
Bachelor’s Degree in Bioinformatics (UPF-UPC-UB)

Final Grade Project

Genetic diversity limits of a marine microbiome

Sergio Gozalo Miranda
Scientific director: Ramiro Logarés Haurie

1 CSIC-ICM

Abstract

Our blue planet is a water-dominated habitat with more than 70 % of its surface covered by the ocean
and seas. Microorganisms are omnipresent in the oceans and seas and their short generation times and
the nearly 4 billion years of evolution of (marine) microorganisms has resulted in an enormous
biodiversity.

In recent years there has been progress in marine bioprospecting and is strongly linked to the
development of “omics”-based methodologies.The surge of high-throughput sequencing technologies
allowed the marine researchers to go one step forward with the study of microbial marine
communities, making possible the taxonomic classification of these communities and the discovery of
new species. From these results we know that microbial marine communities are made up of thousands
of organisms and that those organisms contribute in an unique way because of their genes, so that
genes are fundamental for the functionality of the ecosystem. Following that path, the next step is to
analyse those genes, to do that, it is mandatory to find the limits, maximum number of genes that can
be found in a microbial marine community.

The aim of this project is to find the genetic diversity limits of a marine microbiome, to reach the
objective we will use a total of 50 metagenomes obtained from the same microbiome. The main topic
will be approached using statistical methods and, to accomplish the goal, we will also compare how the
different sample obtention methods, filters and water volume, can affect the diversity and also if the
bioinformatic methods applied to the metagenomes lead to different conclusions.

As results we can expose that there are sampling protocols that can affect the diversity, in specific the
filters, also, the most important results, are that the function diversity limit is reached while the genetic
diversity limit was not reached with the samples of this study.

Supplementary information: Supplementary data are available at GitHub link:
https://github.com/SergioGozalo/Practicas/tree/main/Analysis

https://github.com/SergioGozalo/Practicas
https://github.com/SergioGozalo/Practicas/tree/main/Analysis


1. Introduction

We live on a planet where 70% of the surface is
covered by water. The marine ecosystem includes the
open waters of the ocean and of the seas, the estuaries
and other tidal regions, the seafloor and the
sub-seafloor, the polar sea ice masses, and brines.
Microorganisms are omnipresent in these marine
ecosystems. They exist as single organisms or as
communities, planktonic or attached to substrates, and
exhibiting different types of interactions among
themselves and with their abiotic habitat.

Marine microorganisms have short generation times
and combined with the billions of years of evolution
the result is an enormous biodiversity. The most
interesting diversity is in the metabolic pathways that
allow the marine microorganisms to be the exclusive
drivers of biogeochemical cycling on Earth.

It is known that a considerable number of marine
microorganisms remain uncultured so far, and, hence,
their potential remains unknown. However, the
development of new “omics”-based technologies and
methodologies has set a turning point in marine
bioprospecting.

Thanks to this interest in marine bioprospecting,
several marine microbial diversity studies were
carried out, however, those first studies had
approaches to the concept of bacterial species that
were limited to cultured isolated microorganisms. To
solve that, a new concept for bacterial species was
needed to accommodate two characteristics: most of
the marine bacterial taxa remains uncultured and the
microdiversity within species must be considered.
One of the approaches that addressed that issue was
the metagenome assembled genome (MAG; Hugerth
et al. 2015), based on binning the contigs derived
from the co-assembly of multiple metagenomic
samples, the other approach was the pan-genome.

These advances motivated the research on marine
microbiomes, so circumnavigation initiatives, such as
Tara Oceans (2009-2013) and Malaspina (2010-2011)
were possible. Using accumulation curves, relative
abundances and rarefactions on the samples, the
diversity of the marine microbial communities could
finally be narrowed down within a margin that can
vary, as expected, depending on factors like depth and
temperature.

Most metagenomic surveys of the ocean microbiota
typically include samples from several locations.
Thus, no location is sampled in depth. To address
that, in this study, the samples used are from a
previous experiment (Mitchell et al. 2018) where there
are 50 metagenomes obtained from the same place in
the same day with the objective of uncovering the
genetic diversity limits of a microbiome.

Determining the limits of gene diversity in a coastal
ecosystem can contribute to bioprospecting.There are
previous successes in marine bioprospecting such as
the anti-cancer drug trabectedin obtained from
Candidatus Endoecteinascidia frumentensis, a
symbiotic gammaproteobacterium in the sea squirt
Ecteinascidia turbinate. There are also other examples
of marine microbiome derived molecules with high
utility as industrial products. there are many scientific
articles written that address the biotechnological
potential of marine microorganisms (Debnath et al.
2007; Kim 2015; Santos-Gandelman et al. 2014)

Knowing that there has been only a superficial work
on marine bioprospecting and there have already been
discoveries of great impact, it is only natural to keep
the research on this field.
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2. Objectives

The research goal is to find the genetic diversity limits
of a marine coastal microbiome in the Northwestern
Mediterranean sea, station SOLA in Banyuls sur Mer,
France, test the different sampling protocols, water
volumes and filters sizes and compare the data tables
obtained from the MAGs with the different databases.
This is all to find the limits of microbial diversity and
the best bioinformatic methods to obtain it.

3. Methods and materials

3.1. Sample obtention

The sample obtention was performed on the same day
using a high volume well pump, in the context of the
EMOSE (2017) Inter-Comparison of Marine Plankton
Metagenome Analysis Methods (Mitchell et al. 2018).
A total of 50 metagenomes were used in this study,
the samples from where these metagenomes are
derived followed different protocols. See table 1.

3.1.1. Filtration protocols

The different protocols had as objective the focus on
different size organisms, in some filters prokaryotes
and in others eukaryotes. There were 5 filters: >0.2μm
(sterivex), >0.2μm (membrane 142 mm), 0.22-3μm
(membrane 142 mm), 3-20μm (membrane 142 mm)
and >20μm (membrane 47 mm).

3.1.2. Water volumes

Different water volumes are used to identify if
different amounts of filtered water can lead to
different results. There were 5 different water
volumes: 1L, 10L fractionated as four samples of
2.5L, 100L fractionated as ten samples of 10L, 500L
fractionated as 100L and 1000L fractionated as 100L.

Protoco
l label

Size
fraction

Volume
1L

Volume
10L

Volume
100L

Volume
500L

Volume
1000L

S02 >0.2μm
(sterive
x)

X X

S02
>0.2μm
(142
mm)

X

S023 0.22-3μ
m (142
mm)

X X X X

S320 3-20μm
(142
mm)

X X X X

S20 >20μm
(47
mm)

X X X X

Table 1.. Sample obtention protocols. This table displays the different sample
obtention protocols combination used.

3.2. Functional tables obtention

Metagenomes were individually assembled using
Megahit and genes were predicted in contigs using
Prodigal & metagenemark. Non-redundant genes were
annotated with different databases (e.g. KEGG, Pfam,
COG). Gene and functional abundance tables were
generated after mapping metagenomic reads back to
the predicted genes.Then two normalizations were
used, on the one hand MetaGS in which the
normalization is based on the sequencing effort per
sample, on the other hand there is the SCG (single
copy gene) normalization in which the normalization
is based on the cellular abundance.

The 3 databases used (KEGG, COG and PFAM) and
the two normalizations (MetaGS and SCG) resulted in
a total of six table
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3.3. Metagenome Assembled Genomes

MAGs construction followed an ICM pipeline that
coassembles metagenomes using MegaHit, after
digital normalization,.Then reads are backmapped to
the co-assembly using BWASamtools is used to obtain
the indexed sorted bam files needed for binning that is
performed in steps with MetaBAT, MaxBin2 and
CONCOCT to finally refine it with MetaWRAP, with
CheckM implemented to assess contamination and
completeness for each bin. Next there is a final check
of the bins running CheckM SSU analysis and finally
a taxonomy assignment with GTDBTk.

3.4. Computational analysis

The analysis of the metagenomes was performed
using R (R Core Team 2020) and Rstudio (RStudio
Team 2020). The packages used are:

3.4.1. Vegan

Vegan (Oksanen et al.2020) is a package that provides
tools used for descriptive community ecology. The
package vegan was mainly used in the diversity
analysis and in the comparison of the different
function tables. Within all the tools that this package
has, in this experiment we used:

3.4.1.1. MetaMDS

This function performs Nonmetric Multidimensional
Scaling to try to find a stable solution using random
starting points and also standardizes the scaling in the
result. Used in the table comparison of the different
databases with the dissimilarity parameter set as
“Bray-Curtis” to obtain the best result possible. The
resultant plot can be found in the supplementary
material.

3.4.1.2. Rrarefy

This function generates a random rarefied community
data frame of a given size from the original data. The
rarefaction is performed without replacement. In the
analysis we used this function to remove the effects
that could result from different sizes of the genetic
function tables.

3.4.1.3. Specaccum

This function generates Species Accumulation Curves
to compare the diversity properties of samples. In the
experiment this function has been the central axis
since it has been the last step with the “exact” method
also known as Mao Tau estimate (Colwell et al. 2012).

3.4.1.4. Specslope

This function evaluates the derivative of the species
accumulation curve at a given point and gives the rate
of increase in the diversity. This function was used to
compute the slope of the accumulation curve.

3.4.1.5. Vegdist

This function computes dissimilarity indices. The
resultant dissimilarity matrices were used by the other
functions to produce the results.

3.4.2. Recluster

Recluster (Dapporto et al. 2020) is a package that
provides tools to analyse different aspects of
biodiversity using specific algorithms designed for
that purpose. The package recluster has been used
with the specific intention of comparing the different
genetic function tables. The functions used are:

3.4.2.1. Recluster.cons

This function uses a dissimilarity matrix and
resamples the order of sites of the matrix to create a
series of trees and compute a consensus among all.
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This function has been used to perform the clustering,
to determine the similarity, between the functional
tables and assess the data consistency.

3.4.2.2. Recluster.boot

This function takes as input a tree and a data matrix to
perform bootstrapping. The usage of this function in
the analysis has been to reassure the consistency of
the data

3.5. Supplementary materials

Supplementary materials can be found at:
https://github.com/SergioGozalo/Practicas/blob/main/
Analysis/Supplementary%20materials/Supplementary
%20material/Supplementary_materials.pdf

Code can be found at:
https://github.com/SergioGozalo/Practicas/tree/main/
Analysis

4. Results and discussion

4.1. Functional tables consistency

The consistency of the different functional tables was
tested using bioinformatic statistical methods in R.
The methods used were a stress plot of the
dissimilarity matrix, the dissimilarity matrix sites plot
and a clustering method that is represented by a
bootstrapped tree.

Regarding the stress plots of the different tables we
can observe that all of them showed a linear fit R2
between 0.997 and 1, this means that the stress is very
low 0.003, the best solutions usually have low stress
and this is the case, which is expected since the
dissimilarity will increase with the addition of data.
See supplementary material

Next, using the dissimilarity matrix obtained from the
function vegsit, site plots were generated and we can
see that the results are consistent within the
expectations. The SCG tables show two clusters and
the MetaGS tables follow a similar pattern between

them. A similar plot from the databases is expected,
this would mean that the sites displayed generate
similar clusters. See supplementary material
Finally, the clustering results show similar trees
between the SCG tables and between the MetaGS
tables. See supplementary material

With these results we can see that the functional tables
are very consistent between and within them,
regardless of the normalization or database, so the
usage in this experiment is correct.

4.2. Species diversity

Using the OTU (Operational Taxonomic Unit) as a
definition of species a species diversity plot was
constructed using accumulation curves.

The results showed that with 50 samples, the genetic
diversity limit cannot be said to be reached since the
function specslope had a result of 108, that is not
close enough to 0 to say that the curve is flat. See
Figure 1.

Fig. 1. Species diversity accumulation curve. The number of sites
corresponds to the samples, the y axis corresponds to the number of species.

4.3. Genetic diversity

Due to limited computational resources, the table used
to estimate the genetic diversity was a subsample of
the original, containing only 20% of the genes from
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the original table. In this case, the plot, as a result of
the subsampling, showed a big range of variation, but
it can be seen that near the end, the curve is flattened.
Again, the limit is not reached but the result is close.
See Figure 2.

The number of identified genes was extremely big, in
consequence, it is very difficult to reach a limit.

Fig. 2. Genetic diversity accumulation curve. The number of sites
corresponds to the samples, the y axis corresponds to the number of genes.

4.4. Effects of filters

With the same subsample table used to compute the
genetic diversity, we computed 4 different
accumulation curves, one for the >0.2μm filters
(sterivex and membrane), the next one for the
0.22-3μm filters, another one for the 3-20μm filter and
finally the last one for the >20μm filter. The results
displayed that the best filters to use are the smaller
ones >0.2μm and 0.22-3μm because the slope is
smaller, the function specslope returned smaller
values for those filters 71 and 309, while the bigger
filters had values of 979 and 619, see Figure 3. This
can be due to the fact that the smaller filters recover
all prokaryotes and that the genetic diversity within
prokaryotes is bigger than the diversity within
eukaryotes, big filters.

We can say that the diversity is hugely dependent on
the filter used, being the smaller filters more effective.

Fig. 3. Filters comparison
genetic accumulation curves. The
accumulation curves correspond to
the filters >0.2μm, 0.22-3μm,
3-20μm and >20μm in that order.
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4.5. Effects of water volumes

With the same subsample table used to compute the
genetic diversity, we computed 3 different
accumulation curves, for ten liters, hundred liters and
thousand liters, one liter and five hundred liters were
ignored due to the lack of samples. The results
showed that the volumes of ten and hundred liters
were equally effective to capture the genetic diversity,
see supplementary material.

Since the available samples with a water volume of
thousand liters were less than the other volumes, we
decided to run again the accumulation curves of the
ten and hundred liters volumes, but this time using
only ten samples of those volumes so the comparison
would be more fair.. The results showed that the
volume of thousand diversity was pretty similar to the
other volumes, see supplementary material.

In the case of volumes it can be said that it does not
have a major effect in the analysis of the genetic
diversity limits.

4.6. Functional diversity

It is known that a gene can be involved in different
metabolic pathways and, hence, different functions.
For this experiment we had different tables, from
KEGG, PFAM and COG databases, each one
identifying functions using different criteria.

In this case, with accumulation curves it can be seen
that with a few samples, the functional diversity limit
has been reached. In the case of KEGG, we can see
that the limit is reached with 8 samples, regarding
COG, it can be said that with one sample the limit has
been reached, while with PFAM, we need 3 samples.
See Figure 4.

The fact that the functional diversity is easily reached
is expected since several genes from different taxa can
code for the same function a. In other words, each
function contains a plethora of genes from multiple
genomes.

Fig. 4. Functional diversity accumulation curves. The number of sites
corresponds to the samples, the y axis corresponds to the number of functions.

4.7. Comparison between species diversity,
genetic diversity and function diversity

This final comparison of the different diversities
studied in this experiment, species, genetic and
functional, portrayed a very interesting, yet
predecible, result. The bigger the complexity, the
harder it is to reach the diversity limit, in this case we
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can see that the diversity is easy to reach at the
function level, harder at genetic level and hardest at
species level. This difference can be explained by the
level of complexity of species in respect to genes and
functions. See figure 5.

To put some numbers in, when looking at the function
level, using KEGG, the diversity limit is easily
reached at 8 samples, while when talking about
genetic level we cannot say that the limit has been
reached since the curve is almost flat, but it looks like
it needs a few samples more to reach the limit, this
can be due to the subsampling of the table, finally, at
the species level, the curve is far from being flat.

Fig.5. Comparison between species, genetic and function diversity. First
species diversity, second genetic diversity and third function diversity.

5. Conclusions

In this work we have explored how the methodologies
used to obtain the samples could affect the genetic and
species diversity estimated for the ocean microbiota,
using accumulation curves to obtain the community
diversity and tested how the different levels of
diversity are reached. In this case we studied three
levels, species using OTUs, genetic using genes and
functionality, using the functional tables.

The first step was to analyse if the data that was going
to be used to study the functional diversity was
suitable for this experiment. Regarding this step, there
are some points that need to be mentioned. First, we
performed some NMDS tests in all the tables and all
of them passed, then we concluded that the most
suitable tables are the ones that use the MetaGS
normalization, because of the nature of the experiment
where we want to compare the samples and a
normalization based on the sequencing effort per
sample fits better.

Starting with the methodologies, the water volume
was expected to be important since the volume is
related with the quantity of microbes that are
collected, more volume implies more microbes, but
that was not the case, the results showed that the
amount of biomass collected had no effect on
diversity. The results also showed that the filters had a
big effect in the diversity, this was expected since the
filters select the microbes, the smaller filters allow a
larger amount of cells than larger filters .

The most important method in this study was the
accumulation curve, all the computations were
performed aimed to the final accumulation curves. It
has been proved before that accumulation curves are
very useful when studying large-scale biological data
(Deng C, et al. 2015). As a consequence, this study is
centered on them, the final results meet the
expectations we had in this method.

The final results of the genetic diversity are expected,
we have not reached the limit but we are very close,
also, this may have been the result of subsampling the
original table, to solve this doubt another analysis
needs to be done using a bigger amount of memory
from a cluster. The results of the functional analysis
were also expected, the limit is easily reached because
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of the redundancy of genes that species that share a
community have.

As a final conclusion we have to say that this study
has thrown some light on which methods are the best
to obtain the samples and that the genetic diversity
limit may be reached with a few more samples than
50. It is worth mentioning that there are very few
environmental studies were 50 or more metagenomes
have been sequenced from the same day and place,
and that now, thanks to the new technologies, a
similar study or even with more metagenomes will
cost less, so it is not a dream to say that similar
ambiental studies could be done in a variety of places.
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