

Cloud healthcare assistant with

an Alexa human interface
 Baiges Jábega, Albert

Curs 2020-2021

Trebal l de Fi de Grau
GRAU EN ENGINYERIA EN

xxxxxxxxxxxx

Director: FRANCIS CASADO

GRAU EN ENGINYERIA EN XARXES DE
TELECOMUNICACIÓ

Cloud healthcare assistant with an

Alexa human interface

TREBALL FI DE GRAU DE

Albert Baiges Jábega

Director: Francis Casado

Grau en Enginyeria en Xarxes de
Telecomunicació

Curs 2020-2021

To my grandfather who deceased last year and
suffered from Diabetes for a long time

Acknowledgements

I am grateful for the support that I received from my tutor, Francis Casado, during the
elaboration of this work.

Furthermore, I would also like to thank the support received from a member of the
Col·legi de Farmacèutics de Barcelona, who wishes to stay anonymous, that gave us
recommendations and guidelines for our healthcare service.

Finally, I want to thank the people from the beta testers group that tried out our application
and helped us improving our service through their feedback.

Abstract

Healthcare applications are booming, with a potential market of billions of USD, for that
reason we have designed and developed a web service, Helky, that allows active
interaction between patients, medics and medical centers.

Helky controls the three pillars of health, nutrition, medication and physical activity, by
patients under the supervision of their caregivers. It allows daily recording of the
evolution of the pathologies by means of its reference indexes, such as sugar levels and
blood pressure.

To interact with the API of the service we have created two interfaces, a web based and
a voice based via Alexa, which reinforce each other without being mutually exclusive.
We have created our own library, JDyn, which eases communication with DynamoDB
databases, a tool that can be reused by other developers.

Highlight that our API Rest has been designed to be secure, to operate standalone and to
be accessed from other applications.

Resum

Les aplicacions per la cura de la salut estan en auge, amb un mercat potencial de milers
de milions de USD, per aquest motiu hem dissenyat i desenvolupat un servei web, Helky,
que permet una interacció activa entre pacients, metges i centres mèdics.

Helky controla el tres fonaments de la salut, alimentació, medicació i activitat física, per
part dels pacients amb la supervisió dels seus metges. Permet registrar diàriament
l’evolució de les patologies per mitjà dels seus índexs de referència, com per exemple el
nivell de sucre i la pressió arterial.

Per interactuar amb l’API del servei hem creat dues interfícies, tan web com de veu
mitjançant Alexa, que es reforcen mútuament sense ser excloents. Hem creat una llibreria
pròpia, JDyn, que facilita la comunicació amb bases de dades DynamoDB, una eina que
podrà ser reutilitzada per altres desenvolupadors.

Cal destacar que la nostra API Rest ha estat dissenyada de forma segura, per funcionar
per si mateixa i per poder ser accedida des d’altres aplicacions.

Resumen

Las aplicaciones para el cuidado de la salud están en auge, con un mercado potencial de
miles de millones de USD, por este motivo hemos diseñado y desarrollado un servicio
web, Helky, que permite la interacción activa entre pacientes, médicos y centros médicos.

Helky controla los tres pilares de la salud, alimentación, medicación y actividad física,
por parte de los pacientes con la supervisión de sus médicos. Permite registrar diariamente
la evolución de las patologías mediante sus índices de referencia, como por ejemplo el
nivel de azúcar y la presión arterial.

Para interactuar con la API del servicio hemos creado dos interfaces, tanto web como de
voz mediante Alexa, que se refuerzan mutuamente sin ser excluyentes. Hemos creado una
librería propia, JDyn, que facilita la comunicación con bases de datos DynamoDB, una
herramienta que podrá ser reutilizada por otros desarrolladores.

Destacar que nuestra API Rest ha sido diseñada de forma segura, para funcionar por si
misma y para poder ser accedida desde otras aplicaciones.

11

Table of contents

1. INTRODUCTION .. 17
1.1 MOTIVATION ... 17
1.2 GOALS .. 17

2. HELKY .. 19
2.1 STATE OF THE ART AND MARKET OPPORTUNITY .. 19
2.2 WHAT IS HELKY? .. 22
2.3 HELKY PRIVACY AND SECURITY POLICY ... 23

3. SUPPORTED DISORDERS AT LAUNCH TIME ... 25
3.1 DIABETES .. 25
3.2 BLOOD PRESSURE .. 25

4. CHOOSING TECHNOLOGIES ... 27
4.1 TECHNOLOGY BACKGROUND .. 27

a) Database technologies ... 27
b) Backend technologies ... 28
c) Frontend technologies .. 28
d) Voice assistant technologies ... 29

4.2 TECHNOLOGICAL OPTIONS .. 29
a) Database options .. 30
b) Backend options ... 30
c) Frontend options .. 31
d) Voice assistant options ... 31

4.3 SELECTING TECHNOLOGIES TO USE ... 33
a) Database Technology ... 33
b) Backend Technology .. 33
c) Frontend Technology .. 33
d) Voice Assistance Technology ... 34

5. KEY CONCEPTS ... 35
5.1 USER CENTERED DESIGN PROCESS ... 35
5.2 RELATIONAL DATA ON NON-RELATIONAL DATABASES .. 35
5.3 MODEL VIEW CONTROLLER .. 36

6. SERVICE ARCHITECTURE ... 37
6.1 HELKY ARCHITECTURE ... 37
6.2 CIMA ... 38

7. HELKY DATABASE DESIGN ... 41
7.1 USERS TABLE .. 41
7.2 PLANS TABLE .. 46
7.3 REGISTERS TABLE ... 47
7.4 PERSISTENCES TABLE .. 47

8. HELKY API DESIGN .. 49
8.1 ARCHITECTURE ... 49

a) Architecture type .. 49

12

b) Tools ... 50
8.2 FORMAT .. 50

a) Available formats ... 50
b) Tools ... 50

8.3 AUTHENTICATION AND AUTHORIZATION .. 51
a) Management of users ... 51
b) Tools ... 51

8.4 DATABASE ACCESS ... 51
a) Database communication ... 51
b) Tools ... 51

8.5 RESOURCES ACCESS .. 52
8.6 DESIGN PATTERN .. 53

9. HELKY WEB APPLICATION DESIGN .. 55
9.1 VISUAL DESIGN ... 55
9.2 FUNCTIONAL DESIGN ... 58
9.3 DESIGN PATTERN .. 59

10. HELKY SKILL DESIGN .. 61
10.1 VOICE USER INTERFACE ADVANTAGES .. 61
10.2 VOICE USER INTERFACE DISADVANTAGES ... 61
10.3 SKILL CAPABILITIES .. 62
10.4 SKILL VUI .. 63

a) Wake word .. 63
b) Launch word ... 64
c) Invocation name ... 64
d) Intents ... 64
e) Utterances ... 65
f) Slots ... 68
g) Prompts .. 70
h) Speech Synthesis Markup Language .. 71
i) Reprompts ... 71

10.5 HELKY ACCOUNT SYNCHRONIZATION ... 72

11. SERVICE DEVELOPMENT .. 73
11.1 DATABASE DEVELOPMENT ... 73

a) Access Amazon AWS Console .. 73
b) Create the required tables .. 73
c) Identity and Access Management ... 74

11.2 JDYN DEVELOPMENT .. 75
11.3 BACKEND SERVER DEVELOPMENT ... 76

a) Create the Express application .. 77
b) Create the API router ... 78
c) Create the resource router ... 79
d) Creating the controller ... 80
e) Identifiers .. 82
f) Password storage .. 83

11.4 WEB APPLICATION DEVELOPMENT .. 83
a) Creating an Angular application with routing ... 84
b) Creating the Angular modules ... 84
c) Managing application routes ... 84

13

d) Creating guards .. 86
e) Providing services .. 86
f) Recommendations ... 87

11.5 ALEXA SKILL DEVELOPMENT .. 88
a) Access the Alexa Developer Console ... 88
b) Create an Alexa skill .. 88
c) Defining the invocation name ... 89
d) Intents ... 89
e) Utterances ... 90
f) Slot types ... 91
g) Slot requirement and validation ... 91
h) Creating the handler of an intent ... 92
i) Load and save session attributes ... 93
j) Load and save persistent attributes ... 93
k) Helky account synchronization ... 94

12. TESTING THE SERVICE AND FEEDBACK ... 95
12.1 HEURISTIC ANALYSIS ... 95
12.2 USER ANALYSIS AND ACCEPTATION .. 95
12.3 REQUESTING FEEDBACK .. 96

13. CONCLUSIONS .. 97
13.1 FUTURE WORK .. 97
13.2 MONETIZATION ... 97
13.3 ACHIEVEMENTS .. 98

BIBLIOGRAPHY ... 99
ANNEXES ... 103

ANNEX I: REPOSITORIES AND DEMO .. 103
ANNEX II: HELKY REST API DOCUMENTATION ... 105
ANNEX III: API REQUEST FLOWCHARTS .. 113
ANNEX IV: SKETCHES ... 114
ANNEX V: HEURISTIC TEST ... 121
ANNEX VI: USER EXPERIENCE FORM ... 123
ANNEX VII: FEEDBACK FORM ... 125

14

List of figures

Figure 1 - Helky service architecture ... 38
Figure 2 - Entire Helky service architecture ... 39
Figure 3 - Helky database ER Diagram .. 41
Figure 4 - Types of user UML Diagram ... 42
Figure 5 - Notifications objects UML Diagram ... 43
Figure 6 - Request objects UML Diagram ... 43
Figure 7 - Disorder objects UML Diagram .. 44
Figure 8 - MedicEmbed objects UML Diagram ... 44
Figure 9 - CenterEmbed objects UML Diagram .. 45
Figure 10 - PatientEmbed objects UML Diagram .. 45
Figure 11 - Plan objects UML Diagram ... 46
Figure 12 - Weekdays objects UML Diagram .. 46
Figure 13 - DayPlan objects UML Diagram .. 46
Figure 14 - Register objects UML Diagram ... 47
Figure 15 - Flowchart notifications endpoint ... 52
Figure 16 - Backend MVC: Endpoint controller example ... 53
Figure 17 - Backend MVC: Functionality controller and request to the model example
 .. 53
Figure 18 - Sketch 1, patient and medic landing pages .. 55
Figure 19 - Sketch 2, patient and medic landing pages .. 56
Figure 20 - Sketch 3, patient and medic landing pages .. 56
Figure 21 - Sketch 3, calendar-based views ... 57
Figure 22 - Sketch 4, final design. Example on calendar-based views. 58
Figure 23 - Frontend MVC: Controller example .. 59
Figure 24 - Frontend MVC: View example .. 60
Figure 25 - Frontend MVC: Controller requesting data to the model example 60
Figure 26 - Alexa VUI required fields .. 70
Figure 27 - Alexa VUI, values validation ... 71
Figure 28 - Amazon Web Services console .. 73
Figure 29 - Creation of an Amazon DynamoDB table ... 73
Figure 30 - DynamoDB tables for Helky service ... 74
Figure 31 - Amazon IAM user creation .. 75
Figure 32 - Granting DynamoDB permission to an IAM user 75
Figure 33 - Creation of an Express application .. 78
Figure 34 - Creation of the Helky API Express router ... 79
Figure 35 - Creation of a Helky API endpoint ... 80
Figure 36 - Creation of a controller function to access the data 81
Figure 37 - Storing a tracking entry in Helky database automatically 81
Figure 38 - Populating Registers table and storing a tracking entry in Helky database
manually ... 82
Figure 39 - User identifiers creation script ... 83
Figure 40 - Encryption of password script ... 83
Figure 41 - Helky web application main router and lazy loading 85
Figure 42 - Component routes of the Patient Angular module 85
Figure 43 - Angular guards protecting user specific routes .. 86
Figure 44 - Angular service to communicate with the patient endpoints of the Helky
API .. 87
Figure 45 - Injection of patient service and user service and their usage 87

15

Figure 46 - Alexa developer console .. 88
Figure 47 - Alexa skill creation .. 88
Figure 48 - Helky skill invocation name .. 89
Figure 49 - Helky skill intents .. 90
Figure 50 - Utterances to store a diabetes register related to meals 90
Figure 51 - Implementing requirement of slots in DayMealsIntent 91
Figure 52 - Implementing slot validation in DayMealsIntent .. 92
Figure 53 - Definition of the intent handler of DayMealsIntent 92
Figure 54 - Retrieving session attributes in the Alexa backend code 93
Figure 55 - Saving session attributes in the Alexa backend code 93
Figure 56 - Create the persistence adapter and connect it to the Persistences table 93
Figure 57 - Attach the persistence adapter to the Alexa skill ... 94

16

List of tables

Table 1 - Embed All, Embed and Link advantages and disadvantages 36
Table 2 - Helky skill capabilities .. 63
Table 3 - Helky skill intents and purpose ... 65
Table 4 - Helky skill utterances per intent .. 68
Table 5 - Helky skill custom slot types .. 69
Table 6 - Server-side code structure ... 76

17

1. INTRODUCTION

1.1 Motivation

Technology has become a very important tool on the healthcare market, and many
applications and services are appearing to help people have healthier lifestyles and
prevent the occurrence of diseases.

Furthermore, it has been proven that the key for a healthy lifestyle and the prevention of
diseases lies on how we face our daily lives and what routines do we follow on daily
basis. That is the reason why many healthcare applications aim to help its users on their
different tasks through the day, but we did not find any application that at the same time
helped its users with their meal plans, physical activities and the medicines they must be
taking.

Because if any of those things are done incorrectly, or some medicine is prescribed
incorrectly, it can lead to a negative impact on the health of the patient. For this reason,
many medical institutions have started to develop their own solutions supported by their
professionals, although they do not provide all the features we mentioned earlier.

This situation can lead to a point where patients end up with one application from each
institution, where each of them could be displaying different and partial results.
Additionally, institutions must invest many resources if they want to provide their own
solution and for such thing many of them are not willing to provide it.

We have the intention of developing a global healthcare service that patients and the
different institutions can use. This healthcare service should be able to operate standalone,
for this reason it should offer a web user interface so anyone can make use of it and take
advantage of the last voice recognition technologies to offer a more natural interaction.
Furthermore, our service should be able to be incorporated to other existent solutions and
be part of a collaborative environment between different healthcare applications and
services.

1.2 Goals

The main goal of this project is to design, develop and offer a unique healthcare service
that can help patients on their meal plans, medicine plans and physical activity, as well
as keeping track of how their diseases and disorders progress.

This service must overcome the risks that other applications have, and to do so it will
delegate the tasks of updating the plans and prescribing medicines to health professionals,
so an active relationship between the patients and their caregivers is stablished.

Our intention is providing a standalone service that health institutions can rely on instead
of developing their own solutions. To achieve this, our service will offer two user
interfaces, a web interface and a voice interface through Alexa, in order to perform all the
tasks that the service is capable of. Additionally, the web interface must be adaptable to
suit the tasks that the type of user that logged in can carry out.

18

Furthermore, our service should be incorporable to other healthcare existing solutions so
they can take advantage of it and to promote a collaborative environment.

Also, we want our service to be useful and to offer a good interaction model so more
patients, health professionals and institutions want to use it, as well as offering good
security mechanisms to protect all the data and its privacy.

Finally, we want our service to be scalable so its functionality can be extended in a future
or for it to make use of other healthcare services.

19

2. HELKY

2.1 State of the art and market opportunity

During last decade there has been a growth in the number of applications and services
focused on the health and healthcare market. This growth is in part explained by the
awareness of the population in following a healthier lifestyle and by the advancements in
technology that ease to follow up healthy habits and even allow the prediction of
anomalies, which could save lives.

Certainly, this market is projected to reach USD 1,729 million by 2024 [1] that will
continue increasing to USD 2,830 million by 2027 [2]. Specially, with the use of
conversational virtual assistant tools that will provide more opportunities and offer better
solutions.

The American company IMS Health, which provided information and services to the
healthcare industry before merging with the company Quintiles in 2017 and adopting the
name of IQVIA [3], wrote a report in 2015 in which it could be appreciated that only 36%
of 165,000 analyzed healthcare applications were focused on disease and treatment
management [4].

However, apart from the low rate of disease and treatment focused applications, we must
add the false diagnostics risks they may entail or the risk that would suppose the
prescription of a wrong medicine. Consequently, it is because of those risks why more
health centered institutions are developing applications that offer this service to their
patients, beneficiating from the professionals they have.

These healthcare applications are also very convenient for doctors, and even pharmacists,
because those solutions can ease and speed up their work. Specially because all the data
of each patient could be centered in one place but also thanks to the real-time data
collection that could lead to instantaneous modifications in the treatments. Therefore,
these kinds of platforms allow professionals to personalize the treatment and manage the
medications according to reliable and real-time results, or even predict ahead of time the
appearance of an anomaly [5].

Patients will also be beneficiating themselves, because they will be able to get more
updated plans on daily basis saving them from visiting their professional just to have
those updated. Moreover, it could also increase their feeling of safety as their state could
be checked more frequently by experts.

Another important reason of this methodology update is the annual savings it will bring
for healthcare institutions, as IMS Health pointed out in the previous mentioned report.
Their results also emphasize the large amounts of money that could be saved if the disease
management applications extended to support chronic diseases such as diabetes, asthma,
cardiac risks, and pulmonary problems.

Then, since we want to enter in this market to provide our solution, we must first identify
our competence and study them.

20

First, we will start studying the solutions that some Spanish institutions, more precisely
Catalan institutions, already provide and we have found two very complete healthcare
applications: lamevasalut, made by the Generalitat de Catalunya, and miSalud, made by
Quirónsalud.

Starting by lamevasalut [6], it is a very complete service that offers its users the possibility
of consulting their diagnoses and results, consulting the medication they must be taking,
get in touch with the associated medics, even request for an appointment with a specialist
and consult all their current appointments. Additionally, what makes this application great
is that it is integrated with the Sistema de Salut de Catalunya and therefore it has access
to all the data of the user. Moreover, to use it will be only necessary to be in the Sistema
de Salut de Catalunya, and then we will access the application via the Personal Identifier
Number (PIN). Finally, this service can be accessed via its web application or by its
Android and iOS applications.

Regarding miSalud [7], it is a phone application for patients of Quirónsalud through
which the users can receive and view their reports and results including diagnosis to
radiographies. Moreover, they provide users all their historical data so they can appreciate
their evolution and offer them the chance to also enter new data from the application.
Additionally, there are also campaigns to which users can subscribe to receive
notifications of what they should be doing to achieve the purpose of the campaign.
Finally, users will be also receiving recommendations to improve their health.

Having analyzed a couple of solutions offered by the own institutions that can have total
access to the data of their patients, because they are also behind the medical centers, we
will now study other solutions that do not have such dominance.

We will first start studying the application mySugr [8], that although it is only focused on
helping its users manage their diabetes it does it in such an effective way that it was
ranked as the best tool in the field. Its main functionality is the storage of the diabetes
entries and the high customization of those, even along pictures of what the user has eaten,
by which the application can then create an evolution graph for the user. Also, based on
the registers, the application can calculate the right amount of insulin that the patient must
take and perform a glycosylated hemoglobin test (HbA1c). Finally, to ease to process of
storing the registers, mySugr launched a blood glucose meter that automatically stores the
lectures on the application [9].

In the market of healthcare assistants that work with conversational virtual assistant tools,
we find Giant Eagle pharmacy Alexa skill by Omnicell which then partnered with
Amazon to increase the healthcare capabilities of Alexa through the capabilities of the
skill. Via this skill, users will be able to get reminders for when it is time to take the
medicines that they picked at Giant Eagle and even ask for refills, when they run out of
them [10].

Among all the mentioned solutions we can also find MyPHRMachines that is a Personal
Health Records (PHR) system developed by Pieter Van Gorp and Marco Comuzzi. As
the authors describe on “Lifelong Personal Health Data and Application Software via
Virtual Machines in the Cloud”, their approach is based on a radically new architectural
solution that offers the patients access to their uploaded data through remote virtual
machines that contain all the required software to visualize and analyze the data, such as

21

radiographies. Moreover, patients will be able to share their virtual machine sessions with
their caregivers who will be able of accessing the historical data of the patient via a web
browser. Nevertheless, this solution is still on prototypal phases and the authors mention
that they must investigate its acceptance and possible adoption by different types of users.
[11]

Furthermore, the advantage that these systems offer can be appreciated on the paper “e-
health for improving community healthcare: Encouraging clinical experience of simple
e-prescription system and m-health system development for mother and childcare” which
describes the implementation of a web-based e-health system in Indonesia. As the authors
state on the paper, the intention of the service was to provide support for the patient and
medicine data recording as well as minimizing the possible medication errors by
improving the prescribing process. After implementing the system, the authors performed
different evaluation activities and appreciated that 100% of the users answered that it
helped them in solving their tasks. [12]

It is important to mention, as Julio Alonso Arévalo from the faculty of translation and
documentation of the Universidad de Salamanca pointed out on “Aplicaciones móviles
en medicina y salud”, that most healthcare mobile applications are from the United Sates
and are only distributed in English. Although the development of these kind of
applications in Europe and in other languages has already started and the number of
applications is expected to grow in the next years. [13]

Due to this, in 2014 the European Commission published the Green Paper on mobile
health with the intention of consulting the stakeholders about eleven identified barriers
to implement the mobile healthcare and establish the path to its development. The paper
also mentions their potential and pretends to be a reference for good practices and
security. It also mentions that in the European Union there are no binding rules that
delimitate between lifestyle, wellbeing apps and medical devices. [14]

Furthermore, and as Julio Alonso Arévalo mentions in his paper, the Agencia de Calidad
Sanitaria de Andalucía gives the approval distinction AppSaludable that recognizes the
applications, both Spanish and international, that satisfy four blocks of quality and
security recommendations to ensure that the application can be used by people in a
reliable way. [15]

The first block of recommendations is about the design of the application, and it mentions
that the application must specify in a clear way its functionality and its intentions, and to
which collective it is intended. Moreover, it specifies that the application must be
accessible in an effective, efficient, and satisfactory way by the largest number of people
without any special third-party adaptations. Finally, the application should be tested by
potential users before its release.

The second block specifies the recommendations about the quality and security of the
information to enforce its credibility, inform about who is responsible of them, the
sources of information, the financial sources, and the existence of possible interest
conflicts.

22

The third block establishes the recommendations to the services of the application such
as usage tutorials, ways for the users to get in contact to solve any possible doubts and an
efficient use of the bandwidth.

The fourth block, and last, contains the recommendations to grant good data protection
and the security mechanisms that the application implements to grant the privacy of the
information.

In conclusion, we found out that healthcare applications are the future of disease and
treatment management, the reason why many companies are investing in them. But that
the applications which take full advantage of health professionals, although providing a
powerful service, are only designed for a segment of the population which leaves out
some patients and professionals. Then, regarding applications that are not developed by
institutions we find out that, although providing a good set of features, lack the presence
of a professional who considers that information and based on it helps the patient.

For those reasons, we found a market opportunity of creating a global healthcare service
that gives the chance to patients to keep track of their diseases, control their medicine
plans and routines. A service in which they could also share this information with their
health professionals who, based on it, could modify the routines and medication to
improve their health.

2.2 What is Helky?

Helky is our proposed global healthcare solution designed with an especial focus on
chronic diseases and treatment management via an active relationship between patients
and professionals, avoiding the risks of false diagnosis or wrong prescriptions that other
solutions entail. Furthermore, it has been designed considering the recommendations and
guidelines obtained after consulting a member of the Col·legi de Farmacèutics de
Barcelona, but who wishes to stay anonymous.

With our solution, many health intuitions will also be able to save money by taking
advantage of a tested and functional service, that will avoid them investing resources in
the development of their own solutions. Additionally, and especially for those intuitions
that already have their solution on the market, Helky will offer an API to which they will
be able to connect and integrate within their solutions.

Helky API allows other existent solutions to use the service, because in certain aspects
we will not be able to compete with some features that some institutions offer in their
solutions. For those cases Helky wants to be a partner, instead of a competitor, that helps
them offer more functionalities.

But for the time being, our service will only be scoped to the Spanish market and that is
the reason why all its interfaces are in Spanish. Nevertheless, in the future the service will
eventually become available in more languages and countries.

Currently our service will only have support for patients, medics and medical institutions,
but it is designed to allow the incorporation of professionals from other fields in a near
future, such as dietitians or pharmacists.

23

Helky service provides its patient users the chance of storing their meal plans for the
different days of the week, their medicine plans in daily basis and the management of the
physical activities that must be done during the different days of the week. Additionally,
it allows these users to create what we defined as registers, which allow them to store and
track the state of their disorders, to help on their diseases management and especially for
chronic ones. Nevertheless, the current version of the service only allows to track the
Diabetes, via the sugar levels in blood, and blood pressure disorders, such as
Hypertension, via the pressure levels.

Our solution allows the medical professionals to consult and modify the different meal
plans, medicine plans and physical activity plans of their patients. To perform such thing,
patient and medic must have stablished a relation accepted by both parts. Additionally,
medics will be able to consult at real-time the registers that their patients are taking and
the different entries.

To offer a standalone solution, Helky provides a web-based application and a voice-based
application, using an Alexa skill. We offer two user interfaces with the intention that they
complement each other, to overcome their individual disadvantages. Each interface
adapts better to certain uses and tasks, where our web application adapts its interface and
contents depending on the type of user that logged in, patient, medic or center.

Regarding the web application, it has been designed keeping in mind that people that
suffer from diabetes will use it and for that reason it avoids using the yellow color and as
much as possible the use of blue. Then, it is designed in a user-friendly manner and
provides a preview, in case of being available, of the medicine boxes so people can
visually identify the medicine. Additionally, from this web application the user will be
able to interact with all the functionalities of the service, so not having an Alexa enabled
device does not become a frontier.

Then, the voice interface using an Alexa skill will provide users faster access to the most
routinary tasks, such as consulting the different plans or adding a lecture to a register via
the sentences they use on their daily lives. But other functionalities, such as consulting
the lectures for the different days, or months, will not be supported due to the bad user
experience they entail. Additionally, modifications of the plans will not be allowed via
voice due to the high risks that could come from a misunderstanding of the voice
recognition. Lastly, this voice interface will be limited to be used only by patients of the
application.

Note that a tutorial of the different things that each user is able to do, through the web
application and the Alexa skill, can be found on the web application.

2.3 Helky privacy and security policy

Helky has been designed and built considering the privacy of its users and with all the
security mechanisms necessary, involving encryption in authentication and authorization
mechanisms, to guarantee that nobody can access any data that they are not authorized to
view or modify. Additionally, all the service follows an ethical use of the data, more
specially when dealing with such sensitive information.

24

Due to this privacy concerns, the web application provides a section that explains why
each data is required and what will it be used for, as well as a release notes thread with
the intention of being transparent with the users so they know what is being done and
added behind.

Furthermore, to grant security on the application the register of medic accounts can only
be done by Helky administrators or by a center account. Additionally, center accounts
can only be created by an administrator. Such things help us guarantee that nobody fakes
a medic identity.

Finally, although the healthcare service is more beneficial for the patients if they have
their professionals in the platform and with a relation established, so they can modify the
different plans and consult the registers, a patient account can totally work by itself. So,
there are no limitations for the case that user wants to be stricter with the privacy and use
of their data and be the only one who is authorized to access it.

25

3. SUPPORTED DISORDERS AT LAUNCH TIME

As it has been said in the previous chapter, Helky offers the patient users the possibility
of creating a tracking, known as registers inside the Helky service, to annotate lectures of
their disorders.

But due to budget limitations such things will not be able to be carried for many disorders
at launch time, although the application has been designed in a manner that when the
necessary budget is available to offer this service for more pathologies, it will be only
necessary to introduce the pathology name in a section of the API code to activate all this
functionality for it.

Therefore, because of this budget limitations we have carried out a brief study to select a
couple of pathologies that will be allowed to be tracked from day one. We will select the
pathologies based on the importance that this tracking has on the treatment, how extended
it is, and the amount of impact and risk that it entails on the life of the patient. In addition,
it would be ideal if it was a chronical disorder, because it is for those where the utility of
the healthcare assistant really shines.

Hereinafter we will detail which pathologies have been selected, and the reasons why
they have been selected, to be supported from day one.

3.1 Diabetes

People that suffer from Diabetes must follow a very strict agenda to keep their glucose
levels in blood at normal ranges. This agenda normally includes taking medication
regularly at certain moments of the day and measuring the glucose levels regularly, and
specially before and after meals or physical activities [16].

Apart from that, people affected by it must also follow a very healthy lifestyle by
controlling their exercise routine and taking care of their alimentation, where both of
those must follow very strict guidelines so the treatment goes as good as possible [17].

In addition to that, it is very important for them that its diet minimizes the added sugars
and maximizes the meals rich in fibers and correctly distributes the carbohydrates, reason
why it is necessary to follow what the experts compute. Regarding physical activities,
these must be personalized because it may be inconvenient to realize certain activities. In
case some of these points are carried out badly, the illness can be destabilized.

In conclusion, all these mentioned things make diabetes a disorder that suits perfectly
what the application is capable of at launch time. In addition to the fact that this disorder
is so extended that it has been catalogued as a pandemic by the World Health
Organization (WHO) and it is good that we support it.

3.2 Blood pressure

Blood pressure disorders, and especially High Blood Pressure, are disorders that are very
extended in addition to causing many casualties. Moreover, some of the people that do
not already suffer from it, may develop it with age because this disorder affects more
people of advanced ages [18].

26

Unfortunately, this disorder cannot be healed but its symptoms can be controlled
following a strict routine.

People that suffer from it must decrease the quantity of salt they consume and limit the
quantities of certain foods. Due to these facts, it is very convenient that they follow a
daily meal routine recommended by an expert or their medic [19].

Furthermore, this group of people must follow a healthy lifestyle that includes realizing
physical activity personalized to the age of the person. In addition, it is critical that they
avoid gaining weight because it could affect the blood pressure and hinder the treatment.

Finally, these people must take their medication daily to stabilize the pathology, as
specified by their medic.

In conclusion, given these facts we can conclude that patients of a blood pressure disorder
would be one of the best targets to start with. Since they must follow a strict routine in
the three aspects, diet, medication and physical activity. Also, they could benefit
themselves, and their medics, if they register their blood pressure daily. Moreover, and
as it has been already said, this disorder is very extensive so we will be able to help a big
amount of people by launching the full service to them from day one.

27

4. CHOOSING TECHNOLOGIES

This chapter will explore and analyze all the technologies that could be used to build each
part of the Helky infrastructure, from the database, through the backend, to the multiple
user interfaces on the frontends.

Then, a comparation between them will be performed to find which technologies and
programming languages better suit our necessities, are more useful and more convenient
to develop the service.

4.1 Technology background

a) Database technologies

The database is where we will be storing the information the service uses, but at time of
choosing a database the first question that must be answered is whether we use a relational
database (SQL), or a non-relational database (NoSQL), although in some cases the use of
both would be convenient but it is not our case.

For this question there is not a good or bad answer, because each of them has its
advantages, drawbacks and are better in certain scenarios. So first it will be necessary to
understand what each of these different approaches imply.

A SQL database is one in which the data is stored in tables, where the tables hold in its
rows the stored data, commonly called entries, while the columns represent the different
fields of data that those entries must provide, the schema, and these columns are
commonly called attributes.

Then, one of the attributes or a combination of attributes must be selected as a primary
key, indicating that it is an attribute or combination of attributes, whose value must be
always provided and that uniquely identifies each of the entries on the table, meaning that
two entries cannot have the same value for the primary key.

It is also very common to find multiple entries that have the same values for certain fields,
because these fields are predefined by certain facts, so in a SQL database the common
behavior would be to move these values to another table as entries, give them a primary
key and then stablish a relation between the different entries of the tables, normally using
a foreign key.

This concept is called as normalizing the database, and we will usually find that SQL
databases are normalized using the third normal form which allows to eliminate duplicate
data on the database. In addition to that, this normalization also grants consistency across
the database, because updating a value in a table will provoke that all the other entries
that are related to this entry get the updated result when performing a join operation at
the time of reading from the database.

On the other hand, on a NoSQL database the data is not stored in tables but instead it is
stored in collections, or key-value pairs. These collections allow to store the data in them
in the form of documents, where these documents are a sequence of key-value pairs like
JSON files. On NoSQL the different documents that belong to a same collection are not

28

required to follow a schema, as it happened in SQL, and therefore we can find more
heterogeneity between the different data which implies some advantages and
disadvantages. Moreover, on NoSQL databases we do not find such concept as
normalization, because these databases are more performed oriented implying that if we
require to repeat data to improve reading speeds, we can do it.

Another main difference of NoSQL in respect of SQL, is that it does not have relations
provoking that the responsibility of joining the data from different documents lies on the
developer after querying the different collections manually.

b) Backend technologies

For the backend technologies we will mostly find programming languages that help us
write the server-side operations to manage the data, its access along with authentication
and authorization of users.

At the first era of web development we would normally find that, in order to build a
dynamic web, we would build the views of the different pages on the backend, taking into
account the data obtained from the database, to later send those views to the frontend that
would present them to the user, and therefore the frontend played a viewer role [20].

Then, with the appearance of the HTML5 specification, the frontend increased its power
with the incorporation of new APIs.

Taking advantage of these new technologies of the frontend, the backend changed its
roles and instead of sending the views that would be displayed on the clients, it would
now just offer the data through an API that the frontend could connect to, request the data
via AJAX [21], consume it and build the page on client side according to the obtained
data.

This had a great impact since now by offering an API any frontend could work with any
backend.

c) Frontend technologies

At the beginning of the web, and web development, there was not such concept of a
frontend, since the few available browsers almost limited itself as being a viewer display
in which the views that were responded from the servers where displayed.

Next, the 5th major revision of HTML was introduced along with many new features, such
as new elements, new APIs and CSS3 styling. This revision, referred as HTML5, was
such an improvement that it redefined many roles of web developers and introduced the
concept of the frontend.

Nowadays, frontend technologies still include working with HTML5, for the web page
structuring, along with CSS3 for the styling of the web page, and JavaScript for the logic
and interactivity.

But years after the launching of HTML5, some frontend frameworks started to show up
with the idea of building better web applications faster. In these frameworks developers

29

can be more focused on what the application is going to do, while leaving the “how the
application is going to do it” to the framework.

Although being frameworks, developers still need to have knowledge about the tree main
technologies of the web, especially JavaScript, since all these frameworks are built on top
of it, normally on top of its ES6 standard [22].

d) Voice assistant technologies

Voice assistant technologies have been popularized and incorporated to the everyday life
of people during the last few years, but the truth is that they have been around since 1961,
even many years before if some toys are considered.

In 1961 IBM introduced Shoebox that was a device that was able to understand via a
microphone up to 16 words which included all the one-digit numbers (0-9) and six words
that were the commands “plus”, “minus”, “total”, “subtotal”, “false” and “off” [23]. Then,
this device would compute the operation that the user spoke and print it along the result
[24].

Then, this voice assistant technologies keep improving its capabilities through the years
by being able to understand more words. In 2008, Google released a voice-enabled search
option to their Apple iPhones application which allowed to enter queries on the Google
search engine.

Few years after, in 2011, Apple introduced Siri as an intelligent assistant that enabled to
carry out certain tasks and actions just by asking for them. Its capabilities included,
consulting the user calendar, consulting the weather or asking for directions, among many
other possibilities. This launch had a great impact because Siri would later come as built-
in feature on the iPhones so it would reach millions of users.

Next, in 2014, Amazon also stepped into the world of voice assistants with the
introduction of Alexa who made its place because Amazon was not a phone or computer
manufacturer, and therefore offered its assistant to smart speakers and other smart thing
devices of the home.

Finally, one of the latest voice assistants launched by one of the major technological
companies was the Google Voice Assistant, which Google released in 2016 and got added
to the majority of Android and ChromeOS devices.

4.2 Technological options

In this section we will explore some of the technologies that could be used in each of the
parts of the Helky service. It is worth mentioning that although there are many other
options, those have been discarded because of the monetary cost they would imply or
other reasons. The main intention, at least for the beginning of the service, is running it
at a minimum cost so all possible incomings can be dedicated to improving the service
instead of dedicating part of them to maintain what it already has.

So, here we provide a summary of the technologies that could be used for each part of the
application, to help us position them before having to choose.

30

a) Database options

All information about the databases has been consulted from an initiative of collecting
and presenting information on database manage systems [25] combined with further
investigations on the database management systems official webpages.

• MySQL: Easy to use SQL database with a special focus on web applications. Its latest

versions included the possibility of storing JSON data.

• PostgreSQL: This SQL database is very robust, efficient and stable. Additionally, it
also offers the possibility of storing JSON data on it.

• MariaDB: SQL database of great scalability with high security and speed.

Additionally, it also offers the possibility of storing JSON data on it.

• MongoDB: Most popular NoSQL database, with a powerful set of methods to work

with the data.

• Amazon DynamoDB: NoSQL database that offers high speeds, great performance and

scalability. Additionally, other Amazon Web Services can perform tasks on it.

• Cassandra: NoSQL database to store massive amounts of data with fast access to them.

Additionally, it has great scalability with no single points of failure.

b) Backend options

• PHP: It is a backend programming language that has been around since the early days

of web development, being it the most used language back in the day when the server
had to create the views for the client, thanks to its Zend engine, and even nowadays
after the release of PHP7 that was much more powerful and fast.

To create APIs PHP has different backend frameworks such as Laravel or Lumen.

• Java: It is a programming language so large and robust that it can be used for many

development scenarios such as mobile applications, desktop applications, games and
even for the backend of a web application. Since it was created using a “write once,
use everywhere” strategy.

To create APIs with Java we could either rely on Java Servlets, rely on APIs such as
JAX-RS (if the API is REST) or use frameworks such as Spring and Jersey RESTful
Web Services.

• JavaScript: It is a programming language that started in browsers, as a frontend

language but then thanks to run time environments such as Node.js it could be
processed and used in many other development fields such as mobile applications,
desktop applications, and to the backend, among many other ones [26].

To create APIs, it will only be required to install Node.js on the server machine and
use the built-in HTTP module. In addition to that, there are many backend frameworks

31

for JavaScript such as Express, or NextJS that can be easily installed via the Node
Package Manager (NPM).

• Python: It is a programming language that gained a lot of popularity thanks to its

simple syntax making it very simple to learn and use. In addition to that, Python has
gained presence in different developing fields such as machine learning, artificial
intelligence, game development and web development, among others.
Despite of that, Python is a slow programming language, but normally it will not be a
problem.

To create APIs with Python we will normally either use the frameworks Django or
Flask.

c) Frontend options

• Vanilla JavaScript: Working with vanilla JavaScript means that no frameworks will

be used and that therefore everything on the frontend would have to be built manually
using JavaScript ES6, along with HTML5 and CSS3.

This option would be a totally valid one due to all the things that ES6 provides, but the
problem is that the developing process will overextend in time because everything will
have to be written from scratch.

• Angular: It is a frontend framework developed by Google and based on the Model

View Controller architecture to build Single Page Applications (SPA).

During development, Angular uses TypeScript instead of JavaScript so after finishing
the application and going to production it will be necessary to compile the Angular
application, so everything turns into the accepted web technologies HTML5, CSS3
and JavaScript.

• React: It is a JavaScript library for building user interfaces developed by Facebook.

So, all it will do is creating the views and ensuring their states, while the rest of the
application will have to be built with vanilla JavaScript ES6.

• Vue: It is a frontend framework, developed by a former Angular developer. For this
reason, Vue is used similarly to how old versions of Angular did.

d) Voice assistant options

• Siri: It is the voice assistant maintained by Apple and it is built-in on every operating

system that the company has, such as iOS, ipadOS and macOS. It was originally an
app developed by SRI International that was later acquired by Apple and integrated as
a feature [27].

It uses Shortcuts [28] to offer users the possibility of accomplishing tasks of an
application through voice interaction. These Shortcuts go from conversational based,
where Siri can follow-up a conversation, to prompting the user to select between a set

32

given options. Additionally, the shortcuts app available on iOS and watchOS allow
users to create their own Shortcuts for they favorite applications.

Creating a shortcut would be an easy task thanks to the huge amount of documentation
that Apple offers about its Shortcut API, along with the SiriKit. Nevertheless, it has
the drawback of having to develop an application.

In conclusion, using this voice assistant would allow us to offer pretty good
interactions to all Apple users, even allowing them to create their own set of
interactions, but it would be all since its ownership limits its presence to only Apple
devices and therefore it will not be available to anybody outside the Apple ecosystem.

• Alexa: It is the voice assistant developed and maintained by Amazon and which

managed to become one of the most used assistants due to its capability to run almost
on any device, even on IoT devices.

This spreading is mainly thanks to the same Amazon which is investing a lot of
resources to make it a platform that any developer will find easy to work with,
independently of what is being built and for which device, and by providing a solid
documentation.

Moreover, Amazon sells the Echo devices that are smart speakers that have Alexa
built-in, where there are many different variations with different price ranges to reach
more people, then they also have an Alexa application to install it on phone devices.

Alexa uses skills, some of them already built-in on the assistant and others available
thought the Alexa skill store. But nowadays Alexa is only capable of communicating
with applications that offer an API through the internet, but on July 2020 Amazon
announced Alexa for Apps [29] that will open the possibility of interacting with
applications installed on the phone, although it is still in developer preview [30].

• Google Assistant: It is the voice assistant developed and maintained by Google, and it
has become one of the most known and used assistants.

Its popularity has come thanks to the efforts made by Google to make it a built-in
feature of the Android operating system and wear OS. Additionally, Google released
smart speakers equipped with the assistant, along with smart displays and pushed its
integration into televisions, cars and even iOS devices through an application.

Google assistant uses actions, similar to what a skill is in Alexa, although it is possible
use cases go beyond what Alexa skills currently offer. Fortunately, the development
of an action is relatively easy and google offers good amount of documentation.

• Cortana: This voice assistant is developed by Microsoft, and it comes as a feature in
all Windows 10 devices.

Unfortunately, Microsoft terminated its support for Android and iOS devices [31].
Moreover, we must add the fact that the only smart speaker powered by Cortana,
Harman Kardon Invoke speaker, will also stop receiving Cortana support [32]. To

33

develop applications for Cortana, Microsoft previously offered a Cortana Skills Kit,
but it is no longer available because it was deprecated [33].

Some curious facts are that Alexa can be integrated into Cortana on Windows 10
devices and that there is a Cortana skill in the Alexa skills marketplace. But this makes
us wonder why we would develop for Cortana when we can develop directly on Alexa
and then integrate Alexa into Cortana to access the skill on Windows 10 devices.

• Bixby: It is the virtual assistant solution that Samsung proposes, and it is the successor
which offers more features to its previous assistant S Voice. It is available on Samsung
phones, their smart speaker Galaxy Home and on the smart refrigerator Family Hub.
It is also capable of controlling internet of things (IoT) devices that are connected to
their SmartThings application.

For developers, Bixby offers the possibility of creating capsules [34] that are like
Alexa skills, and Samsung offers large amount of documentation along with sample
capsules [35] to ease the development process. Unfortunately, Bixby is only available
on certain Samsung devices, and it is not supported on the other Android devices or
iOS devices.

4.3 Selecting technologies to use

a) Database Technology

For the database technology we concluded that by the data that we will be storing and the
different variations that may exist on it, we would be opting for a NoSQL database. Which
is much better option than dealing with a SQL database and store JSON columns.

Then, between the different possibilities of NoSQL databases we will be implementing
an Amazon DynamoDB database because of its fast access and because we can have a
25GB initial storage without costs.

b) Backend Technology

For the backend technology it was concluded that JavaScript was the best option, because
of the huge community support it has and because of its performance. Additionally,
JavaScript has various good quality libraries and frameworks to speed up the developing
process.

c) Frontend Technology

In respect to the frontend technology, we chose to work with Angular because it is one of
the best frameworks when dealing with very large applications. Additionally, the
structure of files along with their modules, components and services system will allow us
to create very modularized code that aims for performance and scalability.

34

d) Voice Assistance Technology

The voice assistant we finally decided to work with is Alexa, because of its popularity,
good documentation, and the number of compatible devices. It is also worth saying, that
although we are choosing to work with Alexa, choosing Google Assistant would have not
been a bad option as in reality those two assistants are very close to each other in respect
to several terms.

35

5. KEY CONCEPTS

In this chapter we will explain the most important concepts that were used and considered
in some parts of the service to design or building them.

5.1 User Centered Design Process

User Centered Design Process (UCDP) consists of focusing the design and development
of an application around the user, so at the end the application offers a better experience
by having user-friendlier interface and usability. UCDP is philosophy for developing user
interfaces that was introduced by Donald Norman and Stephen Draper [36].

This process is divided in different stages, each of them with own techniques and tools to
solve the problems in a procedural way as the design advances to next stages.

The first phase of this design process is the research stage, in which we will carry out
interviews to the stakeholder to create a requirements documentation where we will have
all the things that the application is expected to meet. Moreover, during this phase we will
also do an analysis of our competitors to see which are their strengths but most
importantly to inspect their weaknesses and offer better solutions on our application.

After gathering all the requirements, we will move to the design phase where we will
think about different designs that meet all the requirements. Then we will develop
different sketches of the possible solutions and after electing the most appropriate one we
will create a prototype based on it to test it.

After testing the prototype and modifying all the necessary things so no errors occur, and
after ensuring that the user experience is appropriate, we will move to the adapt phase in
which we will visually design the prototype and then develop the real application based
on the prototype and the most appropriate visual design.

Finally, after creating the application we will move to the testing phase where we will
evaluate our application via different techniques such as heuristic tests, with evaluators
that are not users, and tests with end-users.

In addition, since UCDP should be an infinite iterative process, after acquiring usage
results, we will move back into the design phase to create future versions of the
application taking into account new requirements, or even return to the first phase in order
to do research again to improve the application.

5.2 Relational data on non-relational databases

On non-relational databases there is not such concept as relations as there is on a relational
database, but there are many approaches to solve this problem and offer a methodology
like relations. Among the different methodologies there are two main ones, Embed All
and Embed and Link, and here is a summary of what each of them consist of [37]:

• Embed All: This solution implies that all the data of the referenced document is
copied and stored inside the object that references it.

36

• Embed and Link: In this solution some of the data of the referenced object will be
embedded in the object that references it, as Embed All does but only copying
certain data and not all of them. Moreover, among this embed data we will store
the identifier of the referenced document so we can query for it in the case of
needing to retrieve extra data.

Note that via both methodologies we end up duplicating data in database, but it is not a
problem because in NoSQL databases we will prioritize performance even if it implies
repeating the same data in different parts of the database.

Then, we have summarized the main advantages and disadvantages of each of the
solutions on the following table.

 Embed All Embed and Link
Advantages • Get all data with a single

query.
• Speeds up readings because

everything is in one place.
• Good for one-to-one or one-

to-many relationships.

• Embed most important or most
accessed and leave a reference
to access more specific data.

• Data updates must only be
done at one document.

• Good for many-to-many
relations.

Disadvantages • Updating data does not
propagate and must be
updated manually in all
embeds.

• Decreases write speeds
• Increases complexity of

documents.
• Large document size if

embedding large amounts
of data.

• Can require multiple queries to
get all the data.

• Multiple queries take longer
time reducing read speeds.

Table 1 - Embed All, Embed and Link advantages and disadvantages

5.3 Model View Controller

The Model View Controller, abbreviated as MVC, is one of the most used design patterns
at the time of creating applications specially for the web. This design pattern consists of
three main parts, the model, the view, and the controller, where each of team handles
specific aspects of the application.

The model, handles the actual data normally creating, reading, updating, or deleting it
(CRUD) in a database. Then, the view handles what the user is going to see, it is a
template that will be filled with the appropriate data. Finally, the controller listens for the
actions and orders to then request the appropriate data to the model and then pass it to the
view, which will be finally displayed to the user.

This design pattern will be present across our entire service because Angular was built
and expects us to work following it and, additionally, we will be using it as much as
possible both in the API backend code and in the Alexa skill backend code.

37

6. SERVICE ARCHITECTURE

In this chapter we will cover all the architectural design of our service. Moreover, since
one part of our service relies on another one, we will detail the reasoning behind this
move and what role does it play inside our system.

6.1 Helky architecture

To provide our service, including the different user interfaces that make use of it, we must
first decide how the different actors will be communicating with each other. In fact,
because all we offer is a web service and those must follow certain standards, we can
already predict how the system will look like, the roles that each of the actors will be
playing and how the communication will be carried out.

Let us start first with the part that none of the users will be able to access directly or know
where it is located, the database. The Helky database is stored on Amazon machines and
nothing and nobody that it is not our backend machines will be capable of communicating
to it, since the access credentials will be kept in secret.

Then, our backend machine will contain all the scripts necessary to create, read, update
and delete (CRUD) the data that is stored in the database. Additionally, since we are
offering a web service this backend machine will be exposing an API so other applications
can communicate with it via the HTTP protocol, as the web services standard specifies,
and ask it to perform tasks on the database. Besides that, the backend script will also be
in charge of checking if the user making the requests has the authorization to request such
data or not.

Just with those two actors the entire service will be operative and functional, and we could
make use of it with just an HTTP client. So, now different applications will be able to
make use of the API so their users can make use of it, especially the two that were built
directly by us, our frontend web application and our Alexa skill.

It is worth mentioning that although the script that controls the responses of the Alexa
skill will interact with our backend via the Helky API, these scripts will pertain to the
Alexa backend so we will have two backends communicating. Additionally, the Alexa
skill will have to store some data and make it persist across different sessions, where this
persistent data receives the name of persistent attributes and are structured with key-value
pairs as JavaScript objects. On Amazon Alexa these persistent attributes must be stored
on a Dynamo Database or on an Amazon S3 Storage, and since we already have a
DynamoDB we will be storing those attributes on a separate table, collection, of the
database. Lastly, until our API can be accessed using the HTTPS protocol and offers an
OAuth service, we will not be capable of linking Helky users with the Alexa users through
the account linking functionality that Alexa provides. To solve this, while we cannot
make use of HTTPS and account linking, the Alexa skill will have to directly access the
Helky database to get the userID of the user that has the same email as the one used to
log into Alexa to construct a JWT that can be used to interact with the API, more details
of these approach are provided in the Helky skill design (chapter 10).

38

Then, the architecture of our service will have the following structure:

Figure 1 - Helky service architecture

6.2 CIMA

On our service we must also consider medicines but dealing by ourselves with that never-
ending world would be unmaintainable. Because we have no fast way of knowing which
medicines have been created then allowed to be commercialized and because we cannot
dedicate part of our resources to create a database for those.

Apart from that, when talking with our stakeholders we got recommended that it would
be a good idea to offer a preview of the medicine boxes, so users could recognize more
rapidly the medicines when adding them to medicines plan or consulting it. Taking that
into account, it would be impossible for us to offer previews for all medicines if we can
only rely on ourselves.

Due to those facts, it was necessary to find a reliable source of information for the
medicines and if it was possible, that it also gave us an image of medicine boxes.

After some research, we found out that the Centro de Información online de
Medicamentos de la AEMPS (CIMA), where AEMPS stands for Agencia Española de
Medicamentos y Productos Sanitarios, has a website where we can look for medicines
[38] and it provides us with their names, register codes, and among many other data they
provided an image of the medicine box, for some medicines.

Then, we found out that they offered the public REST API that their webpage uses, and
then we had to look for if there were any requirements that they imposed in order to use
their API. After searching around, we found that on their legal policy they required us to
inform that the data was obtained from their intellectual property, provide the date when
the data was consulted and guarantee that we will not change any of the obtained data and
then attribute those changes to them [39].

After accepting to meet those requirements to make us of their API, we will only store
the register numbers of medicines in the data structures, users and plans, of our database
when needed and then rely on the CIMA API to get the entire information regarding the
medicine at the time of displaying it to users.

39

Then, we can incorporate the CIMA API [40] to our proprietary Helky architecture to
have a major view of the entire architecture behind the service. This architecture will have
the following structure:

Figure 2 - Entire Helky service architecture

40

41

7. HELKY DATABASE DESIGN

The database is one of the core parts of the Helky system since it is where all the
information of the users will be stored. This information includes all their account data,
the plans and registers along with all the readings used to track the disorders, of each
patient. It also includes all the relations necessary to carry out the patient, medic, center
relationships.

As it had been specified in chapter 3, the Helky database will be an Amazon DynamoDB
and because it is a NoSQL it will have to be designed considering collections and
documents. In addition to that, the design of the database will be planned to provide an
efficient use of the resources and offer good scalability.

To design it, the first required thing will be the identification of the different entities that
will be stored in the database and their relations. Those can be appreciated on the
following Entity Relationship (ER) Diagram.

Figure 3 - Helky database ER Diagram

For the different entities that Helky currently supports we find the different types of users,
the plan that each user follows and the possible registers that each user can have.
Moreover, we can also appreciate that all three user types have a set of common attributes,
the ones used for identification and authentication. Additionally, there are two other
entities, plans and registers, that will belong to patient users although the other user types
will have certain access rights if their proprietary allows them access.

Therefore, since NoSQL databases are organized by collections, known as tables in
DynamoDB, that can hold different documents with different fields. In addition to the
fact that no schema is enforced, we can base our database on three collections: users,
plans and registers.

7.1 Users table

Since on Amazon DynamoDB documents can be seen as a JSON file that also allows
some other data types such as sets, we are able to create a UML Class Diagram to define
the datatypes of each of the fields of those documents.

42

It is important to highlight that those data types are based on how Amazon DynamoDB
catalogues them, and not on how they would look like in JavaScript when our backend
deals with them. So, while in the following UML Class Diagram we will see that some
fields have a Map data type, in JavaScript those will be object literals.

Therefore, all the documents inside the users collection will have the structure:

Figure 4 - Types of user UML Diagram

On the previous diagram we can appreciate that all three currently supported user types
inherit from an abstract User class, where the concept of abstract implies that it is a class
that cannot be instantiated and therefore, we will never find a user that is not from a
specific subclass.

Then, to support the different relations among entities our database will follow an Embed
and Link strategy, where all embedded data will be stored based on the JSONs that the
API will be responding to requests, to increase the speed of the service.

It is because of these approach that in the UML Class Diagram we find Map values or
arrays of Map values, in some of those maps we will be storing the embed and link data
for the relations between the entities.

Now that it is known the precedence of some of those Map values, we can detail what is
the purpose of each of the fields in the documents:

• userID: This field is used as the primary key of the document and therefore it is a
string value that uniquely identifies each of the users in the system. All these
userIDs will consist of a sequence of 32 characters and numbers of one digit due
to how the Helky API creates the userIDs.

• username: This field stores a string value, and it is used to store the name of the
user inside the application. It can store any string although it will normally store
the name and surname of the user as it is recommended on the web application.

• email: This field stores a string value that holds the email address of the user. It is

worth mentioning that although not being a primary key, this field will also be
unique for all users of the application.

43

• utype: This field stores a string value that currently can only take the values
patient, medic and center and represents the type of the user.

• password: This field stores a string value that represents the password of the user,

for security purposes this password is not stored in plain text and instead what is
stored in this field is the result of hashing the password of the user with a random
salt, that has been generated for him, with the MD5 algorithm.

• salt: This field stores a string value that is the salt used to create the hash of the
password. It is stored to then be used at the time of authenticating a user to check
whether the hash of the introduced password and this salt result in the hash stored
in the password field.

• notifications: This field stores a map which is intended to store all the notifications

that a user has.

Recall that a Map can be seen as an object and therefore we will use UML Class
Diagrams to help explain what key-value pairs are going to be stored in those
maps.

This notifications key will hold a value with the following structure:

Figure 5 - Notifications objects UML Diagram

Then, this notifications object has two keys where the requests one is intended to
store data about all the incoming relation requests, which could be seen as friend
requests, and a list of updates that in a future will be used to warn the user about
modifications on its plans.

Inside of this array of requests we will be storing different maps that will follow
the structure:

Figure 6 - Request objects UML Diagram

These Request objects will store information about the user that sent the relation
request, by providing the userID, username, email and the type of user.

Then for patient users we will find the additional fields:

• medicines: This field stores an array of strings which represents the register
number in Spain of the medicines that this patient must take.

44

• disorders: This field stores an array of maps that represent the different disorders
that this patient has assigned. The maps on this array follow the structure:

Figure 7 - Disorder objects UML Diagram

These objects have a family key that is used to store the family of disorders that
the disorder belongs to, where the currently supported ones are “diabetes”, “blood
pressure” and “other”, controlled by the API. Then, the type key is used to store
the name of the disorder that the patient suffers from. Finally, the registerID field
could or not be present and in case it exists it will hold the registerID that identifies
the register document which contains the lectures for this disorder of this patient.
Therefore, this object can operate in an embed and link strategy in case that a
register exists for that disorder. It is worth mentioning that only the disorders that
are registered for a family different than “other” support having a register and
because of the budget limitations, the API will limit to one the number of disorders
belonging to a family that supports registers.

• medics: This field holds a map where the keys will represent the userIDs of the
medics that the user has stablished a relation with and that therefore have access
to the user plans and register, if there are any. Then, the values of these keys will
be maps containing information, following an embed and link strategy, of the
medic user whose userID matches the key. This medic information maps will
follow the structure:

Figure 8 - MedicEmbed objects UML Diagram

Where userID is the identifier of the document of that medic user in the database
and matches the key that has this object as its value, then the username and email
contain the data that those fields have on the referenced document.

It is worth mentioning that these medics are stored in a map where the key is their
userID in order to improve the performance of the queries, since if it was an array,
we will spend some time iterating over all the medic objects in the array until we
find the one that contains a field that matches our filter. Instead, by having it as a
map we can directly find the medic with a certain userID by directly requesting
the value stored in a key evaluated to that userID which avoids us iterating over
all the possible values.

• centers: This field contains a map that plays the same role as the one stored in the
medic field, but instead of containing the medics to which the user has stablished
a relation with, it will contain the centers. Similarly, the maps stored in the keys
of this map, keys that take the value userID of the user they contain, follow the
structure:

45

Figure 9 - CenterEmbed objects UML Diagram

For medic users, we will find the additional fields:

• patients: This field has a map as its value where the keys represent all the userIDs
of the patients that this medic has established a relation with, and that therefore
the medic is able to check and edit their plans or check the registers they are
conducting.

Then, the values of these keys are the maps resulting from an embed and link
strategy to the patient user document which inside has the disorders array that we
have previously seen, which contains an embed and link relation to the register
documents of the patient, in the case there are any. Therefore, these embed and
link maps of the patient user documents follow the structure:

Figure 10 - PatientEmbed objects UML Diagram

Where each of the fields contains the same data as the fields found in the patient
users documents.

• centers: This field contains a map that plays the same role as the one stored in the
patient field, but instead of containing the patients to which the medic has
established a relation with, it will contain the centers. Similarly, the maps stored
in the keys of this map, keys that take the value userID of the user they contain,
follow the same structure as they did for the ones stored on patient users,
CenterEmbed objects.

For center users, we will find the additional fields:

• patients: This field has a map where the keys are the userIDs of the patients that
the center established a relation with, and that therefore the center can check the
plans and the registers they are conducting.

Then, the values of these keys are the maps resulting from an embed and link
strategy to the patient user document which inside has the disorders array that we
have previously seen, which contains an embed and link relation to the register
documents of the patient, in the case there are any. These maps will take the same
structure as they did in medic users, following the PatientEmbed object structure.

46

• medics: This field contains a map that plays the same role as the one stored in
the patient field, but instead of containing the patients to which the center has
established a relation with, it will contain the medics. Similarly, the maps stored
in the keys of this map, keys that take the value userID of the user they contain,
follow the same structure they did for the medics key on patient users, the
MedicEmbed object.

7.2 Plans table

The plans table will be storing objects that will follow the UML Class Diagram:

Figure 11 - Plan objects UML Diagram

On each of those objects we will have the planID key that will hold the string that
represents the primary key of the plan, which will take the same value as the userID of
the patient user that the plan belongs to. Then, it will have a Map that will act as embed
and link to the proprietary patient user and will store its userID, username and email.
Finally, it will have a weekdays map represented with the following UML Class Diagram.

Figure 12 - Weekdays objects UML Diagram

These objects will have different keys named as the days of the week, to increase the
speed of the queries, where each key will hold as a value a map with the structure:

Figure 13 - DayPlan objects UML Diagram

In these objects, we will store the day of the week the object represents, and inside the
meals and activities keys we will have similar maps where both will specify a comments
key that store a string value and then, for the case of the meals key the map will also store
a menu key, while for the case of the map stored in the activities key it will also have an
exercises key. Finally, it will have an array of maps in the medicines key that represents
the different medicines that the user will have to take during the day along with the hours
at which those must be taken.

47

7.3 Registers table

This collection will be the one that will store the documents that more differences can
have when compared with each other. Despite of that, all the documents will have the
same structure when looking at the first level attributes, since they will be structured as
the following UML Class diagram:

Figure 14 - Register objects UML Diagram

At this level, all the documents will have a registerID key, that acts as the primary key, a
patient key that will store a map resulting from embedding and linking the patient user
document that this register belongs to, and then we will have two keys where the
disorderFamily key will contain the disorder family type, such as diabetes, while the
disorder key will contain the specific disorder, such as Diabetes Type 1. Finally, the
tracking map is where all the lectures will be stored, and we designed in to be as most
efficient as we could.

When creating the register document the tracking map will be empty, so no lectures are
stored on it, but as the user inserts lectures it will be getting populated by an algorithm
specified in the API.

For instance, when a user wants to add a register for the date February 13th of 2021, the
tracking map will create a key 2021, that will store a map at which a key 2 will be created
that will store a map where a key 13 will be created, and finally, this day number key will
contain an array will all the lectures belonging to that day.

Summing up, the tracking key will be empty, and it will be expanding its contents based
on years, which then will be based on months, which then will be based on days. This has
the intention of providing an organized structure that at the same times is optimized and
that does not create key placeholders for each of the different days, months or years which
would consume the available storage when multiple users carry out different registers.

7.4 Persistences table

In addition to the tables that represent entities on our database, we will have a persistences
table, that will be used by Alexa to store information that should persist between the
different sessions of the users of the skill, as we will see during the development of the
Alexa skill.

48

49

8. HELKY API DESIGN

This chapter will detail all the design process involved to build the API of the service,
including all the tools that will be used. Furthermore, since different tools could be used
to achieve one same purpose, we will specify the reasons why we are choosing one over
the others.

To clearer the understanding, this chapter will be divided in sections according to the
purpose of each of the tools and concepts.

8.1 Architecture

a) Architecture type

The API will follow a REST (Representational State Transfer) architecture as most APIs
do. REST architecture came from ideas that Roy Fielding stated in his PhD thesis to build
a modern web architecture [41].

These REST APIs are based on URIs, which are unique identifiers to access the
informational items, which receive the name of resources. Additionally, these APIs are
very scalable because they are stateless, where stateless means that the server will not
worry about information about past requests since each request will provide all the
information necessary to process it.

Alternatives to the REST architecture would be SOAP or GraphQL, among some others.
Then, we will briefly explain what each of them consists of and why we will not choose
them over a REST architecture:

• SOAP (Simple Object Access Protocol): First, it is important to clarify that it is
not an architecture but a protocol. With SOAP, the client and the API
communicate via SOAP Messages, which have a specified structure and an XML
format.

The main reason why we are rejecting this approach is due to the messages size it
implies and because JSON is much more convenient to work with, especially
when our backend is also built using JavaScript.

• GraphQL: It is a query language developed by Facebook too bypass the
limitations that they found on REST APIs.

The problem with REST APIs is that the backend defines the endpoints, and what
is returned in each of them, so if for instance we are interested in a couple of fields
of a resource the only solution is to ask the API for the resource, so it gives us the
entire resource and then we only use the fields we desired.

To solve that, GraphQL uses a query language, like what we would do with a
database, so the API offers a resource known as a type and then the client queries
it by requesting only the desired fields of it [42].

50

At the end, the API will offer only a single endpoint, normally “/graphql”, to
which the client can request the types and fields he desires by using the query
string and introducing the requested fields in a parameter called query.

We will not be using this approach because we do not have a Facebook level API
that requires the use of more specific queries that provide more flexibility, by now
a REST API will be able to provide us with everything we need.

b) Tools

There are multiple ways of building a REST API using JavaScript on top of the runtime
environment Node.js, but normally almost all of them will be built on top of Express due
to its mature, performance and set of features. On our case, we will also be using Express.

Other alternatives to build our API would be using the HTTP module of Node, but it will
take us longer to develop the API because of the low-level functionalities that the HTTP
module offers. Moreover, using this module will require us to take much more care of the
code and invest more time if we want it to be easy to understand and scale.

Another alternative would be using Next.js which apart of being a React Framework for
the frontend it offers API creation features when used on the backend. The reason why
we will not be using this framework is because the routes of the API are defined as the
folder and file names, and then code of the endpoint resides as a single exported function
on a JavaScript file. Therefore, we can end up with many folders and files, just for the
definition of the URIs, which may eventually hinder the understanding of the code.

8.2 Format

a) Available formats

The format of the API defines how the body of the HTTP requests and responses is
interpreted, and REST APIs are almost always develop using the JSON format, although
HTML, XML or plain text could also be used.

For our API, we will also be using a JSON format mainly because it is the de facto format
and because the use of JavaScript on both the backend and frontend codes makes it very
convenient to work with JSON.

b) Tools

No special tools will be required to carry out the formatting because Express offers the
possibility of parsing the request body as JSON before it hits our functions, and then for
the responses from the server Express offers the possibility of sending JSON formatted
data on the body just specifying the JavaScript object that wants to be sent.

51

8.3 Authentication and Authorization

a) Management of users

Since the API will be responding or adding information based on the user that is making
the HTTP request, we will have to add some mechanism to validate that the user
authenticates itself and then an authorization mechanism for the API to control what this
user is allowed to do.

This authorization will be carried via JSON Web Tokens (JWT), as most of other REST
APIs do, because it will allow us to not store any information regarding the users that
make requests, as we would have to do with cookies [43] but without having to keep track
of those on the server machine as happens with cookies. With JWT each request will
provide a token that when it is deserialized, it will give use a JSON formatted data with
fields that inform us about who is making the request.

b) Tools

For dealing with JWT, we will make use of the jsonwebtoken Node.js module that
provides us the functionality of signing JavaScript objects by providing our secret key
and returning us the JWT that we can then send to the user. Then, for when we receive a
request, it also provides us the functionality of verifying the validity of a JWT by
providing it to a method of the module along with our secret key, and in case it is valid it
will return us the payload it carried.

Additionally, we will be using the dotenv package to store the secret key on a “.env” file
that then we can load and access to its values via the process object.

8.4 Database access

a) Database communication

One of the responsibilities of an API is to read, create, update or delete the actual data
that the client is requesting either by speaking to another backend or communicating with
a database. For our case, the Helky API will directly communicate to our Amazon
DynamoDB and to do so we will have to use the AWS SDK that Amazon provides to
communicate with Dynamo Databases.

b) Tools

The required tool to be able to communicate with DynamoDB is the AWS SDK, and
more precisely we will be using AWS SDK v3 where all the asynchronous requests are
now promise-based [44].

But instead of directly using this AWS SDK v3 we will rely on the JDyn module which
is built on top of this version of the SDK, meaning that it is also promise-based, and which
will allow us to directly specify the fields we want to retrieve or update, just by specifying
a JavaScript array or object respectively, and it will internally build the input that the
SDK understands.

52

This JDyn module has been developed by us, to ease the communication with DynamoDB
and speed the development process. Then, as this module has been developed as a
standalone module in a future it will be published on the Node Package Manager (npm)
so other developers can use it for their applications.

8.5 Resources access

In respect to the access of the resource, the API provides a documentation file, which can
be found on annex II, where all the endpoints are listed along with the data that they
expect and respond.

All the endpoints of the API have been protected to ensure that only valid and authorized
requests are processed. For example, when a post request is made to the endpoint
“/api/user/notifications” the server code will execute the following flowchart.

Figure 15 - Flowchart notifications endpoint

Here we can appreciate that for an incoming request, we will first validate the JWT in a
middleware function that protects all the API endpoints. Then, for the case of this

53

endpoint a more specific middleware function will ensure that all required fields of the
request are provided and have adequate content. Finally, only if everything of the request
is valid the server will process the request.

All the flowcharts that define how the different endpoints of the API handle the requests
can be found on annex III.

8.6 Design pattern

To develop all our server-side code we will be using a Model View Controller (MVC)
style design pattern. Nevertheless, on our case we will not have any views because our
backend code will not be responding with views that later the frontend displays, but
instead we will be responding with the actual data so it can be consumed by different
types of applications or services.

For the controllers, we will first have the functions that handle the different requests to
the endpoints. These handlers are defined as callback functions that we will be passing to
the methods that the express application offers us to route the requests to a specified path
to them. Then, these controllers will delegate the tasks of requesting or modifying certain
data to different functions, exported by different JavaScript files we created, that act as
controllers for the different entities of the service and which will be requesting the data
to our model to then communicate it to the request controller.

Figure 16 - Backend MVC: Endpoint controller example

Previous figure shows an example of what we just mentioned about the callback function
that acts as a controller, for the case of the “/api/patient/medics” endpoint. Once the API
receives a request on that endpoint, that callback function will start executing and then
will delegate its task to another controller that has functions that encapsulate those tasks.
In this case, since the task of the endpoint controller is to retrieve and respond with the
information about the medics of the patient, it will delegate its task to a function that
returns the medics of the patient with the given userID. Then, since we do not have views,
the controller will return the data as JSON.

Finally, for the models, we will be using the JDyn library we developed to consult the
data from our Dynamo database and return the data in standard JavaScript object notation.
It is important to highlight, that since we developed JDyn to be standalone, other
developers will be capable of using it as the model on their own applications.

Figure 17 - Backend MVC: Functionality controller and request to the model example

54

On the previous figure we can appreciate the body of the function to which the previous
controller of the endpoint delegated its tasks, this controller is in charge of requesting the
appropriate data to the model, JDyn, and then return it to the endpoint controller.
Additionally, other controllers may include previous tasks or formatting before
communicating with the model.

55

9. HELKY WEB APPLICATION DESIGN

In this chapter we will detail all the design process carried out before starting the
development process of the web application.

9.1 Visual design

The frontend web application is the main thing all users will be working with and the
place where a big part of the interaction with the Helky service happens, especially for
users with professional roles such as medics.

For this reason, this piece of the service is the one that had to follow more strictly the
User Centered Design Process (UCDP) explained on chapter 5 and loop through it even
after the different releases to offer a long-term support of the application by improving it
or extending its functionalities.

Its UCDP design process started by considering the problems that were identified during
our contacts with stakeholders for the design of entire Helky system and during the market
analysis, because at the end this web application is just an access point to the entire system
so it should offer a user-friendly way to carry out all the functionalities that the service
offers.

When we reached the design phase multiple possible designs were sketched and
considered to become the prototype of the application. After sketching all the
possibilities, the one that got elected to be the prototype of the application came from an
evolution of one of the sketches, this evolution is worth mentioning since it came from
user-experience improvements and the great scalability it ended up offering. A closer
look on the different sketches is provided in annex IV.

The sketch that leads to the discovering the one elected for prototyping is:

Figure 18 - Sketch 1, patient and medic landing pages

The idea of this version was to offer a lateral menu to navigate through the application
via a list with all the different sections and a search filter to quickly find the desired
section. Then, the landing page of a patient user included a quick preview of all the cares
for the current day for convenience, to see at a first glance all the information that the
patient was most likely searching for.

But since such thing was impossible to do for users that play the role of professionals,
due to the fact they do not have anything stored in daily basis and we cannot show them

56

all the information for the current day about all its patients, they had a landing page that
offered access to all the sections of the application.

Such a landing page was then reconsidered for all the different kinds of users in the
application, since it offered much better interaction with the user by displaying all the
sections they can navigate to. In addition to the fact that it offered a better look and feel
than having all the section names stacked on the left-hand side.

Moreover, since all these sections now could be displayed on the landing page, there was
no need to list them on the side bar so they could be removed from there. Furthermore,
since now this side bar would only show the name of the user and a button to log out, it
can be redesigned to take much less so the actual content of the application can be
appreciated easily, apart from offering a clearer way to exit the application.

Considering all these things, the pages of the previous sketch evolved into:

Figure 19 - Sketch 2, patient and medic landing pages

As it can be appreciated on the previous sketches, this version simplified all the user
interface and reduced the visual weight resulting in an improvement of its look, feel and
interactivity. In addition to that, it improved the scalability of the application, because as
more functionalities are added to the Helky ecosystem it will be only required to add an
extra option on the menu, in the most appropriate place, and it will not feel to be piled up.

Finally, the sketch that got elected to create the prototype was based on this previous
sketch and enhanced the entire user experience by adding icons that represent the different
sections, meaningful colors and presenting all the information as we would do in real life.

These enhancements result into the following sketch:

Figure 20 - Sketch 3, patient and medic landing pages

This design benefits from a more optimal use of the available space and adds icons for
each of the sections. In addition to that, one of the most important improvement of this
sketch over its predecessors is the use different colors for each section, which were picked

57

considering the physiology of the colors and the emotional responses each of them
triggers on people, without forgetting the fact of avoiding the yellow color, and avoiding
as much as possible the blue color, which are colors that can cause troubles for people
that suffer from Diabetes.

The colors were selected given the following emotions and concepts associated with each
of them [45]:

• Orange color: Since orange is a citrus color it is associated with healthy food, in
addition to the fact it also stimulates the appetite and for this reason, this color is
effective to highlight and promote food products. Therefore, this color was
selected for the accent of the meals section.

• Red color: Red is one of the most intense colors, and among many other things it
is commonly associated with high physical activity, and it is also used for alerts
or warnings. Then, it is for those reasons that we selected it for the physical
activity and notifications sections.

• Green color: Green is said to have a healing power and therefore it is normally

used to indicate safety for drugs and medical products. Reason why we selected
it for the accent of the medicines section.

• Gray color: This color has been selected as an alternative to the white color,

because white accents would have gone unnoticed due to the shade of white that
is used on the background of the application. The white color, and the gray that
takes its role on the application, is normally associated with safety, purity and
cleanliness and therefore it is associated with hospitals and doctors. For this
reason, this color has been selected for the accents of the profile, doctors, and
medical centers sections.

• Purple color: The purple color has not been selected as all the others, to

complement a section with the same meaning. Instead, it has been used for
sections that are specific to the application since it is a color that is preferred by
almost 75% of the pre-adolescent children and this collective is the one that is
more used to new technologies and where most part of the newcomers, people
that starts the treatments, may be found. Then, it would be used for the registers
and search people sections.

Another important improvement is that all the data relative to days is now provided inside
of calendars, making the web more user friendly because it is the way we will write it by
hand.

Figure 21 - Sketch 3, calendar-based views

58

Unfortunately, during the beta testing we received as feedback that this design was
causing problems on certain sections of the application for laptop screens of around 13
and 14 inches. Due to this, the application design had to return to the design phase of the
UCDP to address these issues.

The new design that solved these issues did not diverge too much from the previous
design and fortunately it did not require a lot of changes in the styles base code of the
application, thanks to how it got structured and developed.

Finally, the design that was decided for the prototype and then the final application was
as the one that caused issues but this time making use of all the screen height available
for the different parts of the application to solve those issues.

Figure 22 - Sketch 4, final design. Example on calendar-based views.

9.2 Functional design

Thanks to developing our web application with the Angular Framework, the logical
functionality of the application is spread and organized according to its purpose.

For example, all the logical functionality (JavaScript) in charge of giving the user
interface components its functionality, as the code executed when the user clicks on a
button, resides inside the component classes. So, all components define the logic that is
relative to their view elements.

Then, we have the functionality of Angular services, defined as JavaScript classes, to
which components will delegate certain tasks. These services will mainly have all the
functionality related to fetching data, consulting the Helky API and CIMA API, because
then these services can be requested by the different components to make use of them and
avoid repeating code, apart from making the application more adaptable and scalable.

Since our application will offer different functionalities depending on the type of user
logged in, the application will be composed of different Angular modules where each of
them will have the components that the application will be using. Then, we will also have
different services, each of them in charge of different functionalities, such as the common
user service, the patient service, the medic service, among many others.

By basing our application on different modules, depending on the type of user logged in,
we also achieved a much more efficient application. This is because we will be able to
make use of lazy loading [46] so the application only imports the required module. So, in
case that a patient user logs in, the application will only import the patient module which
brings inside all the required components.

59

Moreover, it is also important to highlight the use of guards and the logical functionality
they provide us. By them, we will be able to check whether the user is authorized to
navigate to a certain section (URL route and component) to then let him proceed with this
navigation or deny this section and redirect the user.

With this guards, we will be able of controlling that the user accesses the application only
when a successful login is made and that it does not navigate to a section that belongs to
the functionality that the application offers for a different kind of user. Since navigating
to a section of another user would imply importing the module for that user type, with all
their components and functionalities, and that the user had accessed a part of the
application that he should not be able to see or interact with.

9.3 Design pattern

First, it is important to highlight that Angular was created based on the Model View
Controller (MVC) design pattern and for that reason by making a good use of the different
features offered and using them as they are intended, we will be following this design
pattern.

Hereinafter, we will bind the different concepts of the MVC and Angular to clarify what
each thing is intended to do.

First, Angular is based on components which are composed of an HTML template, a CSS
stylesheet, and a TypeScript class. The TypeScript class contains all the methods,
processes all the events that are triggered on the HTML and can modify the contents that
are displayed on it, for that reason each component will have its own controller that is its
TypeScript class.

For example, for the component in charge of listing the medicines of the patient we will
have the following controller that once the component is initialized will request the data
about the medicines to the CIMA API, a function that will display a spinner while loading
that requested data and a function to be executed once the user presses on a medicine, to
provide the details of it.

Figure 23 - Frontend MVC: Controller example

60

As a result of this, since the controller of the component is deciding what to display on
the template, the HTML template of each component will be playing the role of the view.

Figure 24 - Frontend MVC: View example

Previous figure shows the view that gets the data that comes from the controller we
specified earlier, as we can appreciate by the fact that the loading spinner will be
displayed based on a Boolean value specified on the controller and the fact that the list of
medicines displayed is the one that the controller specifies. Additionally, we can
appreciate that when there is a click on the div tag that contains a medicine of the list, the
view will communicate the controller to execute the function in charge of displaying the
medicine details and specify about which medicine should the details be displayed.

Finally, since components should not be fetching or storing the data and should delegate
those tasks to a service, services play the role of the model. These services are the model
because although they could be consulting the data to an API, everything that the
component controller knows and cares about is that the service can provide him with the
data it needs without worrying about how these data is obtained because of abstraction.

For that reason, we can appreciate on the code of the previous controller that it is not
fetching the data about the medicines to the CIMA API directly, but instead it is
requesting it to the MedicinesCimaService because the controller knows that it can
provide him with that data and therefore the service plays the role of the model.

Figure 25 - Frontend MVC: Controller requesting data to the model example

61

10. HELKY SKILL DESIGN

This chapter details all the design process of the Voice User Interface (VUI) that our
Alexa skill will offer to our users to interact with it. Additionally, we will also have to
design how Alexa will respond to the user interactions to tell them what he has obtained
from consulting the API or give the user feedback when one of his petitions was
successfully carried out.

But, since we are dealing with a Voice Interface, we must first identify which are the
strong and weak points of them, so we end up only with the most user-friendly tasks for
the voice interface while leaving the more tedious ones to be performed on the web
application, which will be more convenient.

10.1 Voice user interface advantages

• Flexibility: These kinds of interfaces are flexible in respect of the ways that user
can interact with it, allowing to trigger a same action by expressing it in different
ways. So, various sentences that different people may say for one certain purpose
can be considered to offer a more user centered experience.

• Accessibility: Many different things could fall under the accessibility advantage.
For instance, a VUI allows access to the application or service to handicap people
who are not capable of interacting via touch or view with other interfaces,
although the access of handicap people could also be considered as a disadvantage
as next section will detail. Additionally, this kind of interface does not rely on a
screen so it can be accessed via more devices.

• Multi-tasking: Because users will be interacting through speech, this interface

allows them to be performing different tasks at the same time such as being on the
move, with their hands occupied or many other scenarios.

• Human interactive: These interfaces have the great advantage of being more

human and natural than other interfaces, since at the end the users will be only
required to speech. Furthermore, the responses or the information that they could
be requesting will be presented to them via speech, as if another person was
answering them.

• Fast: Interaction with a voice interface can be performed much faster than any

other interface, especially when compared to one that requires some sort of typing.
In addition, this fast interactivity makes it very convenient when dealing with very
recurrent or simple tasks, so the user does not feel tired of going throughout
various steps for just a simple task.

10.2 Voice user interface disadvantages

• Privacy: Because the user will be talking to the device it implies the problem that
in public spaces people on the surroundings will be capable of hearing the
information the user is saying or that the application is answering.

62

• Discomfort of some users: There are some people that either does not like to talk
to a machine or is reluctant to using it because of bad experience on the past.
Therefore, it is important to consider the fact that there could many users that will
not be willing to make use of it.

• Conversation limitations: Although the technology behind these interfaces has

improved a lot, it is still not capable of maintaining a conversation with a user in
the way that two people would do.

• Availability: These interfaces are not as extended as many other interfaces, and

many people do not have access to it. Fortunately, and for our case, many
companies that maintain the voice assistants are launching applications that install
their assistant in the most common used Android and iOS operating systems.

• Handicap people access: Despite it can offer access to handicap people that is not

able to touch a device or unable to watch a screen, this voice interface will be
inaccessible for deaf or mute people.

• Noise susceptible: Due to the fact the interface relies on a microphone that must

listen for what the user tells, background noises will make it harder for the system
to understand what the user is telling.

• Suitable tasks: Since users are using their speech to give commands to the voice

assistant, some tasks will be very hard to be carried out via voice orders.

10.3 Skill capabilities

After the identification of the advantages and disadvantages of the VUI we can decide
which functionalities of the Helky service we will offer through the skill, always granting
a good user experience.

On one hand, from the advantages section we can conclude that it will be good for the
skill to offer the tasks that our users will be accessing multiple times in daily basis, and
more specially the ones that are intended to get information about a very concrete fact.
Moreover, we will design the interface to understand as voice commands all the sentences
that people will normally use when talking with other people. Additionally, we will make
our Alexa skill to talk in first person to enhance even further the user experience.

On the other hand, from the disadvantages section and due to that the service provides
sensitive information, which could cause serious harms if provided incorrectly, we will
not let the user to modify its medicines, meals, or physical activities from the skill through
voice. In addition, since it can be tedious for the user to receive very large responses, we
will not offer the possibility to request large amounts of information, such as the meal
plans for the entire week, and even the entire day, but instead we will provide the chance
of requesting those for concrete meals on concrete days. Lastly, to enhance even further
the user experience, when requesting the meal plans or the activity plans Alexa will not
respond directly also telling the user the possible comments, but instead in case that such
information contains comments we will inform the user that there are comments and if
he wants Alexa to read them to him.

63

Then, the tasks we will allow the users the perform from the Alexa, on the first release,
will be consulting the plans information and entering lectures into their registers.

Summarizing the capabilities of the skill on its first release we obtain:

Capabilities Actions
Consulting the meal plans • Consult the plan for one of the

meals for the current day
• Consult the plan for one of the

meals of any day
• Respond to the petition of hearing

the comments, if any.
Consulting the medicines plan • Consult the medicines that must

be taken for the current day
• Consult the medicines that must

be taken on a certain day
Consulting the physical activities plan • Consult the plan for the physical

activities that must be done for
the current day.

• Consult the plan for the physical
activities that must be done for
any day.

• Respond to the petition of hearing
the comments, if any.

Inserting a new lecture on registers • Insert lecture on a Diabetes
register

• Insert lecture on a Blood Pressure
Register

Ask for help • Consult to the Helky assistant
what can she do

Table 2 - Helky skill capabilities

10.4 Skill VUI

This section will detail all the actual design of the Helky skill, and to improve
comprehension it will be divided on subdivisions each by the name of the things that an
Alexa Skill offers and ordered as we will encounter them when using Alexa, both from
user and developer perspectives.

a) Wake word

Although Alexa devices, and other smart speaker devices or phone with that functionality
enabled, leave the micro opened and listen to everything, the device will not process
anything until an awakening command is detected. After detecting it, the device will start
to process all the information that the user then says and react to it. On Alexa devices the
default wake word is “Alexa”, although Amazon gives users the chance to change to
another wake word among “Amazon”, “Echo” and “Computer”.

64

b) Launch word

The launch word makes Alexa open custom skills, and these are defined by Amazon.
Some launch words that Alexa works with are “open”, “ask”, “tell”, “execute”, among
others [47].

c) Invocation name

The invocation name is what the user must say to start engaging with a skill, and therefore
we could define it as the skill wake word. For our case, since the Helky service is currently
centered on the Spanish market, we had to choose an invocation name that is easy to say
in Spanish, that it is a well-structured phrase to prevent the error detection algorithms
difficult the opening of the skill, and that our users quickly relate to our service. For these
reasons, the selected invocation name is “mi asistente de salud”.

Then, for a user to open our skill to be able to interact with it, he must say a phrase such
as “Alexa, abre mi asistente de salud”.

d) Intents

Intents are the different functionalities that the skill provides. These have both a frontend
and a backend representation, where the frontend representation provides different
utterances in order to trigger the intent and the backend representation is the functionality
that it performs.

Then, our application will have one intent for each of the different functionalities it
provides, where some of those will be intents that Amazon provides to developers, which
already have a set of sample utterances although we can add some other utterances on top
of them, and where it is recommended that we implement our custom logic regarding that
aspect, for example an ask for help utterance.

Here is a table that provides all the intents our skill provides along with a brief description
of their purpose.

Intent Name Purpose
DayMealsIntent Consulting the menu for a given meal for

a given day.
TodayMealIntent Consulting the menu for a given meal for

the current day.
DayMedicinesIntent Consulting the medicines for a given day.
TodayMedicinesIntent Consulting the medicines for the current

day.
DayActivitiesIntent Consulting the activity plan for a given

day.
TodayActivitiesIntent Consulting the activity plan for the

current day.
DiabetesMealRegisterIntent Register a post or prior meal lecture on a

Diabetes plan.

65

DiabetesExerciseRegisterIntent Register a post or prior activity lecture on
a Diabetes plan.

PressureMealRegisterIntent Register a post or prior meal lecture on a
Blood Pressure plan.

PressureActivityRegisterIntent Register a post or prior activity lecture on
a Blood Pressure plan.

Amazon.HelpIntent Make the skill tell us what it is capable
of.

Amazon.YesIntent Handle a “yes” response, currently used
to detect if user wants the comments of
meal menu or activity plans to be read to
him.

Amazon.NoIntent Handle a “no” response, currently used to
detect that the user does not want the
comments of meal menu or activity plans
to be read to him.

Amazon.StopIntent Close the skill.
Amazon.CancelIntent Cancel the skill, close it.

Table 3 - Helky skill intents and purpose

e) Utterances

Once the skill is opened, utterances will be the phrases users will be able to say to trigger
the different functionalities of the skill, intents.

These utterances will be defined and then mapped to certain intents by the developer, so
it requires the developer to place itself as a user and consider all the possible variations
that people can say when asking for something.

Since our service provides important information in daily basis and we want that the skill
accompanies our users during the day, these selected utterances were obtained from
talking with our stakeholders, so apart from the sentences that we anticipated our users
might say other were obtained from first-hand from our users.

The table below shows all the utterances, with sample data, that have been contemplated
in the first version of the skill and these have been organized by the different
functionalities that the skill has.

Intent Purpose Utterances
Consulting a meal menu of the current
day

• ¿Qué tengo hoy para comer?
• ¿Cuál es el menú para cenar?
• ¿Cuál es el menú de hoy para

desayunar?
• ¿Qué tengo que cocinar hoy para

cenar?
• ¿Qué he de hacer para desayunar

hoy?
• ¿Qué he de hacer para comer?
• ¿Qué hay para cenar hoy?
• ¿Qué he de desayunar hoy?

66

• ¿Qué hay para comer?
Consulting a meal menu for a certain day • ¿Qué toca cenar el jueves?

• ¿Qué tengo que comer el viernes?
• ¿Qué he de cenar el domingo?
• ¿Qué tengo el sábado para

desayunar?
• ¿Qué tengo el lunes para la hora

de cenar?
• ¿Qué tengo para comer el martes?

Consulting the medicines plan of the
current day

• ¿Qué medicinas tengo que
tomarme hoy?

• ¿Qué medicamentos me tengo que
tomar hoy?

• ¿Qué medicamentos me he de
tomar hoy?

• ¿Qué medicamentos me tocan
hoy?

• ¿Qué he de tomarme hoy?
• ¿Qué me he de tomar?
• ¿Qué medicinas me tocan hoy?
• ¿Qué medicinas me tengo que

tomar hoy?
Consulting the medicines plan of a
certain day

• ¿Cuáles son los medicamentos del
viernes?

• ¿Cuáles son las medicinas de los
lunes?

• ¿Cuáles son los medicamentos
para el miércoles?

• ¿Qué tengo que tomarme el
martes?

• ¿Qué he de tomarme el domingo?
• ¿Qué medicamentos me he de

tomar el jueves?
• ¿Qué medicinas me tocan el

martes?
• ¿Qué me tengo que tomar el

miércoles?
• ¿Qué he de tomarme los lunes?

Consulting the physical activities plan of
the current day

• Voy a hacer ejercicio
• Voy al gimnasio
• ¿Qué ejercicios me toca hacer

hoy?
• ¿Qué actividades me tocan hoy?
• ¿Qué actividades me tocan?
• ¿Cuál es mi plan de actividad de

hoy?
• ¿Qué ejercicios tengo que hacer

hoy?

67

• ¿Qué actividades tengo que hacer
hoy?

• ¿Qué ejercicios he de hacer hoy?
• ¿Qué actividades he de hacer

hoy?
Consulting the physical activities plan of
a certain day

• ¿Qué actividades he de hacer el
viernes?

• ¿Qué ejercicios he de hacer el
jueves?

• ¿Qué actividades tengo que hacer
el domingo?

• ¿Qué ejercicios tengo que hacer el
martes?

Inserting a new lecture for a Diabetes
register prior or post meal

• Antes de comer mi nivel de
glucosa es 120

• Después de comer mi nivel de
azúcar es 137

• Mi nivel de azúcar antes de comer
es 100

• Mi nivel de glucosa después de
comer es 114

• Antes de comer mi nivel de
glucosa es 110 coma 9

• Después de comer mi nivel de
azúcar es 140 coma 42

• Mi nivel de azúcar antes de comer
es 85 coma 12

• Mi nivel de glucosa después de
comer es 135 coma 1

Inserting a new lecture for a Diabetes
register prior or post physical activity

• Antes de hacer ejercicio mi nivel
de azúcar es 73

• Después de salir a hacer ejercicio
mi nivel de azúcar es 90

• Mi nivel de azúcar antes de
después de hacer ejercicio es 83

• Mi nivel de glucosa después de
hacer ejercicio es 102

• Mi nivel de glucosa antes de
hacer ejercicio es 103 coma 92

• Mi nivel de azúcar después de
hacer ejercicio es 130 coma 8

• Antes de salir a hacer ejercicio mi
nivel de azúcar es 90 coma 2

• Después de hacer ejercicio mi
nivel de azúcar es 111 coma 23

Inserting a new lecture for a Blood
Pressure register prior or post meal

• Antes de comer mi presión es 90
• Mi presión después de comer es

110

68

• Mi presión sanguínea antes de
comer es 123

Inserting a new lecture for a Blood
Pressure register prior or post physical
activity

• Después de hacer ejercicio mi
presión es 132

• Mi presión antes de hacer
ejercicio es 111

• Mi presión sanguínea antes de
hacer ejercicio es 145

Ask for help • Ayuda (Amazon HelpIntent
predefined utterance)

• Ayúdame (Amazon help intent
predefined utterance)

• ¿Qué eres capaz de hacer?
• ¿Qué puedes hacer?

Yes • Sí (Amazon YesIntent predefined
utterance)

• Si por favor (Amazon YesIntent
predefined utterance)

• Claro (Amazon YesIntent
predefined utterance)

No • No (Amazon NoIntent predefined
utterance)

• No gracias (Amazon NoIntent
predefined utterance)

Table 4 - Helky skill utterances per intent

f) Slots

We could see a slot as variables inside of our utterances and those come in handy because
by using them, we are able to capture some data that the user said on the utterance and
then have access to it on the backend code that processes a response.

For instance, suppose one of the utterances that is used to get the sugar level of the user,
there is no way we can have different processes on our backend that get executed for
different number values. What we will do instead, is defining that part of the utterance as
a slot, via “Después de comer mi nivel de azúcar es {entero}” and then in the backend we
would have access to a variable “entero” that will take the value that the user said.
Moreover, we will be also using this fact for also detecting the moment at which the user
is registering a lecture so we do not have to create different intents and utterances for after
or before meals, then the utterance will look like “{moment} de comer mi nivel de azúcar
es {entero}”.

At the moment of defining slots in an intent each of them must have an associated type,
where the type defines how the actual data that the users says and that falls in the slot part
of the utterance is recognized and handled. Amazon already provides us with some default
slot types, such as AMAZON.NUMBER which will listen for words such as “five” and
convert them into “5” at the time of providing our backend with the value that was
obtained at that slot [48]. Besides that, some custom types will have to be created to
provide all the required functionality to the utterances, because no default slot types are
suitable for the task we need. For example, for the slot {moment} of the previous sugar

69

register utterance that we will use to detect whether the register is before or after a meal,
we will have to create a custom slot type called MomentTypeSlot which that could take
the values “antes” and “después”.

Here we provide a table with all the custom slot types that we had to create, and the values
that they should take, to provide the functionality to some of our intents and utterances.

Slot Type Slot Values Purpose
MomentTypeSlot • Antes

• Después
Detect the moment in which the
register is created

WeekdayTypeSlot • Lunes
• Martes
• Miércoles
• Jueves
• Viernes
• Sábado
• Domingo

Detect the day of the week that the
user is requesting.

MealTypeSlot • Desayunar
• Comer
• Cenar

Detect the meal that the user is
requesting.

Table 5 - Helky skill custom slot types

It is worth mentioning that although Amazon provides a default slot type called
AMAZON.NUMBER it only works with integer numbers, such as “five” or “fourteen”,
and it is not capable of detecting number that has a decimal part. But since the numbers
that our users will say may have a decimal part, at least for the sugar levels, we had to
create a workaround.

The implemented solution was adding another slot, that will also be of type
AMAZON.NUMBER on utterances following the structure of how people will say those
numbers. For instance, apart from the utterance we covered before that was structured as
“{moment} de comer mi nivel de azúcar es {entero}”, we will create another utterance
similar to it, but which also expects the decimal part structured as “{moment} de comer
mi nivel de azúcar es {entero} coma {decimal}”. This trick allowed us to capture numbers
such as 110.4 because at the end the user will be saying a sentence like “antes de comer
mi nivel de azúcar es ciento diez coma cuatro”.

Additionally, these slot types allow us to define identifiers for each value and which
would be sent along with the detected value to the handler that processes the response.
For our skill, we took advantage of these identifiers by placing there the associated word
that the Helky API would require to process a petition of such type.

For instance, the values “antes” and “después” of MomentSlotType received the
identifiers “prior” and “post”, respectively. Then, on the backend code we will not have
worry about converting the received value to its equivalent on the Helky API but instead
we will only have to get the identifier of the received value. Furthermore, this approach
is useful for when the API grows because are more options are created and understood
by the API, we will only have to add more values to the slot type and add the API
equivalents to update the skill without having to modify the script that handles that request
made to Alexa. Furthermore, this identifiers approach will also come in handy when the

70

service becomes available in more countries and languages, because we will not have to
adapt the Alexa backend code to those languages, and we will just have to create the slot
types where the values are also identified by their equivalents on the API. For example,
on the English version of MomentSlotType we will only have to identify the values
“before” and “after” with “prior” and “post”, respectively, for it to perfectly work with
the Alexa backend code.

Finally, on each of the intents we can make Alexa require and validate each of the slots
and keep prompting the users for a valid value before sending their request to our handler
script. Because of those, our Alexa backend handlers will be for sure provided with all
the mandatory information and where all this information will be valid.

g) Prompts

These prompts are messages that Alexa sends to our users when the value of a required
slot has not been provided or because it does not match with any of the valid options,
either because Alexa misunderstood the value or because the user said an invalid value.

On our skill we will be using these prompts for example in the case when the user says
an invalid word such as “duck” where a day of the week was expected to warn them that
this weekday. Then, Alexa will start listening again for the user to provide a valid
response, and in case it is invalid again it will prompt him again a few times until he says
a valid one. Then, when Alexa detects that all the required slots are provided and that all
the filled slots have valid data it will send the user request to our backend to handle it.

Let us illustrate such things using the Evaluate Model functionality that Amazon provides
us in the Alexa Developer Console, where we can see how Alexa resolves the intents and
slots without sending any request to our backend handlers when a request is made.

First, in case we trigger an utterance without providing one of the required fields Alexa
will prompt us to specify the value for that slot, for example we can appreciate these when
requesting a menu for a day without telling Alexa the day:

Figure 26 - Alexa VUI required fields

In this previous image we can appreciate that we triggered the DayMealsIntent and that
Alexa detected that the mealSlot was provided with a valid value, reason why it resolved
to “comer”, but we did not say anything to fill the weekday slot, which is a required slot.
Then, Alexa prompts us to tell her which of the days of the week we want to consult, to

71

which we can respond to fill the slot, and after telling her a valid value it will resolve the
slot, as it can be appreciated at the bottom of the second sub-figure.

Then, we have the prompts that happen because of the rules we told Alexa to stablish,
and she is detecting that the slot is filled with an invalid value:

Figure 27 - Alexa VUI, values validation

In this example we can appreciate that Alexa resolved all the slots that intent requires but
detected that the value “pato” to which the slot weekday was resolved is invalid, and
therefore it is prompting us that it is invalid and that we provide a valid day of the week.

h) Speech Synthesis Markup Language

Speech Synthesis Markup Language (SSML) allows us to control how Alexa says the
different things, for instance adding pauses, give an emotional intonation, talking in a
specific language and the text interpretation, among many others. Indeed, SSML is a
standard specified by the W3 to assist developers controlling certain aspects of speech
output such as pronunciation and volume, among many others, and which is based on
XML markup language.

Although it is supported by almost all the voice assistant providers, the reality is that each
of them makes use of a custom SSML specification adapted to their product, as we can
appreciate from the Alexa documentation [49], Google Assistant Documentation [50] and
Apple Documentation [51].

For our case, Alexa SSML, we will be taking advantage of it to increase the pause time
between the actual response to what the user asked and a sentence to ask him if there is
anything else he wants to consult. Because the default SSML used to add pauses after full
stops is not enough to make the response feel good, from a user experience perspective.
Additionally, we will be using it to tell Alexa to interpret parts of our responses as hours
and to tell her to read Helky with an English pronunciation.

i) Reprompts

Reprompts are useful for telling Alexa that she does not finish the skill and to start
listening for another utterance after finishing the response. Combining these reprompts
with an additional “do you need anything else?” sentence at the end of each response we

72

can manage to maintain our user inside the skill until he closes it and provide him with a
more conversational interaction during the execution of the skill.

Furthermore, on the Alexa backend we can specify what does she have to say in case the
user responds with an unknown utterance, and we will use this response to tell the user
that what he asked for is unsupported and that if he wants to know that the skill is capable
of, he can ask it.

10.5 Helky account synchronization

Alexa skill gives developers the capability of linking accounts with existent account on
other services, so the Alexa account gains authorization to act on behalf of the user. But
this account linking process can only be realized against a server via the HTTPS protocol
where the authorization server implements the OAuth 2.0 authentication framework.

Unfortunately, early versions of the skill will not be capable of operating via this account
linking functionality because of the lack on an HTTPS certificate and the OAuth 2.0
Framework on the server machine.

Then, on these firsts versions of the skill we had to find another way for the skill to
recognize the user and provide him with an authorization token so it can operate with the
Helky API.

Since there is no way that we can make the user speak to Alexa its account credentials,
so she can authenticate itself on the Helky API, because of the privacy violations that
would suppose having to say at loud the user credentials, we had to find a way that could
be used to authenticate the user without prompting him.

To overcome this, we will make use of the credentials (email) used on the Alexa device,
because by consulting the email address logged into the device we will be able to find a
valid authentication of the user. But since we also must avoid the password entry and
there is no way we can make that the API returns an authentication JWT token to anybody
that just sends an email address, we had to make a more workarounds.

The final solution to authenticate the user without the password implies opening a quick
connection with the Helky database, since at the end the logic of the skill resides on a
backend. When the skill launches and in case it detects that the user does not have an
authentication token stored in the persistent attributes, we will open a quick connection
to the database. Then, in this connection to the database we will query, using a lite version
of the JDyn library, for a registered user with the same email as the one used to log into
Alexa. Afterwards, if there is a match and a user is found we will sign him a JWT as the
Helky API signs them, when the authentication has been successful, and we will store
this JWT on the persistent attributes of the user so no more connections to the users table
in the database are required in future executions of the skill.

Finally, since the JWT that has been signed on the Alexa backend side has the same
structure and uses the same secret key as the JWT signed from the API, the authorization
system will not find any problems on the token and the API will treat the requests
normally.

73

11. SERVICE DEVELOPMENT

This chapter will detail how all the designs of the different parts of our service got
translated into software to provide the entire service as we designed it to be. It will be
structured in different sections where each of them will be centered in developing a
certain actor in the service architecture. Moreover, these sections will be ordered from
the more internal actors of the service to those at the more external parts, which are the
ones that users will be interacting with.

11.1 Database Development

The database is straight forward to develop and its development can be seen as steps, for
this reason here we provide all the required steps that were needed to setup the database.

a) Access Amazon AWS Console

The first step is to access the AWS Management Console from our browser.

Figure 28 - Amazon Web Services console

Once in, it will be necessary to look for the DynamoDB service, and in case we have
accessed previously to this service it will appear under the “Recently Visited Services”
as happens in the previous screenshot.

Once there and under the “Tables” page we will be able to appreciate the different tables,
collections, we have created or create new ones.

b) Create the required tables

To create the different tables, we will click on “Create table” under the tables tab inside
the DynamoDB service and we will be displayed the following screen.

Figure 29 - Creation of an Amazon DynamoDB table

74

In this page we will only have to specify the name of the table, and indicate which column,
field in the stored documents, will act as a primary key.

For our case, we will have to create the tables specified on the database design (chapter
7) and type as the primary key of each of them, the property we decided to take on that
role, the identifier.

Note that in this step we will not create manually the persistences table, although we
could, that stores persistent attributes of the Alexa skill users because we will get it
created for us later in the skill development section.

Once we have created the different tables, we will see them all appear under the tables
section. For the service to work, this created tables will have to look the following way:

Figure 30 - DynamoDB tables for Helky service

Now there is nothing else we must do to the tables; they are ready to start storing data.
Recall that we do not have to specify a schema that the inserted data must follow because
we are working with a NoSQL database.

c) Identity and Access Management

Just by creating a database we will not be able to access it from outside the AWS Console, and
therefore we will have to create an Identity and Access Management (IAM) pair of keys that
allow access to the database.

To do so, first we will return to the AWS Management Console, as we did on the first subsection,
and then we will look for the IAM Service.

Once there we will navigate to the “Users” section under Access Management, and we will add a
User. We will call this user Helky API and give him a programmatic access type so it can only
access certain parts and tools of the AWS Console.

75

Figure 31 - Amazon IAM user creation

Then, on the next step we will grant him permissions to access our DynamoDB, and since
we just want those permissions, it is faster to assign those directly from the “Attach
existing policies directly” section.

Figure 32 - Granting DynamoDB permission to an IAM user

Then, we can skip the next steps as they do not imply any extra functionality and finally
we can create the user.

Once the user has been created Amazon will give us the access key we will have to use
to access the DynamoDB along with the secret access key, that we will use when
accessing it in order to authenticate us and that we must not share with anybody.

Then, on our backend server code and on our Alexa Skill backend code we will have to
provide these access keys to access the DynamoDB of our Amazon AWS account, that is
where the Helky database is stored.

11.2 JDyn development

The JDyn module is a JavaScript class that offers the possibility of interacting with the
AWS SDK v3 DynamoDB without having to manually specify the commands that this
SDK understands. We have created our own interface for the commands that works only
via the specification of the table name along an object that specifies the primary key of
the document that we want to apply the command to. Finally, depending on the command
we want to execute, we will have to provide for instance an array of values that represent
the fields of the document we want to retrieve or a JavaScript object whose key-values

76

represent the fields of the document we want to update along with the value they must be
updated to.

To carry out JDyn, we based our development on a recursive algorithm that will construct
the input commands based on the input that the user provides. Additionally, because an
update on DynamoDB cannot be carried out unless all keys on the path exist, JDyn offers
the possibility to the user to specify the JavaScript object used in the update parameter as
one containing the actual command inputs, and then warn the update method via a flag to
skip the recursive algorithm and get the command inputs directly from that object.

11.3 Backend server development

At time of developing the backend code it is very important to predefine a good directory
structure or we will end up repeating code and creating unmanageable code. For this
reason, it was decided to organize the workspace into different folders each of them with
a purpose. At the end, and as it can be appreciated on our GitHub repository that contains
the backend scripts on annex I, we decided to organize the workspace in the following
manner:

Folder Contents
controllers Contains the JavaScript files for each of the different functionalities

and entities on the database. These JavaScript files export functions
that perform certain tasks and make use of the JDyn library to
CRUD the corresponding data on the database.
Then, it contains a db folder with a DynamoDB.js file which exports
an instance of the JDyn class that is configured to communicate
with the Helky database.

libs Contains all the external libraries, not installed via NPM, that the
code uses. Currently it only contains the JDyn library code.

middlewares Contains the JavaScript files that export the functions that we will
later use as middleware for our different endpoints. These
middleware functions are used for validating the data of the request
and to check whether the request is authorized or not.

models Contains the JavaScript classes that represent a patient user, medic
user and center user. Then during the register of a user an instance
of one of those must be created and then stored in the database.

routers Contains the different JavaScript files that export the Express
routers that provide the endpoints functionality. The API router
only defines the different routes that belong to the API, and then
these routers rely on the controllers to execute the different
functionalities.

utils Contains utility JavaScript files. Currently has our cryptography.js
file which exports two functions where one creates the salts and the
other encrypts the passwords.

Table 6 - Server-side code structure

When we want to add a new functionality to the API most of the time it will imply the
addition of a new function to the controller, although in some cases it also implies
modifying an existing function of one controller, so it does something else. In the case
we added a new functionality to the controller it will normally imply offering a new

77

endpoint on the router that represents that resource, so that endpoint provides access to
that new functionality.

Below we will show the steps that must be followed in the case we want to add a new
functionality to a resource which does not have an endpoint yet, because these steps
define the development process that was followed for all the functionalities of the server
and their exposure on the API. Additionally, if we just wanted to add an extra
functionality this development flow will also apply with the only difference that some
steps will not be necessary.

In the following subsections we will show this entire process for the creation of the
resource register and explain the creation of the Express application.

a) Create the Express application

The first thing we must do to create our API is to import the express module to one our
files, in this case we import it to the JavaScript file that gets executed when the application
is launched. When importing a module in Node, with the function require(id), it will
return us whatever the module exported via the module.exports object and in the case of
express it will return a function that when called returns an express application which is
the default router.

Then, we could directly start adding endpoints to it but instead we will provide a router
object that contains these routes an add it to the application via the use(…) method.

This use(…) method can receive one or multiple arguments, if it only receives one
argument it must be either a middleware function or an array of middleware functions
which are applied to the router that calls this method. Then, if more than one parameter
is provided the first one can indicate the path to which this middleware applies, although
it does not have to, and we can pass multiple middleware functions or even pass an array
of middleware functions as one of those parameters.

Due to this, the first thing we will do is provide the middleware functions that enable a
CORS policy, that automatically parses the request body as JSON and a custom function
we created to log when a request was made and to which endpoint.

Then, we will create a router object, which behaves as a middleware and its creation is
covered in next subsection, and pass it to the use(…) method. This time we will be taking
advantage of that first parameter to specify that this router, middleware, only must be
invocated when accessing a specific path. Since this router will be our API router, we
will want it only to be invocated when accessing the “/api” path and therefore the first
parameter passed will specify that.

Finally, we can indicate the application to start listening on a port of our machine, for
example the port 3000, and provide a callback function that will get called when the
application starts listening, which we will use so to know that it started listening
successfully.

78

Then, this development will result in the following code:

Figure 33 - Creation of an Express application

b) Create the API router

Now we must create the apiRouter that the code we created in the previous subsection
will import. Following the directory structure we covered before, since it is a router, we
will have to create its JavaScript file inside the routers folder.

The idea of these API router will be that it uses other routers, specific for the different
resources, to increase the modularity and scalability of the application. Then, we know
that we will have to import those different routers and pass them to the use(…) method
of the router along with the path that invokes them as a first parameter. Additionally,
since these use(…) methods can take more than one middleware function, we will protect
some of those paths with middleware that validate that whoever wants to access them is
allowed to.

Nevertheless, since this is the common path for all the API routes (URIs) it is a good
place to validate the authentication and authorization of whoever is trying to access those
paths. Therefore, we will create an own middleware function, that we can define directly
in this file since it will not be used anywhere else, that verifies that the user provided a
valid JWT.

To create a middleware function, we must create a JavaScript function that accepts three
parameters, the object that represent the request, the object that represents the response
to the user and the next function that calls the next middleware function.
Then, in this middleware function we will check if the user provided a valid JWT in the
authorization part of the request header, and in case it did we will let them continue by
calling the next() function, but in case it is not a valid one or it was not provided we will
respond to the request from this middleware with an error code and an alert message.

Let us show how everything we have covered so far will look like on code and then we
will cover in more detail those parts that have not been detailed.

79

Figure 34 - Creation of the Helky API Express router

First, let us appreciate that the we can create a router via the express.Router() function
and that then we will call the its use(…) method with the middleware function we talked
about and the different specific routers, some of them protected by other middleware.

Regarding the middleware that validates the JWT, we will make use of the jsonwebtoken
module which offers us a function to which we can pass the received token and it will tell
us whether there is an error or give us the payload that the JWT carried.

In this middleware function, we will first take the value received in the authorization
attribute in the header of the request, ideally expected to be “Bearer token”. Then, in case
a token is not present, we will directly respond to the request that a JWT must be provided.
Then, in case there is a JWT, we will pass it to the jsonwebtoken verify function along
with the secret key we used to sign them and a callback function to be executed after it
resolved the JWT. In case there was an error in the JWT, which we will obtain on the
error parameter on the callback, we will immediately respond to the request alerting that
the JWT provided is invalid, but in case the JWT is valid and we have its contents on the
payload parameter, we will store this payload in the request and call the next() function
so the petition is further processed. Note that the reason of adding the payload of the JWT
into the request is that future functions that process the request do not have to worry about
decrypting the JWT to obtain its content, they will be capable of accessing it on the
request object they will receive.

Supposing that the petition has a successful JWT it will then proceed to one of the
specified paths, resources, so now we will have to create a router that processes the
request for the resource.

c) Create the resource router

Now we have to create the router that actually represents the resource on the API, and for
this we will create a router, as we did in the previous step, but now instead of using the
use(…) method, we will be using the get(...), post(…), and other methods.

80

These methods tell the router that it can handle an HTTP request with the HTTP method
specified on the method invocation name at the URI send as first parameter. Then, the
parameters that come after the first, represent either the callback function that must be
executed when a request is received in case of having only one parameter more after the
first one, or the middleware functions that must be executed followed by the callback in
case of having more than one parameter after the first one.

Then, given the functionality that we must provide on the register endpoint, we must first
provide an endpoint that contains a registerID on the URI, and that when somebody
makes an HTTP Get request to it returns the information regarding this register.

To do so, we will require the following get(…) method on the Router:

Figure 35 - Creation of a Helky API endpoint

On it we are specifying that the router admits an HTTP Get method on the URI
“/registerID” where registerID can take any value. Additionally, before running the
callback, a middleware function will be executed to control if the user requesting the
information is authorized to access it. Finally, we will have the callback, with the code
that will get executed in case the request can be processed, and as we specified in the
directory structure, all the task of talking to the database will be delegated to other
controllers and since this information is relative to a register and this endpoint must return
the register information it will rely on a registers controller which offers a method to get
a specified register.

Then, after the controller responds with the information, we will respond to the request
sending the information as a JSON inside the body, but if something goes wrong causing
that the code crashes the error will be handled and we will alert the user of the error that
happened.

d) Creating the controller

As we have said previously, to improve the code and its scalability, all the data processing
and communication with the database will be carried out on resource controllers.

So, following the development we have been doing, we must now create a
registersController which exports a getRegister(registerID) function that returns the
information relative to the requested register.

Then, we will first have to create the registerController JavaScript file under the
controllers folder. On this file we will have to create and export that function, and
fortunately the script inside the functions of the different controllers do not become too
hard thanks to the JDyn library, and for this example in which we want to get some of the
data of an item the function will only have to be:

81

Figure 36 - Creation of a controller function to access the data

In this function we only have to create an array containing all the fields we want to retrieve
from the item, and then call the getItem(…) method of JDyn specifying that we want it to
consult the “registers” table, that it must look for an item with a concrete registerID and
that it give us the fields specified on the array. Then, we can return the result that it gives
us.

On other controller functions, the ones executed from a post or patch HTTP method, we
will have to add extra code to create the data that must be stored into the database. But
the JDyn library also makes it very easy to put or update data into the database without
having to worry about what is the query that the AWS SDK understands.

For instance, in the controller function in charge of storing a new lecture on a register,
thanks to JDyn we will only have to create a JavaScript object that specifies which is the
attribute and the new value to be updated structured in the same way as it is in the
document to be updated. Then it will be only necessary to execute the updateItem function
of JDyn as the code below shows.

Figure 37 - Storing a tracking entry in Helky database automatically

Here, we are creating a JavaScript object, where the keys that are defined as a word
between square brackets will be named as the value that is stored in the variable between
those brackets. Then, this JavaScript object supposing that year evaluates to 2021, month
evaluates to 4 and day evaluates to 21 and values evaluates to an array with one lecture
will tell JDyn to update the value of the key 21 to an array with one lecture, which is
stored as the value of the key 4 of a map, stored as the value of the key 2021 that is stored
inside a map called tracking found on the top level of the document. Additionally, as
specified in the call to updateItem, this document is found inside the registers table and
is the one that has the specified registerID as its primary key.

Unfortunately, the updateItem command of the AWS SDK only works when the entire
path to the attribute to be updated exists, and the maps along the path cannot be created
considering the path specified in the update request.
But JDyn provides us a way of overcoming these, that may be enhanced in future
versions, by which we can manually specify the update command inputs that the AWS
SDK understands on the update parameter and specify to the method that the update
object must be treated as AWS SDK native with an additional fourth argument set to true.

82

These comes in handy for situations such as the previous one where we must insert a
lecture to a register but where the path is not complete, because the document does not
have specified day map on the specified month, or because the specified month map does
not even exist.

For these situations we will have to manually create the AWS SDK inputs as the
documentation specifies, as done in this example:

Figure 38 - Populating Registers table and storing a tracking entry in Helky database manually

On this example we also want to add a lecture for a certain day on a register as we did via
the JavaScript object in the previous example, but unfortunately when our script looked
for the previous lectures stored on that date it found out that the date did not exist. Then
because the date does not exist on the database, the automatic update via path that JDyn
does will fail. To overcome these, in this previous script we elaborated a little algorithm
that detects which part of the path was missing and then creates the appropriate input that
AWS SDK understands in order apply this update starting from the last part of the path
that existed. Then, when the update object has been filled with the data that AWS SDK
understands it is sent to JDyn as we did with the update data in the previous example but
this time also adding a Boolean true as the fourth argument, so JDyn treats the update
object as native AWS SDK.

e) Identifiers

On the backend code we also had to manage the creation of the uniquely identifiers for
the different entities and that we will be using as the primary keys for the documents
stored in the database.

For those we wanted to provide and scalable solution, that would perfectly work in the
case we had to create more backend servers to lighten the load or if a horizontal scaling
of the database occurs, via more databases in different servers.

83

Then, the solution we proposed at first time was using the epoch time, which is the number
of milliseconds elapsed from January 1st of 1970 at 00:00:00 UTC, which then we
converted into hexadecimals to have identifiers that are not only a sequence of numbers.
Then, since the epoch is an elapsed time since a date, we will never have two identical
values.

Although this solution worked as expected it had to problem that we will be dealing with
different identifiers length, so as the elapsed time increases the identifiers will be getting
larger. To solve this, we decided to also apply the MD5 hashing algorithm to them, so the
resulting identifiers will also be unique and of a fixed length, 32 characters for the case
of MD5. Then, on our server machine we will be creating the uniquely identifiers, for
instance a user, via the following lines of code

Figure 39 - User identifiers creation script

f) Password storage

Our service must provide authentication of users, and for this reason we will have to store
a password for them. But, for security reasons we cannot store those passwords in plain
text, as if for some reason our database gets compromised and leaked the attackers could
not have access to user passwords.

To solve this, we will be storing the passwords of our users encrypted, but instead of
encrypting them directly we will be appending a salt, random string of characters and
numbers, that will be randomly generated for each user.

Then, when a user wants to register, we will execute the following lines of code which
will create a random string, and encrypt it, via the MD5 algorithm.

Figure 40 - Encryption of password script

Afterwards, we will be storing both the encrypted password and the salt on the user
document in the database and get rid of the plain password.

Because of this, when we want to authenticate a user and it provides us the password, we
will be taking his salt string, stored in the database, append it to the password he provided
and encrypt it. Then, in case that the result of that encryption matches the encryption we
have stored in the database the user will have provided the correct password, and in case
they do not match, the provided password will be incorrect.

11.4 Web application development

Explaining all the development behind such a large application is almost impossible to
be covered in detail without extending to many pages. For that reason, we will try to cover
the most important aspects, without going into detail on the different components and
services, that could then lead to the creation of the entire application. Additionally, we

84

will explain some techniques we used in certain parts of the application to improve its
performance.

a) Creating an Angular application with routing

The first thing we must do is creating the Angular application, and more precisely create
it with a routing module which will allow us to navigate to different parts of the
application, ngModules and components, by the URL. In a few words, we will be creating
a Single Page Application (SPA).

To do so, we will have first to install the Angular command-line interface and then
execute the following command: ng new helky --routing.

Once it runs, it will prompt us if we want to use strict type checking and then will let us
specify the language we want to use for the stylesheets. On our case we will pick to keep
it strict and use classical CSS stylesheets.

b) Creating the Angular modules

We will create different Angular modules which can be seen as containers for
components, service providers and other files which help increase modularity of the
application. For our case, these modules will help us improve the performance of the
application via lazy loading, as we will see later.

Then, we will create three different modules each of them with routing functionality for
the different user types that we have on our service, patient, medic and center. Then, in
each of the modules we will create the components and services that only this type of user
will be able to use. Additionally, we will be creating an extra module called shared in
which we will be creating all the components and services that are shared across the
different user types, such as the component in charge of the meals calendar or the user
service. Then, we will be importing that shared module to the other modules, so they can
make use of the exported components and provided services.

c) Managing application routes

So far, we have not made use from the routing module we have on our app module and
own modules. But now that we have created the different user modules in the previous
section, we can configure those routes and optimize the application via them.

Configuring the app-routing.module first, on the module TypeScript file we will
appreciate an array called routes, passed to RouterModule.forRoot(…) which is then
imported by our routing module. All it happens here is that we are taking advantage of
the forRoot(…) method normally used for configuring the modules before importing
them, and in the specific case of the RoutingModule it will also take care that there is only
one global router.

Then, the configuration of the RouterModule requires providing an array of Routes,
reason why Angular already created a routes array and passed it to the forRoot(…)
method. On this array, we can specify the different routes that we want to exist along with
the component we want them load to the app-routing tag, where these routes are only

85

JavaScript objects that follow the Route interface, meaning that they can only have certain
fields where some of them are required while others are not.

In these routes, apart from specifying the component that must be loaded when navigating
to that path we are also able to specify that we want a module to be loaded, via lazy load.
Then, by using this lazy loading approach we will be able to import only modules when
required, which combined with our user-type-based modules we will be able to only
import and to provide all the components and functionalities that the logged user will
require, without having to download and load to memory other parts of the application.

Then, for the case of our application router we will have the following routes:

Figure 41 - Helky web application main router and lazy loading

Note that in addition to the lazy loaded modules for the different user types, we will also
provide routes to components because there are parts of the application that should be
accessed by anybody such as the login page, the register page and even the tutorial pages,
among others.

Then, on the routing modules we have on the user-type-based modules we will be
specifying the routes that navigate to the different components of the module. For
example, in the case of the patient routing module we will provide the following routes,
among others.

Figure 42 - Component routes of the Patient Angular module

Also note, that in these routes we will not have to specify the full path since Angular will
figure out that these paths are relative to the path that loaded the module.

86

d) Creating guards

Angular offers the possibility of creating Guards whose intention is checking if the
navigation to certain paths is allowed, to cancel the navigation and redirect the user to
another path for the case it is not allowed. Then, this guards are specified in the routes
array used to configure the router.

For example, in the application routes we can appreciate that we have set two Guards to
protect the navigation to the user-type-based modules.

Figure 43 - Angular guards protecting user specific routes

When protecting with a canActivate Guard we would protect access to this route,
including its sub-routes. On the other hand, the canActivateChild is used when we want
to protect only the sub-routes of a particular route.

In our case, we do not want that anybody that is not authenticated can navigate to one of
the application modules, reason why we will protect the entire route with canActivate.
But then, once the user is authenticated and we identified which is the user type and
loaded him the application, we do not want this user to be able to navigate to other
application routes that have the functionality of other users, which would result in
downloading and loading another module. For this reason, we will protect all the child
routes with a canActivateChild Guard that will only allow the user to navigate to its sub-
application.

e) Providing services

Services are JavaScript classes that can then be injected to components, other services,
guards, and other classes via their constructor. Normally, these services will act as
singletons, so one unique instance will be shared and injected to components, although
there are ways of serving multiple instances, but we do not require them.

Then, the components will be using these services to share data among them or to rely on
part of their functionality, such as fetching data from an API. For this reason, these
services can be seen as the Model part of the angular Model View Controller (MVC)
architecture.

In our application, we will have individual services where each of them is in charge of
making request to a different part of the API. Then, to fetch this data although we could
use the fetch API of JavaScript, most of the time, we will prefer to use the HttpClient
service, that Angular provides through the HttpClientModule. The advantage of this
service is that it will parse the body of the response as JSON, ideal for fetching data from
REST APIs such as ours, and the fact that it returns an Observable from the RxJS library
to which we can apply certain transformations.

Services, in this case the PatientService in charge of dealing with the patient endpoints
of the API, will look like:

87

Figure 44 - Angular service to communicate with the patient endpoints of the Helky API

Here we can appreciate that first we are injecting the HttpClient service to the constructor
of our service, so it can rely on it to make http requests. Then, the service class will have
different methods where each of them makes a request to a different endpoint of the API
and then uses RxJS operators to transform the data. For example, after receiving the
response of the “/patient/disorders” endpoint as an observable, we will map this
observable to another one that only contains the disorders part of the response and then
we will map it again to another observable that presents the disorders as an array, so the
component can manage them easier. Then, we will transform it to a promise because the
observables returned by the HttpClient complete after emitting the value, so no more
values will be expected, and we can treat it as a promise.

Components such as the one in charge of the medicines list in the patient user application
will inject that service and request the medicines list via that method.

Figure 45 - Injection of patient service and user service and their usage

Note that since we transformed the observable to a promise before returning it, on the
component side we can use the then(…) method of promises.

f) Recommendations

We recommended that, if possible, we cache the response of the API in certain cases so
we do not have to keep sending requests for certain things whose response will not
change.

For example, we used this trick when displaying the calendar that stores the different
tracking lectures. So, the application will only request the data to the API the first time
that the user requests to see a month, and then the application will store a copy of the data
in memory, so the next time the users requests the month it can be provided faster and
without consulting the API.

Note that this array will be stored in the component attributes, so when we exit the
component, and it gets destroyed the data is lost. If we did not do that, by storing the data
in a service for example, the next time we enter the component we will not be able to see
possible new data, because no request would be sent to the API.

88

11.5 Alexa skill development

The development of the Alexa can be divided into different parts, where in each of them
we will be considering the different concepts we specified in chapter 10. Therefore, we
will follow the required steps to build an Alexa skill, and more precisely our Helky skill.

a) Access the Alexa Developer Console

Once we access the Amazon Developer Console, we must navigate to the Alexa Skills
Kit under the Alexa section where the following screen will be displayed.

Figure 46 - Alexa developer console

On it we will be able to see all the different skills, along with the earnings we gained with
them, the payments we had done, the hosting usage and the settings section.

b) Create an Alexa skill

Once we are on the main screen of the Alexa Skills Kit, we will be able to create a new
skill by pressing the Create Skill button.

Once clicked, we will be asked for the name we want to give to our skill, which we will
be able to change later as long as we have not published it yet, the default language of the
skill, although later we will be able to support more languages, the model of the skill,
which defines the purpose of the skill, and finally it asks us for the way we want to host
the backend of our skill.

Figure 47 - Alexa skill creation

89

For the specific of our skill, we will be giving it the name of Helky, selecting Spanish as
the default language because currently it will be only intended for the Spanish market,
then we will select a custom model because our skill is not intended for news feed, smart
home devices nor video consumption. Finally, for the host of the backend code, although
we could host it on the server that will hold the web application or the API, we will select
to have it Alexa-hosted and to develop it in JavaScript by selecting the Node.js option.

We chose this configuration because the skill capabilities and usage will not be enough
to consume the AWS free tier limits for the time being, and therefore we will be able to
save the money and resources that the maintenance of a server implies. Additionally, we
chose JavaScript over Python, because there is more documentation for the Node.js
runtime environment than there is for Python and because we find it more convenient for
us to have both backends written in the same language.

Then, it will ask us if we want that our skill comes with a specific template. But after
analyzing each of the options we found that it was more convenient to use a Start from
Scratch template which included a “Hello world” functionality because the other
templates provided functionalities that we will not require and that we would have to
delete. Additionally, all these templates are stored on GitHub so if at any time we find
that we require one of the functionalities, we would be able to check their code.

Finally, after selecting the Start from Scratch we can click on continue, and the skill will
be created for us and added to our skills list.

c) Defining the invocation name

To define the invocation name, that we decided to use during the design phase, we will
have to access the skill and then specify it under the invocation tab.

Figure 48 - Helky skill invocation name

d) Intents

Now, we must define the different intents, functionalities, of our skill that we decided it
to have during its design. To create those intents, we will navigate to the Intents section

90

inside the Interaction Model tab, where we will be able to create them by clicking on
“Add Intent” and writing the intent name.

After introducing all the different intents, the Intents section will look like this:

Figure 49 - Helky skill intents

e) Utterances

For each of the intents we created, we must now define the different utterances that will
invoke that intent. Since we have already specified which utterances will our different
intents have, we will just have to introduce them in the different intents. To do so, we will
select an intent and we will type them inside the sample utterances list. It is important to
take into account that some utterances will have slots, so we can capture the different
variations of the data on the utterance. Depending on what those variations are, we will
have to use one slot type or another, among the slot types that have been defined during
the design phase.

For example, after adding the utterances to the DiabetesMealRegisterIntent along with
the different slots we will have:

Figure 50 - Utterances to store a diabetes register related to meals

91

f) Slot types

During the creation of the slots on the utterances, we had to specify the slot type for each
slot and although we designed the different slots we will have on our skill, we must
specify them to Alexa. To create the different slot types, we will navigate to the section
Slot Types under the Assets tab.

Once there, we will be able to add new slot types by pressing the Add Slot Type, then
specifying a name for that slot type. After clicking on next, we will be able to introduce
the different slot values and their corresponding identifiers, where in our case those values
would be the ones specified during the design phase, and the identifiers of those values
will be their value in English except for the MomentTypeSlot that will be “prior” and
“post”, as we said during the skill design chapter.

g) Slot requirement and validation

To implement the requirement of a slot and validation that we presented during the design
of the skill, we will have to access the different intents we have and select the slots for
which we want to carry this requirement, validation or both.

Then, to specify that the slot is required we must check the option that says that the slot
is required to fulfill the intent and introduce the prompts that Alexa will tell the user to
obtain a response when it is not provided. We will also have to specify the utterances that
the user can respond, in which we can capture the value for the slot, or even other slots.

Figure 51 - Implementing requirement of slots in DayMealsIntent

Then, to validate the value, we can click on Validation on the same page we introduced
the requirement and there we can specify that the value of the slot must be one of the
specified values that the slot type specifies, and if in the case that the provided value is
not one of those, prompting the user with the specified text so he can then answer again.

92

Figure 52 - Implementing slot validation in DayMealsIntent

h) Creating the handler of an intent

To create a handler for an intent, we will first have to navigate to the Code section found
on the top bar of the Alexa Developer Console. Once there we will have to define an
intent handler as the following JavaScript Object.

Figure 53 - Definition of the intent handler of DayMealsIntent

On this object we will be able to find a method canHandle(…) which receives one
parameter handlerInput. This method will return a Boolean value that will tell Alexa, if
this handler can process the request, represented by the handlerInput. So, in this case we
can appreciate that this handler will only handle IntentRequests and that come from the
DayMealsIntent. Then, in case the canHandle(…) function returns true, Alexa will
execute the handle(…) function which will be in charge of processing the request and
creating the appropriate response.

In the previous handle function, we can appreciate how can we access to the slots,
variables, of the intent and more precisely their identifiers. Then, this handle will make
use of an ApiClient class we created, which makes requests to the Helky API. Then, when
a response is obtained the handler will create an appropriate sentence for Alexa to speak,
and in case that the data provided comments, it will store those comments in the session
attributes and add to the text that Alexa will say an additional sentence that asks the user
if he wants the comments to be read. Additionally, note the use of SSML on the text of
the response, where in this case it is used to make the pause after a full stop longer.

93

i) Load and save session attributes

In our Alexa, we will be using the session attributes to store the last comments that were
obtained from the last request that brought comments, so this way we can then ask the
user if wants to know them, and in case he response affirmatively we can retrieve them
and respond. Apart from that, we will be also using session attributes them to cancel the
skill activation if no Helky account for the email of the device is found or if the user is
not a patient.

Although the usage of session attributes could be appreciated on the code sniped used to
show how to create an intent, the session attributes are a JavaScript object that is kept
during the entire session with the Alexa skill.

To retrieve the object stored in the session attributes we will make us of the following
code

Figure 54 - Retrieving session attributes in the Alexa backend code

On the other hand, to save an object “aux”, as session attributes we will be using

Figure 55 - Saving session attributes in the Alexa backend code

j) Load and save persistent attributes

Persistent attributes are JavaScript objects, that persist during different sessions of the
skill, but to use them either an S3 Storage or DynamoDB must be used. But in order to
access them, we are required to use the withPersistenceAdapter(…) method during the
creation of the lambda function. Then, in this method we will pass as attributes the
different persistence adapters, that since we are using DynamoDB, must be created in the
following way.

Figure 56 - Create the persistence adapter and connect it to the Persistences table

Then, we can pass the returned of this object to the withPersistenceAdapter(…) method,
where although we are passing a variable called persistenceAdapter it contains the return
value of getPersistenceAdapter() function.

94

Figure 57 - Attach the persistence adapter to the Alexa skill

Once the adapter is attached, as we did on previous figure, we will be able to load and
save the persistent attributes the same way we did for the session attributes, with the only
difference that in the method we will have the word “Persistent” instead of “Session”.

k) Helky account synchronization

To identify user on the Helky service, we will make use of a RequestInterceptor, attached
to the Alexa Skill builder before converting it to a lambda, as it can be appreciated on
Figure 57. The getAPITokenInterceptor is defined as an interceptor, JavaScript object
with a process(handlerInput) method, where the process method will be executed on each
request.

On it we will first check if the user has its JWT stored in the persistances table, by loading
the persistent attributes, and in case it is stored we will save it to the session attributes
and finish the interceptor. But in case no JWT is found, we will use the email of the device
to search for a user in the users table that has that email, via JDyn. In case it is found, we
will sign a JWT for it, and save it to the session attributes so the code can continue
executing, and we will also save it to the persistent attributes so next time it can be loaded
from there and we do not have to search for the user on the database, making the skill
faster. Lastly, in case no user was found or that it is not a patient user, we will save a flag
in the session attributes to indicate Alexa to warn the user and then exit the skill.

95

12. TESTING THE SERVICE AND FEEDBACK

12.1 Heuristic Analysis

Once the development of the different parts of the service were finished, we carried out
a set of heuristic tests to validate the functionality, check if there were any errors, among
many other aspects.

Because this heuristic analysis must be carried by a set of evaluators, which are not users,
we ended up deciding that it would be us who evaluate the usability of the service. For
this evaluation, we created a set of different tasks, provided in annex V, where some of
them are tasks that the service should handle without errors given its functionality, while
others are attempts of crashing the application or bad requests that the service should be
able to handle without erroring and interrupting the service.

After testing with those different tasks, we concluded that the service succeeded all the
heuristic analysis and that it was ready to be tested and used by real users.

12.2 User analysis and acceptation

Once we felt that our service was good enough to be launched for users to test it, we
provided it along with a formulary, available on annex VI, where users will be asked to
rate different aspects, both visual and functional, of the web application.

By doing this, we will be getting some feedback of users which we will then consider to
improve the service. During an early release, thanks to the feedback obtained from this
formulary we realized that the design of the web application was causing serious
problems on laptops around 13 to 14 inches. Then, as we explained during the design of
web application, we had to create one last design that addressed these issues. Once the
appearance issue was fixed, we continued with the beta tests and from the formulary
results, also available on annex VI, we obtained that our beta users rated our service quite
well, confirming that it was intuitive, useful and offered a good user experience, among
other things.

Furthermore, users made us some requests about things that we could include to improve
the application. After considering their requests, we incorporated those to our service and
are now available, such as the capacity of copying the medicine plan of a day to other
days, improvements to the appearance or an endpoint of the API that was responding
differently from the rest.

On the other hand, we did not manage to realize all the user testing we would have liked
to do for the skill, because skills that provide health features must go through a more strict
and longer certification process. Luckily, we can take as user testing all the certification
tests that Amazon makes to our skill before publishing it, and since it is still in the
certification process during the preparation of this report, we can conclude that for now
it has passed some of the tests. Furthermore, since we had a reliable group of beta testers
we decided to let them, one by one, use our Alexa developer account to test the skill,
although we know this is not how it should be done due to the risks it could entail.

96

12.3 Requesting feedback

Additionally, the Helky web application will always have a button that will send users to
a formulary through which they will be able to request new features or report errors that
they find on the application or skill. This way, we will let the users feel part of the service
which will help maintaining their interest on it, because their requests and claims will be
considered for future releases. The form is available in annex VII.

97

13. CONCLUSIONS

13.1 Future work

As future work, we will continue developing the Helky service due to the big potential
we found it has. First, we will be implementing more user roles, for instance personal
trainers who will be only able to modify activity plans, or nutritionists only capable of
modifying the meal plans.

We could be able to use the stored registers so when a person gets ill, a machine learning
algorithm could predict what is the patient suffering from, given the data it is stored on
the system. Also, we can implement another machine learning algorithm capable of
suggesting menu modifications considering various data such as the register lectures or
climatology, but that must be validated by the appropriate health professional before any
changes apply. Furthermore, to improve users experience we could also display all the
data stored as charts, so a more visual look of the data and the evolution of the patient is
provided.

The current service has been designed and developed considering the recommendations
and guidelines of a member of the Col·legi de Farmacèutics de Barcelona, because the
impact of the COVID-19 hindered contacting with more medical staff, especially in this
already complicated sector. In the future, when the impact of pandemic improves, we will
contact more health professionals, caregivers and medical centers, in order to improve
our service and its design.

Apart from the service, more advancements could be made to the Alexa skill such as
providing the user with extra data after detecting that it has returned from a physical
activity.

Also, we will test Alexa skill in more depth once Amazon finishes the certification
process of our skill, and for this we will conduct another beta test with a larger group of
testers.

Finally, future work will also include maintaining and improving the features to the JDyn
library, which has proven to be very useful and powerful despite of having some
shortcomings given its youth. Future versions will include support for DynamoDB
reserved words or the creation of atomic operations.

13.2 Monetization

Regarding the monetization of the service, by now we will keep it free to use by end users
although we consider monetizing the use of the Helky API from proprietary applications,
such as medical center applications, or adding a monthly or annual fee to health
institutions that want to make use of our service.

Furthermore, we will not be monetized via ads because we feel that they have no place
on a healthcare centered service and we will never commercialize with any of the data
that is stored on our service, because of the ethical principles we have assumed and the
sensitive data that we store.

98

We also leave the possibility of opening a financing round, so that investors who see a
future in a service of this style, which has it, can finance it.

13.3 Achievements

We achieved the hard task of building a standalone service from nothing, whose usage
can be appreciated in annex I. A solution designed and developed by us with collaboration
of a member of the Col·legi de Farmacèutics de Barcelona.

Our solution is globally accessible by all patients and professionals that want to have
direct communication to speed up and improve the diseases and treatment management
because the service is not limited in any aspect, so anybody can make use of it.

The service we developed is ready for the Spanish market. Helky offers a web-based
interface adaptable to the type of user that logs in, optimized for the functionalities that
each user has. Patients are also provided with a voice-based interface through the Helky
Alexa skill, that we designed and developed with focus on speeding up routinary
functionalities. All interfaces of our service were designed centered on offering a good
user experience that we have been improving by direct interaction with our stakeholders.

Of course, these two interfaces will communicate with our service API that has been
created to be scalable and security oriented via encryption of both authentication and
authorization. Furthermore, we created an identifier system, that is not sequential which
will also offer great scalability for the API and the database, for when we scale them
horizontally.

We have also created a fully functional library because our entire service relies on it,
called JDyn. It has been developed as a standalone library that other developers will be
able to incorporate to their server-side code to make use of DynamoDB directly by
JavaScript objects instead of commands.

99

Bibliography

[1] “Healthcare Virtual Assistants Market by Product (Chatbots, Smart Speakers), User
Interface (Automatic Speech Recognition, Text Based, Text-to-Speech Based), End
User (Healthcare Providers, Patients, Healthcare Payers) - Global Forecast to 2024”
https://www.marketsandmarkets.com/Market-Reports/healthcare-virtual-assistant-
market-214922625.html (accessed May 26 2021)
[2] “Healthcare Virtual Assistant Market To Reach USD 2.83 Billion By 2027 | Reports
and Data” https://www.globenewswire.com/news-
release/2020/08/11/2076057/0/en/Healthcare-Virtual-Assistant-Market-To-Reach-USD-
2-83-Billion-By-2027-Reports-and-Data.html (accessed May 26 2021)
[3] “IQVIA About us”
https://www.iqvia.com/about-us (accessed May 26)
[4] Jonah Comstock, “IMS: 1 in 10 health apps connects to a device, 1 in 50 connects to
healthcare providers”, September 17th 2015:
https://www.mobihealthnews.com/46863/ims-1-in-10-health-apps-connects-to-a-
device-1-in-50-connects-to-healthcare-providers (accessed May 26 2021)
[5] Marisol Larrosa, “Las apps de salud pueden llegar a cambiar el sistema sanitario tal
y como lo entendemos hoy en día”, March 2014:
https://www.pmfarma.es/articulos/1570-las-apps-de-salud-pueden-llegar-a-cambiar-el-
sistema-sanitario-tal-y-como-lo-entendemos-hoy-en-dia.html (accessed May 26 2021)
[6] “lamevasalut: Coneix els serveis” https://lamevasalut.gencat.cat/web/cps/tour
(accessed May 27 2021)
[7] “quironprevención: Misalud” https://www.quironprevencion.com/es/servicios-
consultoria/innovacion-prevencion-riesgos-laborales/gestion-innovadora-prevencion-
riesgos-laborales/app-misalud (accessed May 27 2021)
[8] “mySugr: app” https://www.mysugr.com/en/diabetes-app (accessed May 28 2021)
[9] “mySugr: Accu-Check” https://www.mysugr.com/en/accuchek/ (accessed May 28
2021)
[10] “Giant Eagle Pharmachy Alexa Skill” https://www.amazon.com/Omnicell-Inc-
Giant-Eagle-Pharmacy/dp/B08164DYJ7 (accessed May 28 2021)
[11] Pieter Van Gorp and Marco Comuzzi, "Lifelong Personal Health Data and
Application Software via Virtual Machines in the Cloud," in IEEE Journal of
Biomedical and Health Informatics, vol. 18, no. 1, pp. 36-45, January 2014, doi:
10.1109/JBHI.2013.2257821 (accessed June 26 2021)
[12] S. Soegijoko, I. M. Puspitasari, A. Aridarma and I. D. Jani, "e-health for improving
community healthcare: Encouraging clinical experience of simple e-prescription system
and m-health system development for mother and childcare," 2011 IEEE 13th
International Conference on e-Health Networking, Applications and Services, 2011, pp.
102-105, doi: 10.1109/HEALTH.2011.6026722 (accessed June 26 2021)
[13] Julio Alonso Arévalo, “Aplicaciones móviles en medicina y salud”, April 2016:
https://gredos.usal.es/handle/10366/130118 (accessed June 26 2021)

100

[14] European Commission, “Green paper on mobile health (“mhealth”)”, Abril 10
2014: https://digital-strategy.ec.europa.eu/en/library/green-paper-mobile-health-mhealth
(accessed June 26 2021)
[15] Junta de Andalucía Consejería de Salud y Familias, “Distintivo AppSaludable”,
http://www.calidadappsalud.com/ (accessed June 27 2021)
[16] “NHS Diabetes” https://www.nhs.uk/conditions/diabetes/ (accessed Feb. 4 2021)
[17] “World Health Organization Diabetes”, April 13th 2021:
https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed May 16 2021)
[18] Ann Pietrangelo, “Is High Blood Pressure in Older Age Inevitable?”, May 25th
2020: https://www.healthline.com/health-news/high-blood-pressure-in-older-age-ways-
to-lower-risk (accessed May 16 2021)
[19] “NHS High Blood Pressure” https://www.nhs.uk/conditions/high-blood-pressure-
hypertension/ (accessed Feb. 4 2021)
[20] O’reilly Media Inc, “Learning PHP, MySQL, JavaScript, CSS & HTML5, 3rd
Edition”, “Chapter 1. Introduction to Dynamic Web Content”, June 2014:
https://www.oreilly.com/library/view/learning-php-mysql/9781491906910/ch01.html
(accessed May 27 2021)
[21] “Developer Mozilla Ajax” https://developer.mozilla.org/en-
US/docs/Web/Guide/AJAX (accessed May 27 2021)
[22] Ecma International, “ECMAScript® 2015 Language Specification”, “June 2015”
https://262.ecma-international.org/6.0/ (accessed May 28 2021)
[23] “IBM Archives: IBM Shoebox”
https://www.ibm.com/ibm/history/exhibits/specialprod1/specialprod1_7.html (accessed
May 29 2021)
[24] Hursley Museum, “1961 Shoebox IBM Archives 78 013”, Feb. 12th 2018:
https://www.youtube.com/watch?v=rQco1sa9AwU (accessed May 29 2021)
[25] “DB-Engines” https://db-engines.com/en/ (accessed May 26 2021)
[26] “State of JS 2020: Technologies” https://2020.stateofjs.com/en-US/technologies/
(accessed June 4 2021)
[27] SRI International, “Siri”, 2007: https://www.sri.com/hoi/siri/ (accessed May 30
2021)
[28] “Apple Developer: Siri” https://developer.apple.com/siri/ (accessed May 30 2021)
[29] James Huang, “You Can Now Seamlessly Connect Alexa Skills to Mobile Apps”,
July 22nd 2020: https://developer.amazon.com/en-US/blogs/alexa/alexa-skills-
kit/2020/07/you-can-now-seamlessly-connect-alexa-skills-to-mobile-apps (accessed
May 30 2021)
[30] “Alexa Skill Kit: Alexa for Apps” https://developer.amazon.com/en-
US/alexa/alexa-skills-kit/get-deeper/response-api/alexa-for-apps (accessed May 30
2021)
[31] “Microsoft support: Using Cortana on iOS or Android”
https://support.microsoft.com/en-us/topic/using-cortana-on-ios-or-android-caaa50e4-
31f1-4165-9659-3caf125ebd38 (accessed May 30 2021)

101

[32] “Microsoft support: Upcoming changes to Cortana”
https://support.microsoft.com/en-us/topic/upcoming-changes-to-cortana-2d04871e-
f576-7080-58b4-7c37131c3baf (accessed May 30 2021)
[33] “Microsoft documentation” https://docs.microsoft.com/en-us/cortana/skills/
(accessed May 30 2021)
[34] “Bixby developers” https://bixbydevelopers.com/ (accessed May 30 2021)
[35] “Bixby developers: Samples & Templates”
https://bixbydevelopers.com/dev/docs/sample-capsules (accessed May 30 2021)
[36] “Donald A. Norman and Stephen W. Draper”, “User Centered System Design:
New Perspectives on Human-computer Interaction”, January 1st 1986:
https://jnd.org/user-centered-system-design-new-perspectives-on-human-computer-
interaction/ (accessed Mar. 21 2021)
[37] MongoDB, “Data Modeling with MongoDB”, June 9th 2020:
https://youtu.be/yuPjoC3jmPA (accessed Feb. 27 2021)
[38] “CIMA: Buscador para profesionales sanitarios”
https://cima.aemps.es/cima/publico/buscadoravanzado.html (accessed Mar. 2 2021)
[39] “CIMA: NOMENCLÁTOR DE PRESCRIPCIÓN DE MEDICAMENTOS DE
USO HUMANO DE LA AGENCIA ESPAÑOLA DE MEDICAMENTOS Y
PRODUCTOS SANITARIOS - AVISO LEGAL”
http://listadomedicamentos.aemps.gob.es/Aviso_Legal_Nomenclator.pdf (accessed
Mar. 2 2021)
[40] Agencia Española de Medicamentos y Productos Sanitarios,
 “CIMA: CIMA REST API” https://sede.aemps.gob.es/docs/CIMA-REST-
API_1_19.pdf (accessed Mar. 2 2021)
[41] Roy Thomas Fielding, “Architectural Styles and the Design of Network-based
Software Architectures”. Doctoral dissertation, University of California, Irvine, 2000:
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm (accessed Feb.
28 2021)
[42] “GraphQL” https://graphql.org/ (accessed Feb. 29 2021)
[43] “JWT: Introduction” https://jwt.io/introduction (accessed Feb. 28 2021)
[44] “AWS SDK for JavaScript v3”
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/index.html (accessed Mar.
1 2021)
[45] Rikard, “The Psychology of Color: A Designer’s Guide to Color Association &
Meaning”, February 28th 2015: https://zevendesign.com/color-association/ (accessed
Mar. 3 2021)
[46] “Angular: Lazy-loading feature modules” https://angular.io/guide/lazy-loading-
ngmodules (accessed Mar. 23 2021)
[47] “Alexa developer documentation: Understand How Users Invoke Custom Skills”
https://developer.amazon.com/en-US/docs/alexa/custom-skills/understanding-how-
users-invoke-custom-skills.html (accessed Apr. 15 2021)
[48] “Alexa developer documentation: Slot Type Reference”
https://developer.amazon.com/en-US/docs/alexa/custom-skills/slot-type-reference.html
(accessed Apr. 15 2021)

102

[49] “Alexa developer documentation: Speech Synthesis Markup Language (SSML)
Reference” https://developer.amazon.com/es-ES/docs/alexa/custom-skills/speech-
synthesis-markup-language-ssml-reference.html (accessed Apr. 18 2021)
[50] “Google developers: Dialogflow and legacy Actions SDK – SSML”
https://developers.google.com/assistant/conversational/df-asdk/ssml (accessed Apr. 18
2021)
[51] “Apple developer: Speech synthesis”
https://developer.apple.com/documentation/avfoundation/speech_synthesis (accessed
Apr. 18 2021)

103

ANNEXES

Annex I: Repositories and demo

Github repositories:

JDyn Library: https://github.com/albertbaiges/JDyn
Helky API: https://github.com/albertbaiges/Helky_API
Helky Web Application: https://github.com/albertbaiges/Helky_Web_Application

Demo in pictures:

104

105

Annex II: Helky REST API Documentation

a) Authentication endpoints:

Register an account:

Endpoint: /signup
Method: POST
Body:

Key Value type Required
username String Yes
email String Yes
password String Yes

Response on success:

Key Value type Description
userID String Assigned userID
username String Registered username
email String Registered email
utype String User type: patient

Login:

Endpoint: /login
Method: POST
Body:

Key Value type Required
email String Yes
password String Yes

Response on success:

Key Value type Description
userID String userID of the authenticated

user
username String username of the

authenticated user
utype String user type of the

authenticated user
authorization Object JWT token and creation

time of the token

b) API endpoints

All endpoints of the API start by: “/api”

106

User:

URI Method Body Response
/user GET None User object
/user PATCH UpdateUser object UpdateUser object with all

values for stored user
/user/notifications GET None Notifications object
/user/relations POST Relation object UserLite object of the

target user

Patient:

URI Method Body Response
/patient/disorders GET None Disorders object
/patient/medicines GET None Medicines object
/patient/medics GET None Medics object
/patient/centers GET None Centers object
/patient PATCH MedDis object UserMedDis object

Medic:

URI Method Body Response
/medic/patients GET None MedicPatients object
/medic/centers GET None MedicCenters object
/medic/patients PATCH PatientMedDis UserMedDis object for the

patitent

Center:

URI Method Body Response
/center/patients GET None CenterPatients object
/center/medics GET None CenterMedics object
/center/signmedic POST Same fields as a

normal register

Plans:

URI Method Body Response
/plans/:planID/meals GET None MealPlan object
/plans/:planID/meals PATCH MealUpdate object MealUpdated object
/plans/:planID/medicines GET None MedicinesPlan object
/plans/:planID/medicines PATCH MedicinesUpdate

object
MedicinesUpdated
object

/plans/:planID/activities GET None ActivityPlan object
/plans/:planID/activities PATCH ActivityUpdate

object
ActivityUpdated object

(Get methods offer the possibility to set a “day” query parameter in order to get
weekdays only filled with data about specified day, additionally get meals can specify

107

an “slot” to get the data about a certain meal. When accessing via it, extra information
will be returned)

Registers:

URI Method Body Response
/registers/supported GET None List family disorders

that support registers
/registers POST JSON with

family key
containing a
disorder family
with supported
register

disorder family,
disorder type and
registerID that
created the new
register

/registers/:registerID GET None RegisterInfo object
for register with
given id

/registers/:registerID/tracking GET None TrackingInfo object
for register with
given id

/registers/:registerID/tracking PATCH Entry object TrackingState object

(When getting the trying by default it will return the entries for current month and year,
other months and years can be specified via the month and year params, if any is not
provided it will take its default value)

Search:

URI Method Params Response
/search GET (u)sername

(e)mail
(t)ype of user

UserList object of users that match
the fielter specified in query
params. If left empty, it will return
all the users.

c) Objects:

User:

Key Value
userID String: id of the user
username String: username of the user
email String: email of the user
Medicines (for user patient) Array <string>: list of medicines of the user
disorders (for user patient) Array: list of disorders {family, type}

UpdateUser

Key Value
userID String: id of the user

108

username String: username of the user
email String: email of the user

Notifications

Key Value
userID String: id of the user
username String: username of the user
email String: email of the user
notifications Object: {requests: array of users, updates: empty

array}

Relations

Key Value
userID String: id of the user
username String: username of the user
email String: email of the user
notifications Object: {requests: array of users, updates: empty

array}

Relation

Key Value
action String: action to perform (request | accept | reject)
target String: target of the action (userID)

UserLite

Key Value
userID String: id of the user
username String: username of the user
email String: email of the user

Disorders

Key Value
userID String: id of the user
username String: username of the user
email String: email of the user
disorders Array<{family, type}>: list of disorders

Medicines

Key Value
userID String: id of the user
username String: username of the user
email String: email of the user

109

medicines Array<String>: List of Spanish register numbers of
the medicines

Medics

Key Value
userID String: id of the user
username String: username of the user
email String: email of the user
medics Object: {userID: patient data, …} list of medics

Centers

Key Value
userID String: id of the user
username String: username of the user
email String: email of the user
centers Object: {userID: center data, …} list of centers

MedDis

Key Value
disorders Array<{family, type}>: list of disorders
medicines Array<String>: list of medicines

UserMedDis

Key Value
userID String: id of the user
disorders Array<{family, type}>: list of disorders
medicines Array<String>: list of medicines

MedicPatients

Key Value
userID String: id of the user
username String: username of the user
email String: email of the user
patients Object: {userID: patient data, …} list of patients

MedicCenters

Key Value
userID String: id of the user
username String: username of the user
email String: email of the user
centers Object: {userID: center data, …} list of centers

PatientMedDis

110

Key Value
userID String: userID of the patient to update
disorders Array<{family, type}>: list of disorders
medicines Array<String>: list of medicines

CenterPatients

Key Value
userID String: id of the user
username String: username of the user
email String: email of the user
centers Object: {userID: patient data, …} list of patients

CenterMedics

Key Value
userID String: id of the user
username String: username of the user
email String: email of the user
medics Object: {userID: medic data, …} list of medics

MealPlan

Key Value
patient Object: {userID, username, email} info about the

patient that the plan belongs to
weekdays Object: day and meals information

MealUpdate

Key Value
day String: day of the week to target
meal String: meal to target (breakfast | lunch | dinner)
Info Object: {menu, comments} menu and comments for

this meal

MealUpdated

Key Value
“day” (name of the day
updated)

Object: {“day updated”: {meals: {“meal updated”:
{menu, comments}}}} data about the meal that got
stored

MedicinesPlan

Key Value
patient Object: {userID, username, email} info about the

patient that the plan belongs to
weekdays Object: day and medicines planning information

111

MedicinesUpdate

Key Value
day Day that the medicines plan must be assigned to
medicines Array<code, at>: where code is the Spanish register

number of the medication and at can take an hour
string or an arrays of hour strings, hours formatted
hh:mm:ss

MedicinesUpdated

Key Value
data Object: {weekdays: {“updated day”: medicines}}

where medicines is the data we pushed through the
POST method that originated this response.

ActivityPlan

Key Value
patient Object: {userID, username, email} info about the

patient that the plan belongs to
weekdays Object: day and activities planning information

ActivityUpdate

Key Value
day String: day of the week to target
activityies Object: {exercises, comments} exercises and

comments for this day

ActivityUpdated

Key Value
“day” (name of the day
updated)

Object: {“day updated”: activities: {data}} where
data is the data we pushed on the POST method that
originated this response.

RegisterInfo

Key Value
registerID String: identification of this register
patient Object: {userID, username, email} info about the

patient that the plan belongs to
disorderFamily String: name of the disorder family (supported

register)
disorder String: name of the disorder that this register is for

112

TrackingInfo

Key Value
patient Object: {userID, username, email} info about the

patient that the plan belongs to
disorderFamily String: name of the disorder family (supported

register)
disorder String: name of the disorder that this register is for
tracking Object: {“year number”: {“month number”: {“day

number”: [{data, timestamp, at}, …]}}}

Entry

Key Value
data Number: value of the lecture to insert
timestamp String: timestamp of valid Date type, post 1/1/2021,

recommended in ISO format.

TrackingState

Key Value
tracking Object: as tracking field on the TrackingInfo object,

but for the year and month to which the data was
added

UserList

Key Value
users Array <{userID, username, email, utype }>

113

Annex III: API request flowcharts

Because there are many extensive flowcharts, down below we provide a link to explore
them free.

https://drive.google.com/file/d/1NX5AvU0do_16xOwNIewqq89z1SN1g4vl/view

114

Annex IV: Sketches

All sketches can be also found on:

https://www.figma.com/file/fq8FS5qBTlgoBmpOS7ipno/Helky-WebApp-Sketches

a) Sketch 1

115

b) Sketch 2

116

117

c) Sketch 3

118

119

d) Sketch 4

120

121

Annex V: Heuristic test

Can navigate to tutorials, release notes and privacy sections without being logged in?
Yes

Can we sign into the application providing an incorrect email? No

Can we sign into the application providing a repeated email? No

Are the different applications loaded accordingly to the logged user type? Yes

Can we navigate to all the functionalities of the application for our user type? Yes

Can we navigate to all the functionalities by specifying the URL? Yes

Can we navigate to applications of other users via URL? No

Is patient user allowed to view and modify his meals, medicines, and activities? Yes

Can patient modify its disorders? Yes

Can patient create a register? Yes.

Can he create it for a disorder that he has not added? No

Can patient insert an entry for an existent register? Yes

Can patient view months that prior to January 2021 and post the current month on the
calendar? No

Can users modify their name, email, and password? Yes

Can modify it to an email already taken? No

Can they send and view “friend” requests? Yes

Can the accept and reject requests? Yes

Can medic view all the plans of its patients? Yes

Can edit it except for the register? Yes

Is a medicine removed from the plans it is removed from the patient user? Yes

Can center sign up a medic account? Yes

Can the users log out correctly? Yes

Can leave login and reopen app later to be logged in directly? Yes, depending on
elapsed time.

122

Can only the patients open the skill? Yes

Alexa answers the reason why the skill cannot be used and quits it for non-patient users
or because no account is found? Yes

Do all intents work? Yes

Can request all data and add entries to registers? Yes

Can add an entry from Alexa when no register exists for that disorder? No

Can Alexa be asked for help and responds correctly? Yes

Does Alexa ask if we want her to read the comments only when there are comments?
Yes

When answering yes, it is responding with the correct comments? Yes

Can close the Alexa skill by voice? Yes

123

Annex VI: User experience form

124

Tengo un portátil con pantalla pequeña (14") y se me salen las cajas del limite
Alexa me entendía bien
En la sección de perfil la parte de patología colisiona con la de abajo
Pensaba que en medicinas no tenia nada, pero estaba cargando
Todo bien
Un endpoint de la API responde en formato diferente
Me falta poder repetir la medicación varios dias, lo tengo que entrar en cada uno
En Alexa he hechado en falta alguna frase típica para preguntar
Nada que añadir
No puedes poner Log Out en castellano?
Me ha gustado que salgan las cajas de los medicamentos
No me han gustado tantos colores, demasiado baile de colores
La Alexa no entenida "comer"
Muy bien, he visto que en Alexa también entiende decimales, bien hecho

125

Annex VII: Feedback form

