polymorphism 

phenotyping v2), LRT (Likelihood ratio test), 

MutationTaster and MutationAssessor, have been 

added to make better predictions. In total, from 

almost 40,000 features we had initially, only 104 

remain thanks to these considerations. A table 

showing the final categorical features is attached 

in Supplementary Material Table S2. 

Identifying all features data types present in the 

dataset is needed to make the data proper for the 

algorithms concerning feature encoding. Machine 

learning algorithms cannot handle the text data 

directly; this is why the categorial features must 

be converted to numeric values. The technique 

used for encoding our nominal data is Dummy 

coding, which converts the categorical variable 

into a series of dichotomous variables. This 

technique maps the absence or presence of the 

diverse categories present in the feature using a 

vector consisting of 0 or 1. Notice that the 
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algorithm learning rate can be reduced if the 

number of categories of data existing in a 

particular feature is too large; for this reason, 

features like the Gene_refGene have been 

avoided.  

Feature selection is fundamental in machine 

learning since unnecessary features decrease 

generalisation performance on the test set and 

decrease training speed and model 

interpretability (Kotsiantis, 2014). Uninformative 

features regarding variant interpretation have 

been removed manually, like the sample, 

chromosome, start, end, and gender. We have also 

used feature importances for feature selection by 

removing low importance features according to 

the best learning model: Random Forest with 

specific hyperparameters. The features are 

averaged over three training runs in order to 

reduce variance. Features with zero importance -

ExonicFunc_refGene_ncRNA_exonic;splicing, 

Func_refGene_ncRNA_exonic;splicing- have been 

directly removed since in a tree-based model, they 

are not used to split any nodes, and thus they are 

not affecting the model performance. In addition, 

the least important features not contributing to 

specified total importance are also removed. Only 

87 out of the 132 features are required for 0.99 of 

cumulative importance in our training model. 

LRT_pred_U, Filter_hard2validate and Ref_TT are 

some of the low importance features removed. 

Normalised and cumulative importance of each 

feature using Random Forest is attached in 

Supplementary Material Table S3.  

2.3.4 Model training     

As it is common practice, our training dataset 

corresponds to 80% of the total information. Once 

the algorithm has been trained, it should 

determine which label corresponds to new data by 

associating patterns with unlabelled new data. An 

internal validation test will be performed to 

evaluate the performance of each of the models 

using the 20% leftover. Thus, we end up having 

54004 variants in the training dataset and 13502 

in the test dataset. In addition, an external 

validation test will be performed with the 

optimum performing model by using more 

sequencing runs never seen before by the 

algorithm. 

2.3.5 Tuning hyperparameters and models 

As a first approach, models have been trained with 

the Scikit-learn (Pedregosa et al., 2011) sensible 

default hyperparameters. Then we have moved 

on to model hyperparameter tuning to guarantee 

that the used parameters are optimal for our 

application. Parameters optimisation has been 

performed by trial and error, so we need to 

evaluate different model performances to 

determine the optimal settings. Overfitting is 

prevented by performing many iterations of the 

entire K-Fold Cross Validation process, each time 

using different model settings (Berrar, 2018). 

Secondly, we have evaluated model performances 

using Scikit-Learn’s RandomizedSearchCVmethod 

(Bergstra and Bengio, 2012) with a wide range of 

values for each hyperparameter. The K-Fold CVs 

are performed with a combination of values taken 

randomly from the grid defined. We have adjusted 

the following hyperparameters regarding Decision 

Trees: max_features, max_depth, criterion, and 

min_samples_leaf; these regarding Random 

Forest: n_estimators, max_features, max_depth, 

min_samples_split, min_samples_leaf, bootstrap, 
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and criterion; and these regarding Artificial Neural 

Networks: batch_size, init, epochs, and optimisers. 

The algorithm chooses between 8640, 432 and 90 

combinations of settings for DecisionTrees, 

RandomForest and Artificial Neural Networks at 

each iteration, respectively. However, since the 

search is random, not every combination is tested. 

We have performed 100 iterations with three 

folds for cross-validation. Although this method 

can already improve accuracy, we can further 

improve the results by focusing on the most 

promising hyperparameters ranges found at this 

point (see Table 1). 

From these results, the range of values for each 

hyperparameter is narrowed down. At this point, 

we use the GridSearchCV method (Siji George and 

Sumathi, 2020), which evaluates all combinations 

defined in a new grid based on an explicit 

specification of the settings provided by random 

search. So now, 18, 12 and 15 combinations of 

settings are evaluated. 

To determine which method yielded a better 

model, we have compared the base model with 

the best random search model, which at the same 

time is compared with the grid search. The model 

with the optimum results will be selected to 

perform the training and the external validation 

test. Furthermore, an additional model using the 

parameter sample_weight assigned to balanced 

has been created for the Random Forest 

algorithm; it automatically adjusts the weights of 

the labels to class frequencies in the input data in 

an inversely proportional manner. 

The model chosen will be tested using an 

additional external dataset with data never seen 

by the model. 

All code developed for this project is available at 

GitHub link https://github.com/albamalagon 

/FinalDegreeProject. 

3. Results and Discussion  

As mentioned above, this project intends to have 

a substantial impact on the efficiency of genomic 

analysis procedures of clinical samples, focusing 

on two closely related strategies: the 

improvement in the detection specificity of copy 

number variants and the development and 

implementation of a machine learning tool for 

classifying single-nucleotide variants and short 

insertions/deletions. 

DTD: Decision Tree Default. DTR: Decision Tree Random. DTG: Decision Tree Grid. RFD: Random Forest Default. RFR: Random Forest 
Random. RFG: Random Forest Grid. RFGW: Random Forest Grid Weighted. ANND: Artificial Neural Network Default. ANNR: Artificial 
Neural Network Random. ANNG: Artificial Neural Network Grid. 

 

Table 1: Model parameters. Showing the settings  used for the default, random and grid models. 
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3.1 Copy number variants detection 

This project explored the possibility of providing a 

more accurate CNVs filtering strategy by making 

predictions for each CNV. Each prediction 

considers the presence or absence of small 

variants and provides the probability that the 

detected variants are true variants and not 

sequencing artefacts. This calculation is made 

based on several variant’s features, such as depth 

and allele balance. In the end, variant information 

is used to accept or reject CNVs given some 

biological expectations (see methods section). In 

addition, a validation has been performed, where 

CNVs detected by ExomeDepth have been 

compared to a reference dataset generated by 

microarray analysis of the same samples (Table 2). 

The most remarkable result is that we cannot 

provide information about most CNVs by only 

using variants’ information. This is because a large 

number of called CNVs are too small and do not 

contain small variants, or the variants have been 

filtered out (see methods). With this in mind, 

results are differentiated into two parts. On the 

one hand, concordant calls between ExomeDepth 

and arrays are expected to be predicted as 

compatible by our method. This happens for all 

CNVs from which we can extract information 

(n=4), which is a favourable result. However, 

compatibility cases should be taken with caution 

since the absence of evidence is not evidence of 

absence.  

 

On the other hand, discordant calls between 

ExomeDepth and arrays (the call is made by Exome 

Depth but not using the arrays, and most likely are 

false positives) are expected to be predicted as 

incompatible by the method. In this case, for CNVs 

for which we have small variant information 

(n=21), we observe that the incompatible 

prediction is enriched with an 80%, but there are 

still some CNVs that are predicted as compatible. 

These compatible cases are homozygous deletions 

that do not contain variants and a heterozygous 

deletion containing more than three homozygous 

variants. As previously said, compatible cases are 

not that significant since they may lack conflicting 

evidence. Although the results are promising, note 

the small validation set performed. 

Regarding the CNVs that ExomeDepth and arrays 

detected to be overlapping with segmental 

duplications or containing a pseudogene (n=445), 

our method has directly filtered half of them 

(n=214). However, the other half (n=231) has been 

analysed because they were overlapping partially 

with a segmental duplication, meaning that the 

variants falling outside could still be interpreted. 

Among these, only 9 CNVs turned out to be 

compatible with a deletion, and the rest do not 

contain enough small variant information to make 

predictions. 

Table 2: Validation results. Showing the predictions our method makes for the concordant and discordant CNVs calls from 
ExomeDepth and arrays, as well as the segmental duplications and pseudogenes cases.  
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After doing the project, we realised that the 

impact of using variant information for predicting 

the credibility of the CNVs is limited when 

considering all copy number variants generated by 

ExomeDepth. Most of them cannot be assessed, 

91.97% to be precise, since they overlap with 

segmental duplications or contain a pseudogene 

(70.93%), do not contain variants (16.05%), or are 

duplication cases (4.99%). Since the idea is to 

reduce the time experts devote to interpreting the 

variants, getting rid of false-positive calls made by 

ExomeDepth is the key. Thus, we could get rid of 

5.86% of the total variants, which at the end of the 

year turns out to impact the variant interpretation 

efficiency significantly. 

3.2 SNPs and INDELs classification 

3.2.1 Features information 

Feature importances provide us insight into which 

features are helpful for the model when predicting 

the target variables. All scores obtained in this 

project can be found in Supplementary Material 

Table S3.  

By inspecting Figure 3, we observe that the most 

important feature is NHomHemGnomAD, a rather 

intuitive finding. This tells us that the best 

predictor in classifying variants is the number of 

homozygous or hemizygous in the Genome 

Aggregation Database (gnomAD), which makes 

total sense because having homozygous or 

hemizygous in a general population is 

incompatible with severe disease. The following 

four features are also related to frequencies, also 

not that surprising. The second most important 

weighted feature is the X1000G_ALL, which uses 

the latest 1000 Genomes Project dataset with 

allele frequencies in six populations. The RunFreq 

indicates how many times the variant has been 

seen in the same run; since we are working with 

rare diseases, a variant that is found many times 

Figure 2: CNVs pie chart. Showing the percentages of each 
type of CNV predictions, grouping them as compatible, 
incompatible and no info.  

Figure 1: a) Top 15 feature importances. Showing the 15 most essential features plotted in terms of normalised importance where 
the total sums to 1. b) Cumulative feature importance. Showing the cumulative importance versus the number of features. The 
vertical line is drawn at the threshold of the cumulative importance, in this case 99%. 

 

A. B. 
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among the samples of the same run is most likely 

not pathogenic. The RunCount is similar to the 

RunFreq, one is a linear combination of the other, 

but the RunFreq is more important because it 

considers the run size. Other population 

frequencies appearing between the top 15 

features are the FreqGnomAD, ExAcFreqObs, 

ESP6500siv2_ALL, qGenFreq_536, qCarFreqInd 

and qExFreqInd. The allele balance (AB) and the 

read depth (DP) are among the most important 

features. The features mis_z and syn_z come from 

GnomAD and give information about how much a 

gene tolerates missense and synonyms variants. 

The last feature clinvar_20170905_pathogenic 

relates to disease-specific variants. 

As mentioned previously, only 87 out of the 132 

features are required for 0.99 of cumulative 

importance in our training model (Figure 2b). The 

resulting optimal dataset contains all of the 

essential features that might bear our variant 

classification goal, leading to the best possible 

model outcomes. 

3.2.2 Comparing model performances 

To evaluate the model performances, we used the 

following measures: true positive, true negative, 

false positive and false negative, to compute 

measures like the precision score, the sensitivity, 

the F1-score, and finally, the accuracies and times 

of the training and test dataset. Accuracy and 

times’ performances are shown in Table 3, 

whereas precision, recall and f1-scores of the 

benign class are detailed in Figure 4. 

Training time comes as a factor during the 

implementation phase, and only Artificial Neural 

Networks are an outlier due to their complex 

computation, lasting ~15 times longer than 

Random Forest. It is an important metric since the 

training of the model would constantly be 

required with new data. The test time comes from 

the prediction phase, and Random Forest is 

investing the highest time, although it is not that 

significant.  

 

Accuracy measures are shown in percentage, and times in seconds.  

Table 3: Accuracy and times’ performances. Showing accuracies and times for each of the models tested. 
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Since we want to reduce the time spent classifying 

variants, we have focused on the benign class as it 

shows promising performances (see Figure 4); 

riskfactor is not taken as a reference because of its 

small support (only representing 0.1% of the total 

variants). By looking at the precision score of the 

benign class, Random Forest is clearly performing 

the best (~0.98). Ensemble methods are often 

powerful due to their averaging method from 

multiple trees. Nevertheless, precision only talks 

about the positive class, and a high precision score 

can still perform poorly when we consider false 

negatives. The recall score is an essential metric 

since it reports the ability of the classifier to find 

all the positive samples. Random Forest also has 

the higher recall scores for the benign class; 0.99 

to be precise. The higher the f1 score, the better 

the model is, and Random Forest keeps being the 

one with the higher scores (0.99), except for the 

default and weighted models (0.98). 

Based on the analysis, we observe that Artificial 

Neural Networks are the worst models (92.35% 

and 89.76% accuracy for the training and test 

data, respectively). Although Decision Tree 

models are good, their weakness is overfitting, 

which reduces test accuracy. Finally, we have 

chosen a Random Forest model with the specific 

grid and weighted samples because it generates 

the  highest recall, precision and f1-scores: 0.98, 

0.99 and 0.98, respectively. In addition, it also has 

an excellent test accuracy (96.44%). External 

validation tests, with new data, have been 

performed with this model, showing satisfactory 

results. Accuracies of 96% and 97% have been 

obtained for the external validations using three 

and one runs, respectively. Thus, we feel confident 

that our model can predict variant’s classification 

with 96% accuracy from six months of historical 

data. 

Figure 3: Bar plot with performances metrics of each model. 
Notice the x limit starting at 0.85 to make visualisation 
differences among the outputs. DTD: Decision Tree Default. 
DTR: Decision Tree Random. DTG: Decision Tree Grid. RFD: 
Random Forest Default. RFR: Random Forest Random. RFG: 
Random Forest Grid. RFGW: Random Forest Grid Weighted. 
ANN: Artificial Neural Network Default. ANNR: Artificial Neural 
Network Random. ANNG: Artificial Neural Network Grid.  

Table 4: Classification report and predicted probabilities. Showing the precision, recall and f1-score of each of the predictions, as 
well as their probabilities of being predicted as another class.  

Precision, recall and f1-scores values are between 0 and 1, whereas the rest are up to 100. 
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3.2.3 Outperforming model 

The computational strategy chosen predicts the 

potential pathogenicity of SNP and INDEL variants 

with the optimum performing metrics possible. Of 

course, some labels may be not predicted in an 

outperforming way, but looking at the metrics, we 

will state which set of classes have enough 

probability to be trusted and which ones can be 

confused. 

These confusion matrices (Figure 5) are used to 

evaluate the output of the best performing model: 

Random Forest with a specific grid. The diagonal 

values represent the number of times each class 

has been correctly predicted (Abhishek Sharma, 

2018). The fewer numbers outside the diagonal 

indicate that the instances have been better 

classified. We have also normalised the data since 

our data is unbalanced, and it allows us to know 

what class is being wrongly classified. 

We can observe that it ranks very well for 

riskfactor and benign classes, with scores of 0.99 

and 1, but it has problems for the pathogenic class 

(0.84). Pathogenic and artefact are sometimes 

confused, which is expected since experts prefer 

not to consider quality filters when a variant 

shows pathogenic traits, and here the algorithm is 

taking the artefact signal. Vous, pathogenic and 

other classes are the most confused ones.  

About 2% of the times we predict a variant to be 

benign, it is a real polymorphism, which is not a 

problem. In a small proportion, benign is also 

confused with the vous class, but it is never 

confused with the pathogenic one, which is an 

outstanding result. We can undoubtedly say that 

the benign and the riskfactor classes are well 

predicted or not confused with a variant class that 

risks lowering sensitivity. This means that they 

could be filtered directly, and interpreters would 

not need to analyse them. Both types of variants 

account for approximately 10.17% of the total 

variants interpreted, so the potential impact on 

the overall interpretation time may be significant. 

For the rest of the classes, we can simply report 

their probabilities being well predicted (see Table 

4), which is unquestionably helpful for expert 

variants. 

Figure 5: Confusion matrices. Showing the confusion matrices of the Random Forest with a specific grid weighted. a) without 
normalisation.  b) with normalisation.  

A. B. 
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The Receiver Operating Characteristic (ROC) curve 

allows us to plot the true positive rate against the 

false-positive rate, which is the same as saying the 

sensitivity against the specificity, at various 

threshold values (Majnik and Bosnić, 2013). The 

Area Under the Curve (AUC) quantifies the ability 

of a classifier to distinguish between classes, and 

the higher the value, the better the ability to 

distinguish between positive and negative classes. 

In our model, which is plotted in Figure 6, almost 

all labels have AUC=1, except pathogenic and 

other labels, as expected.  

4. Conclusions 

Notwithstanding the widespread usage of NGS in 

genetic disease studies and diagnostics, the 

interpretation part for the identification of causal 

or disease-associated variants is still a time-

consuming and non-scalable manual process. 

Furthermore, due to the vast quantity of variants 

that require human resources, it keeps being a 

huge challenge for clinical interpretation. 

Consequently, the process of interpretation 

requires to be optimised as much as possible. In 

essence, the two parts of the project are closely 

related as both aim to improve the efficiency of 

NGS processes in the interpretation part.  

The first purpose of this project is to improve the 

detection of copy number variants since high 

false-positive rates strongly limit the existing CNV 

detection methods. The intention is to reduce the 

number of dubious calls that need to be 

interpreted and thus shorten the overall analysis 

time per sample. Noticing that we cannot provide 

information about most CNVs by only using 

variants’ information and that compatibility cases 

should be taken with caution because of lacking 

evidence, we assume that the impact of this 

strategy is limited. However, we can still eliminate 

false-positive calls, representing 5.86% of the total 

variants, and thus shorten the overall analysis per 

sample. Consequently, provided with the Exome 

Depth predictions datasets, our method allows 

improving the detection specificity without 

coming at the expense of reduced sensitivity. 

The second goal has to do with improving the 

efficiency in the tertiary analysis of NGS data 

through the implementation of machine learning 

tools. Noticing that our model can predict 

variant’s classification with 96% accuracy from six 

months of historical data and that 10.17% of the 

total variants can be filtered out, predicting SNPs 

and INDELs variants considerably reduces the time 

spent by the experts interpreting them.  

In general, all aims described above are directed 

to maximise the incredible value of efficiency to 

aid in the clinical interpretation of variants, 

leading to reduced diagnostic times and costs. The 

implementation of both methodologies, which 

have reduced the burden of downstream analysis 

and validation, is hugely relevant as many human 

resources need to be devoted to interpretation. 

Therefore, any help in this regard can substantially 

Figure 6: ROC curve. Showing the multiclass ROC curve 
for each of the labels. 
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impact their efficiency, and they would be able to 

deploy their expertise where it is needed most. 

5. Acknowledgements 

I would like to express my deepest appreciation to 

my supervisor Jairo Rodriguez for the patience and 

excellent guidance throughout the project. I 

would also like to give my sincere thanks to Nacho 

Coca for the helpful discussions during the last 

month. 

I am grateful to all members of the qGenomics 

company, especially to Neus Fornés and Olaya 

Villa, for providing me with information related to 

variant interpretation. In addition, I extend my 

thanks to Lluís Armengol and Xavi Armengol for 

helping me whenever I needed it.  

6. Supplementary Material 

Supplementary information accompanies this 

project at https://drive.google.com/file/d/1hGe_ 

fesnoM03GpP98GZkktjgYncG3fZp/view?usp=shar

ing. 

Figure S1. Confusion matrix of each model tested. 
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Figure S1: Confusion matrices. Showing the confusion matrix for each of the models tested. 
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Table S1: Classification report. Showing the precision, recall and f1-score for each of the models tested. 

Decision Tree Default 

 precision recall f1-score 
artefact 0.93 0.91 0.92 
benign 0.98 0.98 0.98 

pathogenic 0.81 0.82 0.82 
polymorphism 0.97 0.97 0.97 

riskfactor 0.75 0.60 0.67 
vous 0.94 0.94 0.94 
other 0.90 0.88 0.89 

 

Decision Tree Random Search 

 precision recall f1-score 
artefact 0.92 0.91 0.92 
benign 0.97 0.97 0.97 

pathogenic 0.81 0.80 0.81 
polymorphism 0.96 0.96 0.96 

riskfactor 0.80 0.80 0.80 
vous 0.94 0.94 0.94 
other 0.90 0.86 0.88 

 

 

Decision Tree Grid Search 

 precision recall f1-score 
artefact 0.92 0.89 0.91 
benign 0.97 0.98 0.98 

pathogenic 0.81 0.80 0.80 
polymorphism 0.96 0.96 0.96 

riskfactor 0.60 0.60 0.60 
vous 0.93 0.94 0.93 
other 0.88 0.88 0.88 

 

 

Random Forest Default 

 precision recall f1-score 
artefact 0.94 0.94 0.94 
benign 0.97 0.99 0.98 

pathogenic 0.95 0.82 0.88 
polymorphism 0.98 0.97 0.97 

riskfactor 0.83 1.00 0.91 
vous 0.95 0.98 0.96 
other 0.98 0.91 0.94 

 

 

Random Forest Random Search 

 precision recall f1-score 
artefact 0.94 0.94 0.94 
benign 0.98 0.99 0.99 

pathogenic 0.95 0.83 0.89 
polymorphism 0.97 0.97 0.97 

riskfactor 0.83 1.00 0.91 
vous 0.95 0.98 0.96 
other 0.96 0.89 0.92 

 

 

Random Forest Grid Search 

 precision recall f1-score 
artefact 0.94 0.95 0.94 
benign 0.98 0.99 0.99 

pathogenic 0.95 0.83 0.89 
polymorphism 0.98 0.97 0.97 

riskfactor 0.83 1.00 0.91 
vous 0.95 0.98 0.97 
other 0.97 0.89 0.93 

 

 

Random Forest Grid Search Weighted 

 precision recall f1-score 
artefact 0.94 0.95 0.94 
benign 0.98 0.99 0.98 

pathogenic 0.94 0.84 0.89 
polymorphism 0.98 0.97 0.97 

riskfactor 1.00 1.00 1.00 
vous 0.95 0.98 0.97 
other 0.96 0.91 0.93 

 

 

Artificial Neural Network Default 

 precision recall f1-score 
artefact 0.92 0.89 0.91 
benign 0.96 0.72 0.82 

pathogenic 0.88 0.77 0.82 
polymorphism 0.85 0.96 0.90 

riskfactor 0.00 0.00 0.00 
vous 0.93 0.96 0.95 
other 0.94 0.82 0.87 

 

 

Artificial Neural Network Random Search 

 precision recall f1-score 
artefact 0.90 0.91 0.91 
benign 0.95 0.72 0.82 

pathogenic 0.86 0.75 0.80 
polymorphism 0.83 0.97 0.90 

riskfactor 0.00 0.00 0.00 
vous 0.93 0.93 0.93 
other 0.97 0.64 0.77 

 

Artificial Neural Network Grid Search 

 precision recall f1-score 
artefact 0.90 0.88 0.89 
benign 0.95 0.70 0.80 

pathogenic 0.88 0.75 0.81 
polymorphism 0.83 0.97 0.89 

riskfactor 0.00 0.00 0.00 
vous 0.93 0.95 0.94 
other 0.94 0.65 0.77 



 

 

 

 

 

 

 

 

 

 

 

Table S2: Categories of categorical features. When coding the dataset, all these categories will be converted to features. 

Features Categories 
Ref A, C, G, T, indel, other, missing, TT, HBA2  
Alt A, C, G, T, indel, other, TG10, TG11, TG13, TG12, missing, -0.0  
State hom, het, CHECK,  unknown, missing  
Filter PASS, AB_0.2, LowQual, SnpCluster, End, hard2validate, missing  
Fun_refGene exonic, splicing, intronic, ncRNA_exonic, ncRNA_intronic, ncRNA_splicing, UTR3, missing, upstream, 

exonic;splicing, ncRNA_exonic;splicing  
Exonic_refGene nonsynonymous_SNV, splicing, frameshift_insertion, stoploss, frameshift_deletion, 

nonframeshift_insertion, duplication, deletion, nonframeshift_deletion, stopgain, PseudoGen_deletion, 
PseudoGen_duplication, c.121034TG(10)T(5), c.121034TG(11)T(5), c.121034TG(13)T(5), 
c.121034TG(12)T(5), missing, unknown, synonymous_SNV, nonframeshift_substitution, 
frameshift_substitution, exonic;splicing, ncRNA_splicing, ncRNA_exonic;splicing  

Procedencia No1en25, ClinVar_NoClinVar, NoCVar20160104, missing, SMN1file, TGfile, HBAbedFile  
clinvar_20170905 Uncertain significance, missing, Pathogenic, Likely pathogenic,  Benign, Likely benign, drug response  
genomicSuperDups yes,  no,  missing  

 

 

 

 

 

 

 

 

EXTERNAL DATASET RANDOM FOREST GRID 
WEIGHTED 3 runs 

 precision recall f1-score 
artefact 0.94 0.90 0.92 
benign 0.99 1.00 0.99 

pathogenic 0.90 0.81 0.86 
polymorphism 0.96 0.98 0.97 

riskfactor 1.00 1.00 1.00 
vous 0.96 0.97 0.96 
other 0.97 0.94 0.95 

 

 

EXTERNAL DATASET RANDOM FOREST GRID 
WEIGHTED 1 runs 

 precision recall f1-score 
artefact 0.96 0.97 0.96 
benign 0.99 1.00 1.00 

pathogenic 0.86 0.83 0.84 
polymorphism 0.99 0.99 0.99 

riskfactor 1.00 1.00 1.00 
vous 0.97 0.96 0.97 
other 1.00 1.00 1.00 
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feature normalized_importance cumulative_importance 

0 NHomHemGnomAD 0.09134113797384272 0.09134113797384272 
1 X1000G_ALL 0.07994372492869516 0.17128486290253786 
2 RunFreq 0.06313407410908753 0.2344189370116254 
3 FreqGnomAD 0.06172115834103226 0.2961400953526577 
4 ExAcFreqObs 0.05716195301619706 0.3533020483688547 
5 RunCount 0.05041107024534763 0.40371311861420234 
6 ESP6500siv2_ALL 0.046396924681169516 0.45011004329537185 
7 qGenFreq_536 0.04309091864641361 0.4932009619417855 
8 AB 0.039547715090346665 0.5327486770321321 
9 mis_z 0.03278368471804564 0.5655323617501777 
10 qCarFreqInd 0.030780326695381912 0.5963126884455596 
11 qExFreqInd 0.030525599019250248 0.6268382874648099 
12 syn_z 0.026230704174174894 0.6530689916389848 
13 DP 0.02308949967721985 0.6761584913162046 
14 clinvar_20170905_Pathogenic 0.020946112396244245 0.6971046037124489 
15 ExonicFunc_refGene_nonsynonymous_SNV 0.018532328752631663 0.7156369324650805 
16 pLI 0.015239106441735943 0.7308760389068165 
17 clinvar_20170905_Benign 0.013963883488371085 0.7448399223951876 
18 clinvar_20170905_missing 0.011976180114793214 0.7568161025099808 
19 indel_length 0.010895328657218447 0.7677114311671992 
20 Num_qFemales 0.010112382674382343 0.7778238138415815 
21 clinvar_20170905_Uncertain significance 0.009172413517310468 0.786996227358892 
22 Alt_indel 0.009151728517626228 0.7961479558765182 
23 Ref_indel 0.008739523398197457 0.8048874792747157 
24 Filter_PASS 0.008399088393750273 0.813286567668466 
25 Num_qMales 0.007599359599946924 0.8208859272684129 
26 FATHMM_pred_T 0.007149926054200106 0.828035853322613 
27 Procedencia_No1en25 0.006410394062546915 0.8344462473851599 
28 clinvar_20170905_Likely pathogenic 0.005701269576511723 0.8401475169616717 
29 ExonicFunc_refGene_stopgain 0.00539123184288078 0.8455387488045525 
30 MutationTaster_pred_A 0.005092164831313157 0.8506309136358656 
31 LRT_pred_missing 0.004865709412335823 0.8554966230482014 
32 Alt_C 0.004860388153491554 0.860357011201693 
33 Alt_A 0.004252758418116585 0.8646097696198095 
34 Ref_G 0.0041465096263073875 0.8687562792461169 
35 clinvar_20170905_Likely benign 0.003965019449003856 0.8727212986951207 
36 Ref_T 0.0038687655272684664 0.8765900642223892 
37 Alt_T 0.003868241812630797 0.88045830603502 
38 LRT_pred_N 0.0037368941121854434 0.8841952001472054 
39 Ref_C 0.0037199255537147128 0.8879151257009201 
40 Func_refGene_exonic 0.0036875258828382718 0.8916026515837584 
41 ExonicFunc_refGene_missing 0.003644540939991928 0.8952471925237503 
42 State_het 0.0034079740463306106 0.8986551665700809 
43 ExonicFunc_refGene_nonframeshift_insertion 0.0033737231785353704 0.9020288897486163 
44 MutationTaster_pred_missing 0.0033093715130536492 0.9053382612616699 
45 Ref_A 0.003066812263702331 0.9084050735253723 
46 MutationTaster_pred_D 0.0030198374945313473 0.9114249110199036 
47 Func_refGene_splicing 0.002985840548803356 0.914410751568707 

Table S3: Feature importances. Showing all features sorted by their normalised importance in the Random Forest algorithm. Cumulative 
importances are also detailed. 

 



48 Alt_G 0.0028612036455296667 0.9172719552142367 
49 ExonicFunc_refGene_splicing 0.0027730504241293883 0.920045005638366 
50 RadialSVM_pred_T 0.002685684664706631 0.9227306903030726 
51 SIFT_pred_D 0.0026471213788558925 0.9253778116819286 
52 LR_pred_T 0.002599371522612513 0.927977183204541 
53 FATHMM_pred_D 0.0025367508393247364 0.9305139340438657 
54 State_hom 0.0025100464996253733 0.9330239805434911 
55 RadialSVM_pred_missing 0.002413338281580907 0.935437318825072 
56 Procedencia_NoCVar20160104 0.0023229824263948807 0.9377603012514668 
57 SIFT_pred_T 0.0023058310330382964 0.9400661322845051 
58 SIFT_pred_missing 0.0022668567218998223 0.9423329890064049 
59 Func_refGene_ncRNA_exonic 0.002263845563126047 0.944596834569531 
60 LRT_pred_D 0.0022363999100112834 0.9468332344795423 
61 MutationAssessor_pred_N 0.0021855557037003303 0.9490187901832426 
62 MutationTaster_pred_P 0.0021707405354387116 0.9511895307186814 
63 Polyphen2_HDIV_pred_missing 0.002121312604941732 0.9533108433236231 
64 Polyphen2_HVAR_pred_missing 0.0020639845260214183 0.9553748278496446 
65 LR_pred_missing 0.002047036380843021 0.9574218642304876 
66 MutationTaster_pred_N 0.002026866721003519 0.9594487309514911 
67 Func_refGene_intronic 0.0020085887589443084 0.9614573197104354 
68 Polyphen2_HDIV_pred_B 0.0019947801667300753 0.9634520998771654 
69 RadialSVM_pred_D 0.001991373550262656 0.9654434734274281 
70 MutationAssessor_pred_missing 0.0019778164089047155 0.9674212898363328 
71 Procedencia_ClinVar_NoClinVar 0.0019432557639044619 0.9693645456002372 
72 MutationAssessor_pred_M 0.0018958042937399049 0.9712603498939771 
73 Polyphen2_HVAR_pred_B 0.0018690626009057762 0.9731294124948829 
74 LR_pred_D 0.0017591014731607986 0.9748885139680438 
75 MutationAssessor_pred_L 0.001729343224547485 0.9766178571925912 
76 ExonicFunc_refGene_frameshift_insertion 0.001627567730666048 0.9782454249232573 
77 FATHMM_pred_missing 0.0015053417026634542 0.9797507666259208 
78 Polyphen2_HVAR_pred_P 0.0014681737357211103 0.9812189403616418 
79 Polyphen2_HDIV_pred_D 0.0013332803180695608 0.9825522206797114 
80 Polyphen2_HVAR_pred_D 0.0012831050932293672 0.9838353257729407 
81 Polyphen2_HDIV_pred_P 0.001227862688819194 0.98506318846176 
82 Filter_AB_0.2 0.0012204987680547092 0.9862836872298147 
83 Filter_LowQual 0.0012204265086319204 0.9875041137384467 
84 Filter_missing 0.0011999279675084205 0.9887040417059552 
85 genomicSuperDups_missing 0.0011786589922162692 0.9898827006981714 
86 genomicSuperDups_yes 0.0009888672715610406 0.9908715679697324 
87 State_unknown 0.0007782169663488785 0.9916497849360812 
88 Alt_other 0.0006737184361911426 0.9923235033722724 
89 Ref_other 0.0006714623572617238 0.992994965729534 
90 LRT_pred_U 0.0006514857620189548 0.993646451491553 
91 MutationAssessor_pred_H 0.0006134852452488762 0.9942599367368018 
92 Comment2 0.0005853050381212396 0.9948452417749231 
93 Func_refGene_UTR3 0.0005484655670428321 0.9953937073419659 
94 State_CHECK 0.0005354415417221508 0.995929148883688 
95 Ref_TT 0.0005047029795305648 0.9964338518632185 
96 ExonicFunc_refGene_deletion 0.0005027036950650866 0.9969365555582836 
97 Procedencia_TGfile 0.0004716501426100263 0.9974082057008937 
98 Procedencia_HBAbedFile 0.0003543955578943688 0.9977626012587881 
99 ExonicFunc_refGene_synonymous_SNV 0.0003517564415571008 0.9981143577003452 



100 ExonicFunc_refGene_c.1210-34TG(10)T(5) 0.0003009854185376352 0.9984153431188828 
101 ExonicFunc_refGene_unknown 0.00030000962780334155 0.9987153527466861 
102 Alt_TG10 0.00028260939909427284 0.9989979621457804 
103 Filter_SnpCluster 0.00022252989431957752 0.9992204920401 
104 Alt_TG11 0.0001937056404030421 0.999414197680503 
105 ExonicFunc_refGene_c.1210-34TG(11)T(5) 0.00016644029234887708 0.9995806379728519 
106 Filter_End 0.00014757037774991641 0.9997282083506018 
107 ExonicFunc_refGene_c.1210-34TG(12)T(5) 6.54592657005025e-05 0.9997936676163023 
108 Alt_TG12 6.212782441856694e-05 0.9998557954407209 
109 Filter_hard2validate 4.860291523981956e-05 0.9999043983559607 
110 ExonicFunc_refGene_stoploss 2.708764055068281e-05 0.9999314859965114 
111 ExonicFunc_refGene_nonframeshift_substitution 1.896783718583627e-05 0.9999504538336972 
112 Func_refGene_exonic;splicing 1.6658266408535476e-05 0.9999671121001057 
113 ExonicFunc_refGene_c.1210-34TG(13)T(5) 1.5679268395217496e-05 0.9999827913685009 
114 Alt_TG13 1.294503376134259e-05 0.9999957364022622 
115 Func_refGene_upstream 2.6854501334163275e-06 0.9999984218523956 
116 ExonicFunc_refGene_frameshift_substitution 1.5781476039597342e-06 0.9999999999999996 
117 Func_refGene_ncRNA_exonic;splicing 0.0 0.9999999999999996 
118 ExonicFunc_refGene_ncRNA_exonic;splicing 0.0 0.9999999999999996 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


