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Abstract

Individual  neurons can  be represented  as  mathematical  objects  such as  dynamical
systems, enabling the study of their electrical activity as a function of different biological
parameters, time and most significantly different synaptic inputs. Using the Morris-Lecar
model, which predicts the voltage of a neuron using electrical conductances of ionic
channels and the conductances of inhibitory and excitatory synapses, it is possible to
study the behaviour of a neuron under different inputs and the arising transformations of
electrical  activity  based  off  changes  in  these  inputs.  Further,  the  model  allows  the
estimation of the synaptic input a neuron is receiving based on its electrical activity.
Under  an  experimental  setting,  the  electrical  activity(voltage)  of  a  neuron  can  be
measured with respect to time, however, the input the neuron receives to emit a certain
behaviour  remains  difficult  to  determine  experimentally,  lending  importance  to  this
computational approach to estimate the input given a set of voltages. In pathological
studies, evidence demonstrates a strong correlation between synapse dysfunction and
neurodegenerative and neurodevelopmental diseases, and thus making it biologically
significant to develop computational pipelines that allow the estimation of the synaptic
input based on measurable experimental data. In this project, a series of simulations are
prepared  using  the  Morris-Lecar  model,  and  a  set  of  mathematical  theories  and
transformations are applied which lead to the result that a neuronal dynamical system’s
electrical  behaviour  is  equivalent  when electrical  inputs  vary in  short  and long time
intervals; as well as the result that the total synaptic input can be accurately estimated.
However, the current solutions to the open problem of estimating the excitatory and
inhibitory  synaptic  inputs,  which  are  components  of  the  total  synaptic  input,  remain
inaccurate.

Introduction

In  the  nervous system,  it  is  often  the  case that  neurons exhibit  similar  or  identical
physiological  and  electrophysiological  properties,  while  simultaneously  exhibiting
qualitatively  different  electrical  activity[1]. To  address  this  phenomena,  families  of
models of varying complexity and dimensionality have been introduced, such as the
Hodgkin-Huxley model[2], which represent an individual neuron as a dynamical system.
In such a representation, the electrical activity of the neuron is measured as a function
of conductances of a variety of ionic channels, as well as the conductances of input
excitatory  and  inhibitory  synapses.  This  representation  establishes  a  relationship
between the behaviour of the neuron as a system based on its input, and inversely,
from the behaviour of the system an inference could be made on the input. 



Experimentally, there exist methods to determine the electrical activity of a neuron[3],
however, measurement of the input remains difficult.  In tandem with this fact, recent
research indicates a relationship between neurological disorders and abnormal synaptic
behaviour[4],  making  it  a  significant  and  growing  topic  of  interest  to  estimate  the
synaptic input of a neuron. Therefore, the goal of this project is the estimation of the
total  synaptic  input  given  a  measurable  quantity  such  as  the  temporal  voltage.
Additionally, the disentanglement of the synaptic input’s constituent components, the
excitatory and inhibitory inputs, is a key open problem the project attempts to tackle, as
its solution would provide insight into the architecture of the brain.  In order to emulate
the experimental processes that produces voltage data, a computational pipeline that
produces simulated voltage data based on the Morris Lecar model[5] is introduced.

The two dimensional Morris Lecar model, a relatively simple model which retains key
properties,  such  as  the  neuron  spiking  capacity,  as  well  as  the  conductances  and
equilibrium potentials of the calcium and potassium membrane channels, is used in this
project to prepare a series of simulations to facilitate the estimation of the total synaptic
input and then the excitatory and inhibitory conductances. In the general computational
pipeline, the model is first fed with a set of simulated temporal conductances, yielding a
set of temporal voltages as an output. The set of output voltages from these simulations
are then used to estimate the synaptic input for each unit of time, and consequently, this
estimation  is  compared  with  the  real  input  values  used  to  simulate  the  voltages.
Following the  estimation of  the  total  synaptic  input,  the  same pipeline  is  applied to
estimate  the  excitatory  and  inhibitory  synaptic  conductances;  the  estimation  of  the
excitatory  and  inhibitory  conductances  is  a  more  challenging  inverse  problem[6]
mathematically in contrast to estimation of the total synaptic input.

Materials and Methods
All the methods can be found in the script ML_Sim_Filter.py at the github repository:

https://github.com/mahdiESCI/FDP/tree/main/mahdiTFG

For  visualisation,  it  is  recommended  to  run  the  script   ML_Sim_Filter.ipynb  which  is  in
compressed format on the repository.

https://github.com/mahdiESCI/FDP/tree/main/mahdiTFG


1. Morris-Lecar model

The Morris-Lecar system consists of the equations:

(1)
dV
dt

=
f (v ,w)+I

Cm

│ f (v ,w)=−(I L+ ICa+ I k) , I=I app+ I syn

(2)
dW
dt

=g(v ,w)│g (v , w)=
ϕ(W∞−W )

τW

(3)I syn=gE(vE−v )+gI (v I−v)

I L=gL(v−v L) , I K=gKw (v−vk)

ICa=gCa M∞(v−vCa)│M∞=
1
2
(1+tanh [V−V 1

V 2
])

W ∞=
1
2
(1+ tanh [V−V 3

V 4
]) , τW=cosh [V−V 3

2V 4
]

Component Description

V Membrane potential (Variable)

W Recovery variable (Variable)

gE Excitatory conductance

gI Inhibitory conductance

gL Leak channel conductance

gCa Calcium channel conductance

gK Potassiun channel conductance

Iapp Baseline applied currebnt

Cm Membrane capacitance

vK , vL , vCa , vE , v I Equirlibrium potential of respective channels

V 1 ,V 2,V 3 ,V 4 Tuning parameters

Table 1. Morris Lecar system variables and parameters. Brief description of the two
variables and additional parameters of the Morris Lecar system.

The usage of the Morris Lecar model is such that in the computational pipeline, for each

unit of time, it receives as input a set of gE and g I values which are used to compute 
dV
dt

and  
dW
dt

.  The euler integration method is  then  used to integrate sets of  
dV
dt

 and  
dW
dt



values iteratively to obtain V  and W . 

V n=V n−1+h f (v ,w) ,W n=W n−1+hg(v ,w)│h=0.01

Consequently, the values of  V  and W  for a given simulation are fed to the robust exact

filtering differentiator to  obtain the estimations  V̂ ,Ŵ ,V̂ ' , V̂ ' ' .These estimated values
are  then  fitted to the equations of the Morris-Lecar system,  in order to solve for the
Synaptic Input. For the Estimation of inhibitory and excitatory inputs,  ĝE and ĝI ,

the same schema is applied.

2. Synaptic Input

From equation  (1)  that  I=I app+ I syn, each simulation of the neuron under the Morris-

Lecar model is considered independent from the others based on the baseline applied
current,   Iapp ,  and  type of I syn being fed to  the system.  In  the different  simulations

produced, two  distinct types of  I synwere given as input to the system; in one type the

temporal  gE and  gI pairs have a slow variation with respect to time, and in the other

type, the  gE and  gI values fluctuate faster. The set of temporal  gE and  gI values with

relatively  faster  fluctuation come from a  data  file  emulating realistic  cortical  activity,
while the slower type was generated through taking the maximum and minimum values
of the fast fluctuation set, and sampling  gE and  gI values from  between the intervals

formed by gEmin
, gEmax

 and gImin
, g Imax

. Each sampled pair of gE and g I was held constant for

time intervals of a fixed size, and as a result creating a slow variation input compared to
the faster fluctuation set where gE and g I vary for all almost all units of time.

In addition to the two  I syn types,  namely fast and slow input types,   Iapp values were

chosen  from  the  set  {35,40,45,50 , }to  investigate  the  different  states  of  the  system
resulting  from  different  baseline  applied  currents,  and  to  identify any  inaccuracy
introduced to the estimation of I syn as a consequence of the baseline applied current.

For the estimation of gE and gI, the Morris Lecar system used to generate the temporal

voltages was fed with the same  constant  gE and  gI values such that  gE=0.071 and

g I=0.362 for all units of time. 



3. Robust exact filtering differentiator 

Given  a  signal,  the  robust  exact  filtering  differentiator[7] retrieves  the  signal  while
discriminating noise in the signal, in addition to returning the derivatives of the given
signal.  In  this  applied  context,  for  each  unit  of  time,  the  robust  exact  filtering
differentiator takes as input the temporal voltage obtained from the simulations of the

Morris-Lecar  model  and  returns  the  filtered  V ,
dV
dt

and  
d2V

d t2
 for  all  units  of  time

considered. The implementation of the filter takes as input the vector  [a1 , a2, v0 , v0
' , v0

' '
]

and returns the vector [ â1 , â2, v̂ , v̂
' , v̂' '

]such that a1 and a2 are auxiliary variables.

â1=−λ4L
1/5|a1

4 /5|sgn(a1)+a2

â2=−λ3 L
2 /5|a1

3 /5|sgn (a1)+v0

v̂=−λ2 L
3/5|a1

2/5|sgn(a1)+v0
'

v̂'
=−λ1 L

4 /5|a1
1 /5|sgn(a1)+v0

' '

v̂' '
=−λ0Lsgn(a1)

Note that sgn represents the sign function and λi and L are constants. Effectively, given

an initial condition and a signal, which in this case is the temporal voltage, the robust

exact  differentiator  returns  the  estimations  v̂ , v̂ '
 and  v̂' '

 which  are  used  first  in  the
Estimation of total synaptic input, and subsequently, the estimations are used for the
voltages generated by the  constant gEand g I simulation  for  Estimation of inhibitory

and excitatory inputs, i.e. ĝEand ĝ I.

4. Effective estimation of input

4.1. Estimation of total synaptic input

Equation (1) of the Morris-Lecar system can be rewritten in terms of I syn, 

I syn=Cm
dV
dt

−( f (v ,w)+I app)

For a given simulation, this equation can be fitted with the values of v̂ , v̂ '
 returned by the

Robust exact filtering differentiator  to estimate Î syn where:



Î syn=Cm v̂
'
−(f (v̂ ,w)+ Iapp)

The Î syn values computed for all units of the simulation time are then compared against

the real  I syn values. The  I syn values are computed with respect to equation  (3) of the

Morris Lecar model,  using the values of the excitatory and inhibitory conductances as
well as the voltage.

4.2.Estimation of inhibitory and excitatory inputs

Derivating equation  (1) of the Morris-Lecar system yields the second derivative of the
temporal  voltage.  The  first  derivative  of  the  system and  the  second  derivative  can
together be considered under the system:

(1)
dV
dt

=
f (v ,w)+I

Cm

(2)
d2V

d t2
=
1
Cm

(
∂ f
∂ v

dV
dt

+
∂ f
∂w

dW
dt

+I syn
'

) 

In order to obtain the estimations of the excitatory and and inhibitory inputs, ĝEand ĝI ,

the system can be rewritten in terms of I syn
' and I syn.Given that constant gEand g I were

used to generate the temporal voltages fed to the robust exact differentiator for the
estimation of  ĝEand  ĝ I, as mentioned in the methodology for the  Synaptic Input, we

have:

 I syn
'

=
−dV
dt

(gE+gI )

Meanwhile from the definition of I syn from Morris Lecar equation (3) we know that: 

I syn=gE(vE−v )+g I (v I−v) 

With respect to these definitions, the system can be rewritten in terms of I syn
' and I syn as:

(1)gE (v E−v)+g I (v I−v)=Cm
dV
dt

−( f (v ,w))



(2)
−dV
dt

(gE+gI)=Cm
d2V

d t 2
−(

∂ f
∂ v

dV
dt

+
∂ f
∂ v

dW
dt

)

Fitting  the  system  with  v̂ , v̂ 'and  v̂' '
 obtained  from  the  Robust  exact  filtering

differentiator  results in:

(1)ĝE (v E−v̂)+ĝ I (v I−v̂)=Cm v̂ r'−(f (v̂ ,w))

(2)−v̂ '
( ĝE+ ĝ I)=Cm v̂

' '
−(

∂ f
∂v

v̂'
+
∂ f
∂ v

dW
dt

)

Where the system formed by equations  (1)  and  (2) could be solved for  ĝEand  ĝI to

obtain the excitatory and inhibitory conductances.  The estimations are then compared
against the real values, gE and gI , to measure accuracy. Note that:

∂ f
∂ v

=−(gL+gCam∞
'
(v−vCa)+gCam∞+gkw)

∂ f
∂w

=−gK (v−vK)



Results

1. Exploratory analysis

The behaviour of the system was equivalent for both the slow variation gE and gI sets

and the relatively faster simulated set of conductances discussed in the Synaptic Input
section  of  the  methodology.  This  can  be  seen  in  the  plots  in  Figure  1 where  the
simulated neuron is spiking given the baseline applied current of Iapp=50.

Figure 1.Voltage  trace  of  the  system with slow and fast  inputs.  The panels  show the
temporal  electrical  behaviour  of  the  system  i.e.  the  voltage  trace,  where  the  left  panel
represents the slow excitatory and inhibitory inputs and the right panel the fast inputs. Iapp=50.

With respect to  Figure 2,the bifurcation diagram, which shows the  voltage values the
system visits as a function of its parameters, shows a type of bifurcation classified as
SNIC(Saddle Node on Invariant Curve) bifurcation[8], where at Iapp=40 a limit cycle is

born. For Iapp>40, the system’s temporal voltage displays oscillatory behaviour and the



neuron is spiking, whereas for  Iapp<40 it is in an inhibited state, as the voltage tends

towards  an  attractor  of  the  system.The  data  used  to  generate  the  bifurcation  was
compiled  by  the  software  XPPAUT[9]. Note  that  the  oscillatory  behaviour  on  the
bifurcation diagram corresponds to the spiking voltage traces in Figure 1.

Figure 2.Oscillatory and quiescent states represented on the bifurcation diagram. Using
the  set  of  fast  excitatory  and  inhibitory  inputs,  the  temporal  voltages  were  plotted  on  the
bifurcation diagram, where in  the left  panel  (oscillatory)  Iapp=50,  and in  the right  (inhibited)

Iapp=35. 

For both slow and fast excitatory and inhibitory inputs, the system displayed qualitatively
equivalent behaviour on the bifurcation diagram,  as can be seen in  Figure 3. For the
subcritical region i.e. Iapp<40, for slow inputs, it was expected that if the system is given

enough  time  it  will  rest  perfectly  on  the  attractor,  given  the  generic  behaviour  of

dynamical systems around attractors as  t→∞,however this was not the case. In the

supercritical region of Iapp>40, for the slower inputs the system was expected to ride the

limit  cycle  perfectly  as  well, and  this  was  also  untrue.  The  reason  behind  this
observation is expanded upon in the discussion.



Figure 3. Bifurcation diagram for slow and fast inputs. At Iapp=35(top panels) and Iapp=50
(bottom panels), the behaviour of the system on the bifurcation diagram for the fast inputs(left
panels) and slow inputs(right panels) is shown.

2. Estimation of the total synaptic input

Using the schema proposed in the  Estimation of total synaptic input section of the
methodology, the result of the estimation of the synaptic input can be found in Figure 4.
For both the inhibited and oscillatory states, the estimation of the total synaptic input
was  successful,  as  can  be  seen  through  comparison  of  the  trajectory  of  the  true
synaptic input computed from the simulated conductances with the estimation. Given
that the behaviour of the system was shown to be equivalent for both slow and fast
conductances, only the fast conductances mimicking real cortical activity were to obtain
this result. The behaviour of the two states of the system for which the total synaptic
input  was  estimated,  namely  the  spiking  and  inhibited  states,  correspond  to  the
behaviour shown on the bifurcation diagram in the left panels of Figure 3.



Figure 4. Estimation of the synaptic input plotted against the true synaptic input.  The
plots contain in blue the estimation of the synaptic input, and in red the true synaptic input for
Iapp=50(left panel) and Iapp=35(right panel).

.

Figure 5. Error per unit of time for the estimation of the input. The difference between the
true synaptic input and the estimation for Iapp=50(left panel) and Iapp=35(right panel).

The result of the estimation of the input for other simulations are not present as they exhibited
the same qualitative behaviour.  Figure 5 shows the evaluation of the error for the estimations
shown in Figure 4. It can be seen that when the neuron is in a spiking state, there are sporadic

spikes in the error plot. This is due to the fact that in these instances,  
dV
dt

 is zero, and the

computation introduced in the Estimation of total synaptic input section diverges.



3. Estimation of inhibitory and excitatory conductances 

The estimation of the excitatory and inhibitory conductances, gE and gI , did not produce

accurate results as for the total simulation time considered, the estimations were either
divergent from the true values or there was no solution to the system. While this result
requires further mathematical evaluation, one plausible factor is that there are instances

where  
dV
dt

 is zero, and the consequence on equation  (2) in the methodology section

Estimation of inhibitory and excitatory inputs means that there is no solution to the
system.

Discussion

Prior  to  the  exploratory  analysis,  it  was  expected  that  for  slow  or  constant  input
conductances, the temporal  voltage would either perfectly ride on the limit  cycle for
Iapp>40,  or  for the subcritical  region i.e.  Iapp<40 sit  perfectly on the attractor if  given

enough time. This is due to the fact that generically, dynamical systems tend to the
attractors  of  the  system  if  given  some  lagging  input  and  enough  time.The  results
obtained  in  the  bifurcation  diagrams  for  the  slow  input  conductances  proved  this
prediction wrong, and in turn revealed several key properties about the system. Given
that  the  total  synaptic  input,  I syn,  depends  not  only  on  the  excitatory  and inhibitory

conductances but also the voltage, as shown in equation (3) of the Morris Lecar model,
even for constant conductances the system will  fluctuate; the voltage of the system
gravitates around, but does not attach to the attractors of the system, making it dynamic
in both the spiking state and the inhibited state. This also implies that for a given value
of  gEand  gI,  there could exist  several  values of  I syn,  a  notion  that  is  not  trivial  and

contributes to the complexity of solving the inverse problem of estimating the excitatory
and inhibitory conductances. Fluctuations in gE and gI further contribute to  the neuron

represented by the system always being in a transient state, as I syn will change too fast

to reach the attractors of the system.

The total synaptic input was estimated with a satisfactory level of accuracy, while the
estimation of gE and g I was divergent from the true values, due to the reason proposed

in the results section Estimation of inhibitory and excitatory conductances  as well
as the inherent dynamic properties of the system. It is important to distinguish that in a
real  experimental  setting, the  real  mathematical system that generated the temporal
voltages is not known as the number of auxiliary variables is unknown a priori. However,



the  computational  pipeline  remains  robust  as  the  robust  exact  filtering  differentiator
allows recovery of the filtered signal i.e. the voltage as well as its derivatives. Having
access  to  these  variables  allows  the  implementation  of  models  of  even  higher
complexity  like the Hodgkin-Huxley model to estimate the synaptic input,  taking into
account  more  electrophysiological  properties,  albeit  at  the  cost  of  increased
computational overhead. Dynamic clamp experiments[10] allow the injection of current
into a cell given a temporal profile of gE and  gI values, and are one way to produce a

biological setting to test the computational pipeline.

In future work, it would be paramount to evaluate further why estimations of  gEand g I

diverge  from  the  real  values,  and  to  introduce  new  mathematical  techniques  and
systems to  refine  these  estimations.  Additionally,  the  methodology  developed  to
compute the synaptic input for a single neruon could be integrated into network analysis
of a population of simulated neuronal cells; the computational framework facilitates the
estimation a neuron’s synaptic input, and dynamical system models allow the simulation
of the electrical  activity of neurons which in turn lets us know their synaptic output.
These two factors can be used to uncover properties of a network of neurons, but also
provide a new framework for the estimation of the excitatory and inhibitory inputs based
using a population of neurons rather than a single cell model.

Supplementary material

None.
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