A real time hybrid pipeline in Vulkan

Florenti Solano, Pau

Slirs 2020-2021

.
::. oGRS EBOTE

L rdiAl Bl

Director: JAVI AGENJO
[PRV

L\ GRAU EN ENGINYERIA INFORMATICA

S \- o =

upf g:m?;bm gtsx;zlfior Politécnica T re b a I I d e F I d e G rau

Barcelona

ii

Agraiments

I would like to thank my supervisor Javier Agenjo for his input and support throughout the project.
Also my family and friends for being very supportive from the beginning.

iii

Resum

Les aplicacions grafiques interactives d’avui en dia, especialment en I'industria dels videojocs, han
augmentat la demanda en la versemblanca i realisme de les seves imatges. Fins fa ben poc, les
aplicacions grafiques interactives estaven totalment dominades per algorismes de rasteritzacié pero
amb la potencia de les 1ltimes grafiques i les noves APIs el tracat de rajos s’ha convertit en un nou
component en la renderitzacié d’imatges a temps real.

Aquest projecte consisteix en proposar una pipeline grafica que faci ds tant de la rasteritzacié
com del tracat de rajos i sigui interactiva de forma optima per tal de treure el maxim partit
d’ambdés algorismes.

Resumen

Las aplicaciones graficas interactivas de hoy en dia, especialmente en la industria de los videojuegos,
han aumentado la demanda en la verosimilitud y realismo de sus imagenes. Hasta hace bien poco,
las aplicaciones gréficas interactivas estaban totalmente dominadas por algoritmos de rasterizacién
pero con la potencia de las ultimas graficas y las nuevas APIs el trazado de rayos se ha convertido
en un nuevo componente en la renderizacién de imagenes a tiempo real.

Este proyecto consiste en proponer una pipeline gréafica que use tanto la rasterizaciéon como el
trazado de rayos y sea interactiva de forma éptima con el objetivo de sacar el médximo partido a
ambos algoritmos.

Abstract

Interactive graphic applications nowadays, specially in the video game industry, have increased the
demand on realism and plausibility of its images. Until recently, interactive graphic applications
were exclusively in the rasterisation domain but with the power of the latest graphics processing
units and the newest APIs, ray tracing has become in a new component in the rendering of real
time images.

This project proposes a graphic pipeline using both rasterisation and ray tracing algorithms
and allows its interaction optimally with the aim of taking the best of both paradigms.

Contents

Agraiments
Abstract
1 Introduction
1.1 Imtroduction e e
1.2 Background
1.3 Objectives e e
1.4 Methodology e e
1.5 Thesis Structure L
2 State of the Art
2.1 Rasterised Rendering L e
2.2 G-Buffer e
2.3 Raytracing e
2.3.1 Ambient Occlusion and Global illumination
2.4 Shading e
2.4.1 Microfacets L
2.4.2 Energy conservation principle oL oo 0oL
2.4.3 Subsurface scattering oL
2.4.4 Therender equation

Why Vulkan?

3.1 Imitialisation L

3.2 Executing Commands L

Proposed Solution

4.1 The pipeline L e

4.2 Rasterisation rendering Lo o

4.3 Data organisationo

4.4 Tracing Rays o e
4.4.1 Acceleration Structureso o
4.4.2 Ray tracing descriptors and shaders 0oL
4.4.3 Shadows
4.4.4 Reflection and Refraction o L.

Results

Conclusion

Future Work

7.1 Reducing rays for reflection and refraction L.

7.2 Reducing rays for shadows L o

7.3 Acceleration Structure Instancingo oL

7.4 Multi-Threading e

vi

iii

11
11
12

13
13
15
18
19
21
22
25
31

38

41

8 Annex

vii

44

List of Figures

U W N =

~N

10
11

12
13
14
15
16
17
18
19
20

21
22

23
24
25
26
27
28
29
30
31
32

rasterisation pipeline[l] L 4
Deferred shading using G-Buffers.[2] 5
Microfacets at a microscopic level for rough and smooth surfaces.[3] 7
Light beam being scattered when hitting a surface.[3]. 8
Light gets scattered when entering, penetrating a surface and exits at a different

point.[4] . . .o 9
Render equation. 9
Primary rays are shot from camera position into the scene for each pixel in the screen.

Then, each ray computes intersection calculations with geometry. The return [5] . . 14
Pipeline solution scheme. L L o 15
(a) Position (b) Normal Vectors (¢) Albedo (d) Material (e) Motion Vectors (f)

Emissive texture 17
Unpacking vertex data in a ray-tracing pass. L. 19

Primary rays are shot from camera position into the scene for each pixel in the screen.
Then, each ray computes intersection calculations with geometry. If a ray intersects
any geometry the subsequent rays can be traced to calculate shadows or illumination

techniques.[5] 20
Acceleration Structure composition[6] Lo 22
traceRaysEXT() definition. L 23
Ray tracing pipeline logic.o 24
Soft shadow composition[7] L L 27
Shadows traced with 1spp without accumulation. 29
Mix function. e e e 29
Motion vector calculations.o 30
Shadows traced with 1spp with spatio-temporal accumulation. 31
Shader snippet. Computing the reflective properties to be returned in the ray-

generation shader. L oL 32
Ray traced perfect specular reflections. 33
Shader snippet. Computing the refractive properties to be returned to the ray-

generation shader. L L 34
Ray traced perfect specular refraction. oo, 35
Returning the payload in the closest-hit shader. 37
Launching rays until max recursion value is reached or no more rays are needed. . . 37
System properties used for development and testing. 38
Fully ray-traced scene 38
Hybrid scene o . 39
Average frame rate statistic of the dynamic scene. 39
Hybrid frame profiling. 40
Frame with number of reflection and refraction meshes increased. 40
Frame with geometry increased. L oL oL o 41

viii

1 Introduction

1.1 Introduction

Computer graphics have always been evolving. It has not reached a static point where a final
or perfect solution has been established for all cases. From the beginning, where flashing pixels
were displayed on the screen until now where complex geometries can be rendered, the field has
constantly been changing to achieve the illusion of reality. But for the most time, this ability to
create realistic images was not able for real-time applications. It was mostly focused on the movie
industry, which could afford the huge computational cost and rendering times.

Even with the latest hardware, real-time applications cannot achieve a result similar to the
movies and pre-computed photo-realistic results. However, improvements and new techniques make
it much closer to reality than ever before. The goal of graphically simulating reality has been in
the computer games scene for a while now, and the industry is pushing forward in the field due to
a huge demand for photo-realistic images.

But due to hardware constraints, this goal has become a daunting task for developers. Such
limitations made it impossible to compute accurate physical environments in real-time until recently.
With the latest graphical processing units, developers can trace rays in real-time, allowing them to
compute how light would behave in reality.

1.2 Background

Due to demands and competition, computer games have grown in complexity and fidelity. Modern
systems aim to simulate reality, but games are not only based on their rendering system but also
game logic, mechanics, physics, artificial intelligence, and much more. The fact that games are built
around so many pieces makes game engines’ resources limited since the application is expected to
run at an average of 60 frames per second. It is because of that that games use rasterisation as
the main rendering method. The main purpose of GPUs is to draw millions of triangles in parallel
very fast, and that allows developers to draw images of very complex meshes in very short periods.
However, they are not very good at computing how reality works. Current real-time techniques have
difficulties dealing with effects caused by light interacting with multiple or different surfaces and
materials. In order to achieve fidelity, developers must be able to trace rays to compute how light
would behave in the real world and simulate effects such as reflection, refraction, or soft shadows.
This algorithm, known as ray tracing, has existed for a long time, but due to its computational
cost, it has been kept to only pre-computed images such as the ones seen in movies.

With the release of the new RTX graphics cards line by NVIDIA in September 2018 and
subsequent API (Application Programming Interface) versions of DirectX and Vulkan, users were
able to run programs that traced rays. This new hardware was specially manufactured to bring
real-time ray tracing to a consumer level. Still, the computational cost of ray tracing a whole scene
is too elevated to bring it to a game nowadays, and thus it is necessary to combine both worlds to
achieve the most believable image.

1.3 Objectives

This end-of-grade project aims to study and propose a graphics pipeline that allows the combination
of both rasterisation and ray tracing. The following topics are objectives for the research being
proposed

1. To develop and implement a 3D graphical rendering engine that takes advantage of the Vulkan
ray tracing extensions.

2. To combine both rasterisation and ray tracing pipeline to build a functional real-time scene.

3. To optimise the number of rays traced.

1.4 Methodology
Once the project have been introduced, let us take a look at how the project was planned.

First and foremost, I wanted to find which weak aspects had a rasterisation pipeline and how
ray-tracing would improve such spots. The main topics found here would be shadows, which takes
a lot of verbose code and performance for a real-time application, soft shadows, refraction and
reflection. These can be implemented physically accurate tracing rays, whereas some hacks are
needed for a rasterisation approach with a similar result.

Once those subjects were found, it was time to study how a pipeline would take advantage of
both methods and communicate between them. This includes getting familiar with a low-level API
such as Vulkan and implementing a rendering engine with the necessary extensions and capabilities,
and understanding the process of ray tracing a scene to find ways to reduce such computational
cost.

Finally find the spots where rays needed to be traced, reducing the number of rays sampled,
thus improving the performance.

1.5 Thesis Structure

The memory of this project has been structured in several sections. First of all, the introduction
has exposed the aim and motivations of this project with the background and methodology that
has been carried out during the process.

Following you can find the state of the art section to present the latest state of the rasterisation
and ray tracing world and a basic introduction to their use.

Since Vulkan is the APT used in the project, I thought it important to dedicate a whole section
to its functioning and capabilities with a brief explanation of its initialisation and structure of the
code.

The proposed solution section is the backbone of the thesis and presents the solution carried
out. In it, you will find a detailed explanation of how and why the decisions were made and a
detailed structure of the pipeline.

Finally, a results section will scrutinise the results taken by a profiling application.

The future work section will expose ways to improve the pipeline in the future and new possible
techniques.

2 State of the Art

The objective of real-time rendering is to obtain images from a computer fast enough to produce
the illusion of reality. This illusion makes the user interact or respond depending on the images
presented on the screen, believing there is a dynamic process rather than a still image. The rate
at which images are presented is commonly known as frames per second (FPS) or Hertz (Hz). In
order to maintain this illusion of a dynamic process, a minimum of 30 fps or higher is required. If
an application runs at less than this minimum, the user realises the images being produced and
loses the feeling of continuity. However, when the rate is high enough, the user focuses more on
action and reaction in a fluid way.

A television usually presents each image at a rate of 24 frames per second, but it may display
the same frame more than once to avoid flickering on the screen. Then, the display rate is different
from the refresh rate. For a non-interactive application, a rate of 24 frames per second may be
acceptable since the human eye can perceive motion at this rate. For less frequency, the eye would
process the images rather individually than in motion. That may be okay for a movie, but there is
more than just the display rate when the focus is an interactive application. Watching a sequence
of images at 24 fps may be acceptable for sensing motion, but it may not be enough when response
time plays a huge role in the application.

Interactivity is not only the main criterion when building a real-time rendering engine; it has
to build three-dimensional images. Otherwise, any fast response application drawing anything on
the screen would be acceptable. There are multiple algorithms to represent a 3D scene in an image.
The two most important and the ones we will focus in this project are rasterisation and ray tracing.

Real-time state of the art techniques may have a hard time trying to simulate effects caused by
light interacting with different surfaces or materials (reflection and refraction) or creating accurate
physical behaviours (soft shadows and global illumination). More accurate techniques are used when
creating a still image or single frames for a video with no interaction. Due to their computational
cost, those techniques are reserved for non-interactive products. One of these techniques would be
ray tracing, which works by simulating the path light takes in reverse order until it intersects with
the scene, resulting in a more realistic image.

2.1 Rasterised Rendering

Rasterisation is an algorithm that produces 2D images given a 3D scene by using the graphics
rendering pipeline or simply known as the pipeline. This algorithm is capable of computing a 2D
image given a camera, three-dimensional objects, light sources and more by calculating a series of
transformations to the vertices of the polygons and filling the area of the resulting polygons that
fall inside the camera cone. In the figure 15, we can see the sequence of operations that the vertices
take in the pipeline until they are saved in the output buffer.

Vertex positions that we want to visualize are transformed by 4x4 matrices and are expected
to be in normalised device coordinates (NDC). Each x, y and z is between -1.0 and 1.0; coordinates
outside this range will not be visible. Transforming coordinates to NDC is accomplished by a series

VERTEX SHADER SHAPE ASSEMBLY GEOMETRY SHADER

TESTS AND BLENDING FRAGMENT SHADER RASTERIZATION

VERTEX DATA[]

Figure 1: rasterisation pipeline[1]

of transformations, including the camera perspective, which will finally dictate if the coordinate
falls inside the visibility range.[2] These transformations are computed in the vertex shader, which
carries such computations for each input vertex. The rasteriser pass will then fill the polygon, and
finally a visibility test is carried out just in case multiple polygons are superposed. Each pixel
stores a depth value, and when another pixel superposes, both depth values are compared, and the
nearest one is the final output. Usually, such polygons are triangles since they are the simplest
geometry form and the most cost-effective one.[5]

The Rasterisation process is fast and its cost is linear. This method allows us to compute
millions of triangles per frame and create images from complex meshes quickly. The efficiency in
computing millions of triangles quickly is why rasterisation has become the predominant algorithm
for real-time applications. Nevertheless, this is not an accurate way to compute real environments.
Some effects like shadows, transparency and reflections need complex, verbose and sometimes high
computational cost with a not very realistic result.

2.2 G-Buffer

The industry’s requirements pushed forward the need to improve the performance of rendering 3D
scenes, and new techniques appeared. One of the most famous, still used nowadays after three
decades since its first appearance, is taking advantage of the information stored in texture from a
previous geometry pass. Those textures are called geometry buffers or G-Buffers. Essentially those
buffers are a 2D array of geometric properties such as position, normal vectors and albedo colour.
Then in a second shading pass, this information is read by pixel and used to compute the shading
of multiple lights. G-Buffers are widely used in the Deferred Shading technique, which separates
the geometry rendering from the light calculations to compute more lights in the scene. Previous to
this technique, forward rendering was used. This approach had to draw every model for each light
to compute its shading correctly, resulting in a higher demand of resources when multiple lights

were defined in the scene.

Nonetheless, deferred shading had its drawbacks. This technique allows for shading a scene
with far more lights. However, it requires storing all necessary geometry information in textures
inside GPUs memory, which can have size and bandwidth limitations depending how powerful the
GPU is. This can affect the number of textures that can be written to. Mobile applications, for
example, cannot take advantage of this approach. Usually, four textures are the established limit,
even though more have been used in our project. Multiple materials in a scene also mean more data
to be encoded in the G-Buffers, and as just mentioned, it may be a problem due to the memory
cost. Also, when using geometry buffers, it is difficult to handle transparency as one pixel can only
store one value for position, normal vectors and colours. Sorting objects by distance when rendering
may be a solution, but we will take advantage of rays in our project to solve transparencies.

GEOMETRY LIGHTING

G-BUFFER

Figure 2: Deferred shading using G-Buffers.[2]

2.3 Ray tracing

On the other hand, we have the ray tracing algorithm with the same objective: render 3D scenes
with a result much closer to reality. The algorithm is based on how light behaves in the world to
compute how photons react to materials reflecting and refracting, thus delivering a photorealistic
result. Photons travel through the air and collide with objects in the scene. Eventually, some of
those photons end up in the camera which captures them. In order to only take into account those
rays that make to the viewer’s eye, we need to trace rays backwards, starting at the camera. Those
first rays fired from the viewer’s eye are known as primary rays. Those rays eventually will intersect
with polygons in the scene, calculate the lighting value at that point and return it to the camera,
defining the geometry directly visible. In reality, photons keep on bouncing for all surfaces until
they lose all energy. To emulate that effect secondary rays are shoot recursively from the points
intersected by the primary and subsequent secondary rays. Again those rays may collide with the
scene, compute the lightning value and return to the camera. A mix with the colour at each bounce
is computed as the final contribution for that specific pixel.

This process will produce far more photorealistic results than a rasterised pipeline. However,
its computational cost makes it impractical for dynamic scenes. That is the main reason why this

algorithm is used in projects such as films. Each frame can be precomputed without worrying too
much about the time it takes to render. How rays are cast can determine the cost of computing an
image. The number of rays may determine the resolution, and its angle determines the perspective
of the camera. Also, the materials where a ray intersects may determine the number of secondary
rays or even if no ray is needed to be traced. Refractive or reflective surfaces may scatter rays in
multiple directions, increasing the number of rays in the scene. In contrast, an opaque surface may
need only the primary ray and the shadow ray to be defined. However, that would leave behind
effects such as ambient occlusion and global illumination.

2.3.1 Ambient Occlusion and Global illumination

Ambient occlusion refers to the darkening of parts of the scene that partially have geometry close
enough to occlude incoming light. In reality, any illuminated point is returning the effect light
coming from all directions around specific position. The hemisphere facing the normal vector in a
point is the area through light incises in such a point. Due to the morphology of the surroundings,
more or less light can enter through that area. Edges, holes and surfaces can occlude part of the
incoming light darkening that pixel. Solving the integral for the visibility in that hemisphere is
impossible. Thus an arbitrary number of points are sampled in the area and rays are launched in
those directions. The number of rays occluded over the total of rays shot gives the occlusion factor
used to darken the colour giving more depth to the scene. For the whole scene, this effect may
be included as a post-processed effect which may be computed in real time, but for some complex
models this information may be stored in a texture.

Global illumination is based on the same principle that all incoming light from the hemisphere
determines the colour of one pixel. Light contribution does not only include the emission from
light sources, but from all the surroundings. Photons bounce, losing energy in every collision, but
until all energy is depleted, photons still contribute to the colouring of the surfaces they collide.
Then all objects contribute to their surroundings even though they do not emit light. This effect is
known as global illumination in computer graphics and can be achieved by throwing rays in random
directions through the hemisphere, compute the colour of the surrounding elements and add them
to the pixel colour.

Both techniques can also be implemented in a rasterised pipeline, but due to its cost, the
information of the scene is precomputed and stored in textures. This is also known as baked ambient
occlusion and baked global illumination. For static scenes where distant lights affect massive static
objects, shadows may be baked too. Static objects, as long as light does not change position, will
always cast the same shadow, so there is no need to compute it every frame.

Eventually, new ways to improve ray tracing cost appeared. Scenes are organised and stored
in structures called acceleration structures, representing the scene in a kind of tree graph manner.
This way, a ray does not have to compute intersections for the whole scene reducing significantly the
number of operations required. For real-time applications, every API have its acceleration structure
creation process. Those structures are opaque to the developer and are an internal thing of each
APL

2.4 Shading

State of the art shading techniques include Physically Based Rendering, which aims to render
images to resemble how light behaves when interacting with surfaces and thus represent a more
physically accurate look.

2.4.1 Microfacets

PBR techniques are based on a model called the Microfacet model. Such a model describes all
surfaces as a group of tiny micro facets at a microscopic level. Those microfacets reflect light when
photons hit them, and their positioning will describe how light reflect on an overall scale. The
reader should imagine that microfacets are so small that they cannot be represented as a per-pixel
basis. Thus a statistical approximation of a group of microfacets gives us the roughness factor of
each pixel. Microfacets as a whole dictate if a surface is smooth or rough. If they are aligned in a
very similar angle, their reflections will be sharper and well defined. In contrast, if their alignment
is somewhat chaotic, representing a very rough surface, rays will scatter in different directions
resulting in a much more wide specular reflection.

AV AN

Figure 3: Microfacets at a microscopic level for rough and smooth surfaces.[3]

The roughness value ranges from 0 to 1 representing the average distribution of each micro-
facet’s normal. A 0 distribution value means that the surface is perfectly smooth and all rays
bounce in the same direction, whereas a value of 1 means the surface is so irregular that every
normal vector will point into different directions.

2.4.2 Energy conservation principle

PBR also follows the energy conservation principle, which dictates that no outgoing light should
carry more energy than incoming one, with the exception of emissive surfaces. This is because
arrival light will hit a surface, and part of that energy will get absorbed, whereas the other part
will bounce off. The part of the ray light being bounced off is the reflective part, also known
as specular lighting. The part being refracted is absorbed by the object and is known as diffuse
lighting. Note that they are mutually exclusive. Light being absorbed will not be reflected and vice-
versa. This effect can be explained as all surfaces being made of tiny particles, and every material
has a different particle scheme, making light react different depending on that. From physics, we
know that a ray beam travels indefinitely until it loses all its energy and the way energy is lost is
by colliding with particles. When a ray hits a surface, part of the ray hits the top particles, loses

part of its energy, and bounces off, creating what we perceive as the specular part. The rest of the
beam enters the surface until it collides with particles deeper in the material. Then the ray keeps
bouncing until it loses all energy. Some of those rays bounce until they hit the surface again, and
that creates what we perceive as diffuse lightning.

N
A
I
I
I
I
I
I

Interface

\/ Y
Figure 4: Light beam being scattered when hitting a surface.[3]

We took the mentioned techniques for shading for our project, but we treated light as only
hitting the topmost part of the surface, and no subsurface scattering techniques were implemented.

2.4.3 Subsurface scattering

Subsurface scattering techniques try to emulate when light penetrates deep into a surface, gets
scattered and re-surfaces into another point. A good example would be when potent direct light
hits skin, flesh or any other translucent material.

Figure 5: Light gets scattered when entering, penetrating a surface and exits at a different point.[4]

2.4.4 The render equation

All above can be represented mathematically in an equation known as the render equation shown
in figure 6. This equation is strongly based on the principle of conservation of energy. Simply put,
this equation calculates the light out at a given point p in the direction of the viewer w,. This light
is the sum of the emitted light L. by the object towards the viewer direction surface plus how much
light is being reflected in that same direction. The first part of the equation is easy to calculate.
We can simply give a glowing value to the material, and we will know how much light it emits but
the second part is where things get a little more tricky.

Lo(p7 wo) = Le(pa wo) + f fT‘(p7 Wy, wo)Ll(p7 wi)n : wzdwl
Q

Figure 6: Render equation.

L, light directed to the viewer along w, from point p.

w, view direction.

L, light emitted by the surface.

e n the normal vector at position p.

p the position at which light is being calculated.

e () hemisphere over position p facing direction n that contemplates all possible w;.

J integral over hemisphere Q.
)

w; the negative direction of the incoming light.

L; incoming light along direction w;.

fr(p, wi, w,) is the proportion of incoming light along w; reflected at position p towards viewer
direction w, given by the Bidirectional reflectance distribution function.

Essentially, what the integral represents is the addition of how much light is coming from all
directions of the hemisphere given a specific point. All light contribution in the hemisphere is
also known as irradiance. Irradiance is then multiplied by the BRDF function which dictates the
amount of light being reflected and by Lambert’s cosine law that reduces the amount of light
reflected depending on how wide the angle is. The wider it gets, the weaker light bounces. Knowing
all light incoming to the hemisphere area, we could find the precise result by solving the integral
analytically, but there is no available solution.

One approach is to treat the radiance or incoming light for the available lights in the scene and
compute only for those. The radiance is treated over an infinitely small point in the hemisphere
instead of a solid angle, and our calculations are then done over a single ray per light. The integral
is then transformed into a summation for all accountable lights. The Bidirectional reflective
distribution function takes the normal vector, the light direction, the viewer direction and the
roughness factor given by the material. It returns an approximate value of how much light from
the incident ray bounces off. For it to be as physically correct, it has to respect the energy conser-
vation principle. Multiple BRDF algorithms respect that principle, but the most used and the one
implemented in this project is the Cook-Torrance BRDF.

10

3 Why Vulkan?

One of the first significant decisions in this project was to decide which API to use. There were two
clear options among all APIs: DirectX12 and Vulkan (Metal is not included here since the project
is done in a Windows environment). They both are low-level API with full ray tracing support.
We finally decided to go along with Vulkan mainly due to its cross-platform capability.[8]

Vulkan is a cutting edge programming interface for graphics and compute devices developed by
Khronos that aims to provide high-efficency, cross-platform access to modern GPUs while offering
potential higher-performance and more balanced CPU and GPU usage due to its low-level capacity
compared to its predecessors OpenGL and Direct3D. Vulkan also stands out for being an explicit
API, meaning that almost everything is the programmer’s responsibility and must be defined more
verbosely. On the other hand, it is giving him also much more control in return. Every aspect of
the graphics pipeline and its commands must be set up from scratch by the application, including
memory management for items like buffers and textures. Its initialisation process may be considered
very dull and tedious because of the amount of code necessary to show anything on the screen. It
may be somewhat fragile at the beginning, there is an awful lot of work to get Vulkan running, and
incorrect usage may result in bugs or driver crashes.

3.1 Initialisation

For time optimisation purposes, the vk-bootstrap [9] library was used. This utility library helped us
simplifying all Vulkan initialisation process. Vulkan initialisation may become a very tedious and
daunting task due to the amount of code involved. Because it is a very explicit API, we have to
initialise it to select the desired GPU or multiple GPUs, load extensions and create the VkInstance
and VkDevice. The latter structure is necessary for recording commands. In this process, a library
like vk-bootstrap saves us a lot of code and work. Unlike OpenGL, Vulkan has no global state, and
both VkInstance and VkDevice must be passed to every API function call.

The VkInstance structure is a representation of the API context. It is vital in its creation
to enable the wvalidation layers if necessary. Validation layers play a huge role when developing
in Vulkan. Their purpose is to report any issues with the API calls and thus is a potent tool
when debugging our program and reduces significantly the time spent solving errors. VkInstance
creation also allows us to load extensions that may be necessary for the program.

Once VkInstance has been created, we query for its available GPUs in the system. From that
list, we can find the properties and capabilities of each one and choose the most suitable for our
purposes. Vulkan even allows us to use more than one GPU, but that will not be the case in our
project. The VkPhysicalDevice handle represents each of the available GPUs. This handle may
be helpful in complex applications since it allows us to query its features or available extensions.
Our project required a few of those extensions that would allow us to enable tracing rays in our
program.

After having chosen our GPU, we are allowed to create a VkDevice from it. This structure
represents the driver in the GPU and a way to communicate with it, which is why it is needed for
most API calls. The creation process for our logical device handle is very similar to the context
instance one. We enable necessary extensions and proceed to create the handle. Bear in mind
that it is important not to load unnecessary extensions as they can slow the driver and affect

11

performance. Khronos released the Vulkan Ray Tracing extensions VK _ray_tracing_pipeline
in November 2020, becoming the first open standard for ray tracing acceleration in GPUs in the
industry. Before such date, the extension was in a beta state and extensions from third-party
vendors such as VK_NV _ray_tracing from NVIDIA were the only ones available. The API is in
constant revision, and new extensions and features are being released periodically. These extensions
allows the programmer to build and manage acceleration structures, which plays a key role when
tracing rays, support for ray tracing shader stages and ray tracing pipelines. This extensions are
device specific and thus must be enabled in the logical device creation process.

The process of initialising the context for Vulkan may seem tedious and takes much code to set
it up since most of the work has to be done manually, but this has its advantages. In case multiple
GPUs are available in a system, we would create a logical device instance for each physical device
and use them in parallel for different purposes. We could use the main GPU for graphics purposes,
whereas another GPU could be used to perform physical or complex calculations in parallel and
finally share their information upgrading the program’s performance.

Since this is a graphical project and though instancing a device may be interesting, we need it
to perform some rendering. For the application to render an image, a swapchain must be created.
Luckily for us, vk-bootstrap helps us build a swapchain too. The swapchain is created with a
given size, and recreation is needed if the window is resized to different dimensions. Essentially a
swapchain consists of a list of images that are accessible for being displayed. The ideal list of images
for a standard graphical application is between two and three in order to perform a double or triple
buffer rendering. Those images are created automatically in the swapchain creation process. Every
frame, present commands will have to be recorded and receive the swapchain image that will be
presented for it to be inflated with the latest data.

3.2 Executing Commands

In order to render images to the screen, a sequence of commands has to be executed. In Vulkan,
commands have to be allocated to a Command buffer from a Command pool and executed on queues.
Usually, the program allocates a VkCommandBuffer from a VkCommandPool and commands are then
recorded into the command buffer. Once all commands have been recorded, we end the recording
process by calling vkEndCommandBuffer, and the buffer is ready to be submitted to the queue. The
recording process prerecords commands and executes them every frame without having to re-record
them even though recording commands takes almost no penalty. In the project we combined both
approaches depending on the pass. In the rasterisation pass, where we take advantage of push
constants, we recorded commands every frame because the data passed through the push constants
have to be updated in every frame. The last pass commands are also recorded in each frame since
the swapchain images have to be passed for presentation. The rest of the commands have been
recorded in advance, and they are only executed when submitted. [10] [11] [12]

12

4 Proposed Solution

In order to create a dynamic scene that obtains the quality of a ray tracing algorithm and takes
advantage of the performance of a rasterised renderer, the concept of hybrid techniques started to
surge.[13] There are still many issues to be solved though. To obtain certain effects a huge number
of rays and iterations is needed, thus work in finding ways to reduce the number of rays shot is
still in progress. Also, it is very difficult for companies to put resources into creating or improving
certain techniques that only a few users would be able to run and enjoy. This project aims to
create a solution that implements a hybrid pipeline taking advantage of the information from the
G-Buffers in the rasterised pass and computing certain effects in a subsequent ray-traced pass.

4.1 The pipeline

In order to mix both algorithms and maintain a certain level of performance is imperative to analyse
how the ray tracing pipeline works since tracing rays will take most of our computing cost. Once
the ray tracing algorithm is understood, we proceeded to find ways to optimise it. The ray-tracing
algorithm can be divided into two main parts: primary rays and secondary rays. The main purposes
of primary rays are as following:

e To determine camera properties. The position, FOV and resolution can be defined by primary
rays.

e To find the intersection points in the scene, defining the geometry information of the 3D
world.

e To compute the lightning and shading at the intersected point and return its value.

e To define the properties of the secondary rays, such as if a secondary ray is needed, its origin
and direction.

13

1
]
o
[—

|

LT

—

|

1
|

r gy
7

B
|
-‘-‘_-‘-h
[
'-\-|_|__‘-‘-
e

Figure 7: Primary rays are shot from camera position into the scene for each pixel in the screen.
Then, each ray computes intersection calculations with geometry. The return [5]

From all four critical points mentioned above, we can easily see that information from the
camera, geometry definition and shading can be obtained from a previous rasterisation pass and
save such information in the geometry buffers. This way, we can avoid tracing primary rays saving
some computational cost. The information for the following secondary rays can be obtained from
simple calculations in a subsequent ray tracing pass given the information in the G-Buffers. Thus

our pipeline consists of five independent passes. Each one will benefit from the information from
the previous pass.

1. Rasterisation pass: define geometry and store information in the G-Buffers.
2. Shadow pass: trace rays to determine if the position is occluded or not.

3. Compute pass: perform a Spatio-temporal accumulation to denoise result of the shadow
pass.

4. Shading pass: shade the scene and launch secondary rays when needed (refraction and
reflection).

5. Postpo pass: perform a degamma to the final image.

First, a rasterisation rendering pass will gather the geometry information and material colours
from the scene. This step outputs the following information in the G-Buffers: position, normal

vectors, albedo colour, motion vectors, material and emissive texture. We will expose more about
the geometry buffers in the next section.

Once we stored the information in textures from the geometry pass there will be a ray tracing
pass to calculate shadows in the scene. In this pass, rays are traced from the position read in the
position G-Buffer and into the lights. We will store a texture with the occlusion information for

14

each pixel for each light in the scene. This information is then accumulated with a spatio-temporal
accumulation algorithm in a compute pass before being ejected to the shading pass.

The fourth pass will have as input all the needed information to calculate the secondary rays
and lighting in the scene. With the information from the material texture, we know which pixel
belongs to a reflective or refractive surface and then shot rays using the normal and position data
only for those pixels.

A final pass is done to perform gamma correction to the output image. The scheme of the
whole pipeline is represented in figure 8.

Shadow Last Frame

Moion Vect

fectors used fo
shacows from the lastframe
Shadow 1 Shadow 1

Shadow Pass patio-Temporal
; Accumulation
Shadow N Shadow N

rimary Ray Ray Tracing Gamma Correction
Pass Pass

Position
16bpp RGBA
Normal
16bpp RGBA
Motion
16bpp RG
Albedo
3bpp RGEA
Material
3bpp RGBA
Emissive
8bpp RGEA

Geometry Pass %<

Figure 8: Pipeline solution scheme.

4.2 Rasterisation rendering

Deferred shading plays a massive role in this solution. This algorithm was first presented about
three decades ago, and it has been widely used in the industry for its ability to render multiple
lights at a low cost. Instead of rendering the scene per each light, as in forward rendering, we
divide the pipeline in two: first the geometry pass, where all the geometry will be rasterised and
its properties will be stored in the G-Buffers. A final pass then will use the defined geometry
information in the G-Buffers to compute the lighting. In this second pass, we only have to calculate
the shading for each pixel, taking into account the impact of all lights but avoiding the need to
rasterise the whole scene per light again. Our hybrid algorithm is based on this same idea of reusing
the information from a previous geometry pass to avoid shooting primary rays and tracing only the
needed secondary rays. Due to its low computational cost compared to tracing rays, it was decided
to rasterise as much as possible.

For subsequent calculations, we needed the following information to be stored in the rasterisa-
tion pass:

e Position information: it is vital to store the world position for each pixel in order to
compute the lighting and ray-tracing calculations. Each pixel holds the position representation
of the scene.

e Normal vector information: normal vectors are essential when computing the lighting
and direction of secondary rays. Each pixel stores the normal vector, the unitary vector

15

-

perpendicular to any surface, of the belonging geometry.

e Albedo colour: this texture stores the colour of the geometry. It can be read from texture,
if any or from the vertex information of the mesh.

e Motion vectors information: these vectors are used to compute the distance and direction
the camera has moved from the previous frame. This vector is calculated using the camera
position and projection of the previous frame if the camera or scene has changed. It is useful
when accumulating information from old frames.

e Material information: this texture store the material of each pixel. Materials are not only
used for shading but for computing a reflected or refracted ray if necessary.

e Emissive textures: will give information about which pixels are emissive and add to the
final colour.

This information is essential for the computations in the subsequent passes. Not only it is faster,
but it helps us avoid shooting primary rays.

16

(e) ()

Figure 9: (a) Position (b) Normal Vectors (c) Albedo (d) Material (e) Motion Vectors (f) Emissive
texture

In Vulkan, the main way to inflate the GPU with data is through Descriptor sets. Descriptor
sets are a group of handles that determines the information and location passed to the graphics
unit. It is formed by one or multiple descriptors that hold the pointer to the memory data, the size
of such buffer or the sampler for an image if it is a texture we are uploading. Vulkan allows only
one resource bound per set, but that is very inefficient, and some hardware does not allow it. In
fact, some hardware is limited to a four descriptor sets, and thus this is the leading standard.

There is an advantage when grouping bindings per set, and this is that we can decide when
to bound each set. For instance, a descriptor set that uploads global variables may be bound only
once per set, whereas another descriptor set holding per mesh information may be bound as many
times as meshes in the scene per frame.

As with most Vulkan structures, descriptors sets have to be allocated from a descriptor pool.
This process will allocate the descriptor set to a specific memory section of the VRAM. After
allocating the descriptor, the user has to write it to make it point to the data that he wants to be

17

uploaded and bind it. Once bound to the pipeline, the descriptor can be used in GPU when calling
the rendering commands, but data cannot be modified unless a flag that allows doing so has been
added to the pool.

For the first pass, not much data is passed through descriptors. The two only necessary things
passed through descriptors are camera matrices and a texture array. The rest of the information,
such as model matrix, material properties and textures indices, are passed through push constants.
Push constants is a Vulkan way to upload a small chunk of data to VRAM very quickly and with
no cost. The main drawback is that push constants data is limited to 128 bytes.

4.3 Data organisation

How data is injected into VRAM may become a complex topic when referring to a hybrid pipeline.
The main issue with a hybrid pipeline is that a different data format is needed for a rasterisation
and ray tracing pass. Having both algorithms in the same pass ends up with redundant data being
passed to the GPU, but it cannot be avoided due to the nature of both approaches.

In the rasterisation pass, we know in advance which mesh is being computed at each moment
by the GPU, and we pass only the necessary data for that specific instance. The advantage is
that only the necessary data is passed to VRAM, occupying less than what the whole scenery data
would, but we have to bind it to GPU for each object. Thus we end up binding data multiple times
per frame. The data passed for each object must contain a model matrix to draw the instance
correctly and material information. That material information also includes an integer that will
describe the type of the surface. Thus in the G-Buffer will be encoded such integer indicating if the
pixel corresponds to a surface that has to be ray traced afterwards (reflective or refractive material)
or not.

On the other hand, when tracing rays, we have no clue where the ray will collide or if it is
even going to collide, and a more proactive approach is mandatory. Also, it may be possible that
a secondary ray hits a non-visible point for primary visibility, and such information will not be in
the G-Buffers. Then all essential information is uploaded just once beforehand.

Our objects in the engine have a hierarchy node structure that allows to load both .obj and
.gltf models [14]. The Prefab class will include the topmost node of the hierarchy and a Mesh
that holds all vertices and indices and its pointer to the buffers in VRAM. The parent node may
hold a vector of child nodes and at the same time those nodes can have multiple children and so on.
Each node also has a Primitive structure containing indices and information useful for building
the Bottom Level Acceleration Structure (BLAS). Those indices also give information about which
specific chunk of vertex and buffer vector hold by the Mesh corresponds to it. That is not only
useful when building the bottom level acceleration structure but also to indicate in the shader where
to find in the buffers the geometry data when being hit by a ray.

All data for all possible objects in the scene must be uploaded and once the ray collides unpack
certain data to make use of them. This information also includes vertex and indices data, which is
necessary because once the ray collides the only information it gives back about the geometry is the
primitive ID. Other values such as Instance ID, which points to each of the Top Level Acceleration
Structure (TLAS) instances, can be defined by the user when building the acceleration structures.

This custom variable added when building the TLAS instances is vital as will indicate the

18

position in the array storing important IDs. Those IDs will then be used to unpack the material,
matrix, vertices and indices referent to the triangle intersected. How data per triangles is unpacked
after a collision is found in a ray-tracing pass is shown in figure 10.

-gl_PrimitivelD- Indices Buffer:

vec3 Index

Vertices Buffer: Igﬁ:gg
Closest-Hit called
firstindex
gl_InstanceCustomindexEXT s
InstancelD . .
Material Buffer: ——— Material
|Ds Buffer /
e
materialiD
—_—
transformationiD i
Y Transformation ETransforn_'latmn
Buffer: Matrix
N

Figure 10: Unpacking vertex data in a ray-tracing pass.

Unpacking the data of the triangle intersected allows us to compute the normal direction
and find the corresponding material to proceed to shade such pixel or trace subsequent rays.
To successfully unpack the information we also take advantage of the variable gl _PrimitiveID.
gl PrimitiveID gives us the position or index of the triangle being hit. This allows us to find the
position in the indices buffer to find the corresponding indices of the triangle.

4.4 'Tracing Rays

Following the rasterisation pass we have two passes that trace rays. The first one will obtain
information about shadows in the scene, tracing one ray per pixel per light and storing in a texture.
This means we will have as many shadow textures as dynamic lights in the scene. The second pass
will be used to trace all necessary secondary rays and compute the shading of the scene, taking into
account all shadow information from the previous pass.

19

Figure 11: Primary rays are shot from camera position into the scene for each pixel in the screen.
Then, each ray computes intersection calculations with geometry. If a ray intersects any geometry
the subsequent rays can be traced to calculate shadows or illumination techniques.[5]

A generic pseudo-code of the ray tracing algorithm given a target position p would look as

follows:

Data: Position p, Normal N, View vector V
Result: Pixel shaded
vec3 position = read(positionGbuffer, x, y);
veed normal = read(normalGbuffer, x, y);
vec3 colour = vec3(0);
foreach light in Lights do
float shadowFactor = 0.0;
if lightlsVisible then
shadowFactor = computeShadow();
if refractive OR reflective then
vec3 dir = computeScatteredDirection();
TraceRay(p, dir);
colour += shadowFactor * (Shade() + payload.colour);
else
colour += shadowFactor * Shade();
end

end

end

colour += computelrradiance();
store(output, colour);

return colour . .
Algorithm 1: Ray Tracing pseudo-code.

The algorithm 1 pseudo-code is a simple showcase of what a ray tracing algorithm should do.

20

There may be many different approaches with a similar result. This one reads the position and
normal vector from the G-Buffers and iterates through all lights in the scene to compute the shadow
factor and a posterior shading process. This process may involve launching more rays to calculate
specific effects.

4.4.1 Acceleration Structures

To use ray tracing in Vulkan it is imperative to build the Acceleration Structures. This structures
organise geometry data in an optimised hierarchically manner into hardware with the purpose of
reducing the overall number of ray intersection tests. In Vulkan this organisation is opaque to the
user except for a two-level structure: the top level acceleration structure (TLAS) and the bottom
level acceleration structure (BLAS).

BLAS contain basic vertex information and can be built from one or multiple vertex buffer with
its own transformation matrix. This matrix allows us to have multiple models in different positions
inside the BLAS structure. Take into account that when multiple models with the same geometry
are instantiated in a single BLAS, even though its geometry may be duplicated, performance can
be improved in a static scene. Note that the lower the number of BLAS the better. The geometry
information that a BLAS contains is generally triangles but it can also be a custom geometry. The
first one contains information about a set of triangles whereas the latest is bound to an intersection
shader that can implement a custom intersection test to a function defined previously.

TLAS on the other hand contain all object instances in the scene. Each instance has its own
transformation matrix and points to a specific BLAS containing its geometry representation. This
structure is illustrated in figure 12. Building either type of acceleration structure results in an
opaque format in memory. BLAS are only referenced in TLAS and the latter is accessed from the
shader as a descriptor binding.[12]. For more in depth information about how acceleration structure
is defined can be found in the Vulkan specification documentation [15].

21

Top Level

e -,
i

"
!

'--Instanr:e-'] "-Instanr:e--‘l "-Instance--“l '--Instance-']

0o oo o

FE Y
. . - i
A

-,

(Bottom-Level AS ..| ‘Bottom-Level Aéx"l (Bottom-Level Aéx"l

Figure 12: Acceleration Structure composition[6]

4.4.2 Ray tracing descriptors and shaders

In rasterisation pipelines we can know up-front which material is being rendered, thus executing
a specific pipeline with a descriptor set defined with the necessary data. This way the user can
prepare different pipeline for different materials. In ray tracing things get more complex given
that we cannot know in advance which material the ray is intersecting. The descriptor set for the
scene must hold all possible information of the scene. Information we found essential in the project
would be an array of materials, an array of textures, geometry buffers that hold vertex and index
information for the whole scene and an array of matrices. It is imperative to bind the acceleration
structure as a descriptor binding if we want to use ray tracing capabilities.

Vulkan has up to five shader types each one representing different stages. In this project we
made use of only three of them:

e Ray generation shader: essentially it is a compute shader that acts as an entry point to
the shaders once traceRayEXT() is called. It has the ability to call traceRayExt() and shoot
rays.

e Closest-hit shader: this shader is called once a ray shoot from the ray generation shader

has intersected with geometry in the scene. Usually the shading process takes places here.

e Miss shader: this shader is called once a ray shoot from the ray generation shader has not
intersected with any geometry in the scene. Usually background or environment is computed
here.

The program has not the ability to predict which shaders will be called at any moment. A
Shader Binding Table must then be defined[16]. This table is a structure that holds shader
function handles and parameters for these functions. During the ray tracing execution different

22

shaders can be invoked through the table to execution depending on if a geometry was hit or not
hit or by any other decision made by the programmer. As an example, if a ray would not intersect
any geometry on the scene the table will then call the execution of the indicated miss shader.
Multiple miss and hit shaders can be coded and invoked depending on certain parameters such as
materials.

Ray tracing work can be called with the command vkCmdTraceRaysKHR with a ray tracing
pipeline bound and it will initialize a ray tracing dispatch. This generates a series of threads with
the width, height and depth specified that allows the ray generation shader to call traceRaysEXT(),
a function that will instantiate a ray [17]. Such command will initiate traversal work targeting
the provided acceleration structure. It is during the traversal process that intersection tests are
performed against primitives in the leaf nodes of the acceleration structures. An intersection shader
must be used in case intersections have to be tested to custom geometry. In our project only triangles
are being used, thus such shader is not needed. Once the traversal is finished either a miss or hit
shader is invoked.

traceRayEXT (topLevelAS, // acceleration structure

rayFlags , // rayFlags

OxFF, // cullMask

0, // sbtRecordOffset

0, // sbtRecordStride

0, // missindex

origin.xyz, // ray origin

tMin , // ray min range
direction .xyz, // ray direction

tMax , // ray max range

0 // payload (location = 0)

Figure 13: traceRaysEXT() definition.

Information may be necessary across different shaders and Vulkan allows us to communicate
between shaders by using a payload. This memory block can be defined as an output or input to a
shader and multiple payloads, each for different shaders, can be defined. In our case two payloads,
one for the closest-hit and another for the miss shader, were defined. To avoid possible performance
and recursive errors when tracing rays and to have more control, the decision to shoot all rays from
the ray generation shader was made. Some solutions may allow to shoot from the closest-hit shader
as well but it is not the case in our project. Thus, the payload is an essential part since it carries
the necessary information to shoot rays recursively.

When a ray misses all geometry in the scene, the miss shader is executed. It computes the
background color and returns its value in the payload. When a ray intersects, the closest-hit shader
is executed and the shading computations are done. It may be the case that the geometry hit may
be reflective or refractive and thus we need to return through the payload more information than
just the color. The direction and origin of the new ray as well as the distance is also returned.
With that information we can shoot a new ray in the ray generation shader as long as we have not

23

reached the depth limit. If that is the case, the colour is computed and returned as output. A logic
scheme of the ray-tracing pipeline is illustrated in figure 14

In figure 13 the reader will find the definition of the traceRayEXT() and hopefully it will help
to further understand its usage. As a first argument the top-level acceleration structure through
the ray will traverse must be taken. Following the user can indicate the flags the ray will take. For
instance, such flags can be used to indicate if we want to stop traversing once an opaque surface
has been hit, if we want to terminate on first hit or if we want to skip the closest-hit shader.
sbtRecord0ffset and sbtRecordStride parameters control which shader is to be called from the
shader binding table. In this project only one closest-hit shader and no any-hit shader are being
used and thus such parameters will stay as 0. Following we find the missIndex parameter that
indicates which miss shader is to be called if no intersection is found. The origin, direction,
tMin and tMax are the parameters defining the ray. Finally the location of the payload is taken.
This location will be used to store a memory that can be read from other shaders and used as a

way to communicate between them.
Ray Generation
Shader

Qutput <] No

(= Closest-Hit Shader

Miss Shader [---=---============m=m e -

Figure 14: Ray tracing pipeline logic.

24

4.4.3 Shadows

One of the key points in the project was to ray trace shadows. Shadows are an important topic
when rendering a scene since it gives us the depth and realism the image needs to feel natural.
When trying to add shadows using rasterisation you can hardly do it in a single pass. Usually it
requires to precompute the visibility of the scene from the light position and store it in a shadow
map. Once it is time to perform the shading of the scene we can compare the distance of the pixel
we are shading with the distance stored in the shadow map and conclude if it is occluded or not.
Rasterized shadows carry a number of problems such as not being able to soften the shadows, the
textures have to be very large to avoid jigsaw caused by low precision, the scene has to be rendered
again for each light and sometimes shadows are not very precise due to limited pixel precision.

Given our usage of rays we decided that shadows in the project would be ray traced to avoid
all the verbosity that rasterized shadows need (ray traced shadows can take as little as a few of
lines of code) and for the precision advantage and ability to generate soft shadows that ray-tracing
proportionate. The shadow process has been divided into two phases. The first pass will store the
shadow information in a shadow texture per light and the subsequent pass will perform a spatio-
temporal accumulation to generate the effect of sampling multiple rays per pixel in a compute
shader.

Shadows could have been traced in the same pass as the secondary rays, avoiding the resources
cost of having a texture per light storing shadow information, but we decided to do a previous
pass because we wanted to compute a spatio-temporal accumulation in those textures to reduce the
amount of noise. Since this could create the ugly effect know as ghosting, where data from previous
frames can be clearly seen in the image, we decided not to perform it in the final output, only in
the shadow textures.

The first pass has as descriptor bindings the acceleration structure to perform the ray traversals,
an array of textures for each light where shadow information of the scene will be stored, an array
containing the lights in the scene and three G-Buffers containing the position, normal vectors and
motion vectors information. The main idea is to loop for each light in the scene and trace a ray from
the position to the light. The ray will then return a boolean value with the occlusion information.
If the value is true the pixel is in shadow and the colour stored will be 0, otherwise the pixel is
illuminated and the value stored will be 1. This factor is used afterwards in the shading pass. Once
pixel colour is calculated the result will be multiplied by the shadow factor read from the shadow
texture. If the shadow factor is 0, meaning the pixel is in shadow, the colour will be multiplied by
zero resulting in a black colour.

In this project no translucent material is taken into consideration and thus transparent material
is treated as if they cannot cast shadow over themselves. To achieve so we first check the material
type and if is a refractive surface then we store as if it was not occluded and the amount of shadow
rays is decreased since none are shot for those pixels. The algorithm figure 3 shows the basic idea
behind the whole shadow process.

25

Result: Write here the result
if isRefractionMaterial then
for light in lights do
| store(shadowTexture(light), 1);
end
else
for light in lights do
float shadowFactor = 0.0f;
if isVisible inRange then
for samples in shadowSamples do
traceRay(from p to light);
if inShadow then

‘ do nothing;
else
‘ shadowFactor-++;
end
end

else

IS

end

hadowFactor = shadowFactor / shadowSamples;
store(shadowTexture(light), shadowFactor);
end

end
Algorithm 3: Shadow calculation pseudocode

One advantage of using rays to compute shadows and one of the objectives of this project
was to implement soft shadows. The common-sense dictates that a point is either visible or not
visible by another point, but that approach results in hard shadows, where shadow edges are clearly
defined. In reality there is no existence of such infinitely small light point and this is why hard
shadows seems so unrealistic to the human eye. Lights tend to have volume, even the furthest
shadow-creating light source in our planet, the sun, is not sufficiently far to be considered small
enough to produce hard shadows. In a more realistic situation, there are points in the scene that
will have a partial visibility of the light creating what is known as penumbra, areas where shadow
slowly converges to light.

26

Penumbra Antumbra

Figure 15: Soft shadow composition|7]

As seen in figure 6 the lightning in a point is given by the total amount of light entering its
hemisphere. For optimization purposes, such area is reduced to only the dynamic area lights in the
scene but we cannot compute an integral to calculate the amount of light arriving at that point.
One solution to that problem would be to simply sample a huge amount of randomised rays in the
area light. By increasing the number of rays the result would converge to an approximate solution
but given our hardware constraints this is not feasible. Nevertheless we can take advantage of our
real-time application. Given we are drawing n frames per second we can take samples from previous
frames and compute an approximation result.

To achieve such result we have to sample randomly each frame for each light. The project
only included point light spheres. Spheres from the point being shaded are viewed as disks. We
proceeded to sample to a disk given the radius of the light and translate that point to L (vector
torwards the center of the light). The function used to sample the disk is the following:

vec3 sampleDisk(Light light, vec3 position, vec3 L, uint seed)

{
float radius = light.radius * sqrt(rnd(seed));
float angle = rnd(seed) * 2.0f * PI;
vec2 point = vec2(radius * cos(angle), radius * sin(angle));
vec3 tangent = normalize(cross(L, vec3(0, 1, 0)));
if (L == vec3(0, 1, 0))
tangent = vec3(0, 0, 1);
vec3 bitangent = normalize(cross(tangent, L));
vec3d target = position + L + point.x * tangent + point.y * bitangent;
return normalize(target - position);
}

27

Once the direction is returned we can shoot a ray. For optimisation purposes we will launch the
ray with different flags than the rest of rays shoot in the application. In this case traceRaysEXT()
will receive the following flags as parameters: gl _RayFlagsOpaqueEXT, gl RayFlagsTerminateOnFirstHitEXT
and gl RayFlagsSkipClosestHitShaderEXT. The first value gl RayFlagsOpaqueEXT is used in the
other ray launches and will compute intersections with all geometry labed as opaque, which in our
case is all geometry.

The second flag gl _RayFlagsTerminateOnFirstHitEXT will stop the execution when the first
hit is found. This flag is the most important of all because we only want to find if any object was hit
between the origin point and the light but we do not care if that hit is closest one. When computing
the hits the program has no way to know if the collision being treated is the closes candidate or
not. Vulkan stores the ¢,,ax of the closest hit until that moment and the ¢ of the new candidate
is compared to the one previously stored and discarded if ¢ > ¢,,ax or stored otherwise. As the
Vulkan specification [15] points out:

‘Unless the ray was traced with the TerminateOnFirstHitKHR ray flag, the imple-
mentation must track the closest confirmed hit until all geometries have been tested
and either confirmed or dropped.

After an intersection candidate is confirmed, its t value is compared to tmax
to determine which intersection is closer, where t is the parametric distance along
the ray at which the intersection occurred. [...] If TerminateOnFirstHitKHR was
included in the Ray Flags used to trace the ray, once the first hit is confirmed, the
ray trace is terminated.’

The importance of the flag resides in the fact that may reduce a huge amount of computation since
we only want to know if that ray intersected with a geometry, that is all.

Finally the flag gl RayFlagsSkipClosestHitShaderEXT avoids the execution of a closest-hit
shader. Once a hit is found we do not want to execute any code in that collision. The isShadowed
bool is initialised as true and only if the miss shader is executed is then changed to false, meaning
no geometry was hit and thus the pixel is not occlueded.

The project by default samples just one sample per pixel (1spp) but that results in a very
noisy shadow if not accumulated. This can be seen at figure 19. One solution, supported by the
application, would be to increase the number of samples per pixel but at a performance cost. Each
ray will return its value and an average of all rays will be the final factor stored. Lets take we
shoot ten rays per pixel. The shadow factor if seven out of ten rays are occluded would be 0.3.
That factor would then be used to reduce the amount of light in that pixel for that specific light.
But due to performance constraints we will work with 1spp with the noisy result. Is because of the
noise that a second pass is needed to get rid of it.

28

Figure 16: Shadows traced with 1spp without accumulation.

In the second phase we will not need to trace rays, instead a compute shader is used to perform
a spatio-temporal accumulation to reduce the noise effect. As the name indicates, space and time
will take part in this technique using noisy images from previous frames. This is a Monte Carlo
integration and that is why randomised samples every frame are so important.

The more samples available the more approximate to a ideal solution the result will be. But we
cannot save into textures indefinite previous samples as it would eat the whole VRAM in a couple
of seconds. Only one previous texture storing the accumulation of all previous samples besides the
new noisy image per light will be stored. In the shader we use the mix() function, shown in figure
17, which basically does a linear interpolation between to given values and a factor alpha [18].

alpha - newShadow + (1 — alpha) - previousShadow

Figure 17: Mix function.

Alpha essentially is a factor between 0 and 1 that will interpolate between both previous
and actual value. The closer alpha is to one the noisier, but less ghosting appears in the image.
Our approach was to approximate an equal value for each frame and our alpha was progressively
decreasing with every frame alpha = 1.0/(1.0 + frameCount). When the value is one it will only
take the new shadow whereas when the value decreases the newest image will decrease in importance
due to all the previous accumulations. This would be a temporal accumulation and the main issue
with this approach is that when the scene or the camera changes all previous samples are not longer
valid. To try and solve this drawback we added the motion vector information.

Motion vectors are vectors stored in a G-Buffer that indicates the camera movement difference
between the last and new frame. To calculate these vectors in the geometry pass we need to bind
the camera matrices and the previous camera matrices. This pass will always receive the present
matrices and the matrices from the immediately last frame. In the vertex shader we can transform

29

a vertex position to both new and past normalized device coordinates (NDC). This coordinates
are then passed to the rasterisation pass to convert them to 2D coordinates on the screen. In the
fragment shader, once we have NDC and the previous NDC coordinates we can compute the motion
vector as a result of both positions in screen. This vector represents the reprojection in space of a
pixel from the last moment to the newest one.

// In vertex shader

mat4 transformationMatrix = projection \cdot view \cdot modelMatrix;

mat4 previousTransformation = previousProjection \cdot previouseView \cdot
modelMatrix;

ndc = transformationMatrix \cdot vec4(position, 1);

previousNdc = previousTransformation \cdot vec4(position, 1);

// In fragment shader
vec3 ndc = inNdc.xyz / inNdc.w;

vec3 previousNdc = inPrevNdc.xyz / inPrevNdc.w;
vec2 motion = ndc.xy - previousNdc.xy;

Figure 18: Motion vector calculations.

With this information we can compute the average between the new shadow factor and the past
shadow factor from the reprojected position to slightly reduce the noise when moving the camera.
In this case we only have the previous accumulated information and a totally new from a different
position and this may not correspond. This is because when moving the camera new areas may
appear, such as positions that were behind objects or outside the camera view before movement,
and we have no previous information for those areas. Taking such drawback into consideration we
cannot interpolate with the same alpha calculation approach, instead we compute the mix with a
constant value. We found 0.2 was an acceptable value. If the value were to be very high it would be
very noisy since most of the information would fall into the new value, but a very small factor can
create the effect called ghosting. This ghosting effect creates image lag, forming what resembles
and aura around sharp edges [19].

To differentiate when to temporally accumulate and when to use spatial reconstruction we
made use of the number of frames passed to the shader. In CPU, when the application made a
change to the scene or the camera moved, the frame counter restarted. This counter is then passed
to the shader and indicates the number of frames since the scene was last changed. This is the
same value used to compute the alpha for the colour interpolation. With only one sample per pixel
and the methods exposed above the application achieves the result shown in figure 19.

30

Figure 19: Shadows traced with 1spp with spatio-temporal accumulation.

One important issue we faced during spatio-temporal accumulation was shadows created in
the second moment. Until now we explained our approach to reduce noise for the shadows from
the geometry directly in the view of the camera, but what about shadows created in the secondary
rays phase? The information stored in shadow textures does not include the shadows traced in the
pixels reflected in a mirror or behind a glass mesh so they are not accumulated appearing with
noise.

4.4.4 Reflection and Refraction

Shadows and soft shadows were not the only subjects to be exploited with the use of ray tracing.
Reflections and refractions are another main issue when trying to simulate them in a rasterized
pipeline. Usually refracted and specially reflective surfaces, even though a very realistic look can
be achieved with shading techniques such as the previously mentioned PBR, are not physically
accurate. In this project we wanted to implement refractive and reflective surfaces using rays but
we considered only perfect specular surfaces. This only includes perfect specular reflection and
perfect specular refraction surfaces. These materials need to be raytraced in a recursive manner in
the shading pass. There rays are shot for specific materials with the intention to return the colour
contribution in that pixel.

In this pass not only reflective and refractive rays will be computed. It is also a shading pass
so light contribution will be the first thing to consider. Given the array of lights and its properties
we will loop through them and calculate its contribution to the surface. Depending on the material
type we treat them differently. In this project we differentiate three types of surfaces: PBR surfaces,
perfect reflective surfaces and perfect refractive surfaces. In the rasterisation pass, each mesh is
drawn by a draw call from the rendering system and so we know from which material that mesh
made of. The material information, as previously exposed in section 4.3, contains an integer value
representing the surface type and thus we can now know of which surface type is the pixel being
shaded and act accordingly.

31

// If the shading mode is reflective

else if(shadingMode == 3)

{
const vec3 reflected = reflect(normalize(gl_WorldRayDirectionEXT), N);
const bool isScattered = dot(reflected, N) > 0;

Lo += (NdotL > 0.0 && light_intensity > 0.0) 7
light_intensity * light.color.xyz * attenuation * albedo * metallic :
irradiance * albedo * metallic;

direction = vec4(reflected, isScattered 7 1 : 0);

Figure 20: Shader snippet. Computing the reflective properties to be returned in the ray-generation
shader.

A perfect specular reflection would be a mirror like surface, where all microfacets are aligned
and the light arriving at all points in the surface is perfectly reflected in the same direction. We
can then consider and treat such surface as if only one big microfacet forms the whole goemetry
and all light bounce in the same direction. In case the value from the pixel being shaded references
a perfect reflective surface we compute the necessary information to shot a bouncing ray. Luckily
GLSL language has a predefined function re flect that automatically calculates the bouncing vector
given V, representing the incident vector, and the surface normal N. The functions works as follows:

Dir=V —2.0-dot(N,V)-N.

The output is the perfect reflected ray direction. This vector will then be passed to the traceR-
ayEXT() function that traces a ray in the given direction.

32

Figure 21: Ray traced perfect specular reflections.

In case the pixel material information references a refractive surface we will proceed to compute
the direction differently. When the light enters into a different material, which changes the medium
the light is travelling through, instead of being bounced off, it is refracted. As we are treating with
perfect refraction surfaces light is only refracted in one direction returning resulting in an image
well defined. The more the beam scatter the blurrier its result. In a ray tracing application that
would return in a noise output but we do not implement such case.

To calculate the refracted vector we followed Snell’s law where we find out that the angle of
incidence relates to the angle of refraction:

stno

e _
sinB — om 't

and by using Snell’s law we can obtain
wp = —w; - N + N(nicosa — cospf)

where

cosfi = /1 + n?(cos?a — 1)

and from cos/3 is important to highlight that the radicand can be negative, thus no solution is found.
When such case happens it means the ray is reflected in w, direction. This phenomena is known
as total internal reflection. When the incident angle is greater than a value called critical
angle, which is an angle of incidence that yields total reflection, light instead of being refracted is
completely reflected. The critical angle is the angle of incidence that yields total reflection and can
be defined as

© = arcsin(£)

33

where n represents the index of refraction. This only happen when light changes from one medium
to another with a lower index of refraction, defined if 7o < 7;. The index of refraction is unique

and constant for each material.

// If the shading mode is refractive
else if(shadingMode == 4)

float ior
float NdotV =
vec3 refrNormal
float refrEta =

mat.diffuse.w;

dot(N, normalize(gl_WorldRayDirectionEXT));
= NdotV > 0.0 7 -N : N;

NdotV > 0.0 ? 1 / ior : ior;

(light_intensity > 0.0) 7
light_intensity * light.color.xyz * attenuation * albedo * metallic :
irradiance * albedo * metallic;

float radicand = 1 + pow(refrEta, 2.0) * (NdotV * NdotV - 1);
direction = radicand < 0.0 7
vec4(reflect(gl_WorldRayDirectionEXT, N), 1)
vecd(refract (normalize(gl_WorldRayDirectionEXT), refrNormal, refrEta), 1);

{
const
const
const
const
Lo +=
}

Figure 22: Shader snippet. Computing the refractive properties to be returned to the ray-generation

shader.

34

Figure 23: Ray traced perfect specular refraction.

Once we shaded the direct visibility of our scene and computed the directions in the pixels
that required secondary rays we proceed to shoot a ray. This traceRayEXT() call differs from
the previous shadow call in the flags given as parameters. This time the only required flag is
gl RayFlagsOpaqueEXT which checks hits to opaque geometry.

In case the ray does not hit anything the miss shader is called and returns the background
colour. In case a geometry is intersected the closest-hit shader is called and similar computations
to the ray-generation shader are carried. This time we do not have the assistance of G-Buffers for

35

the data at that point since it may have not been visible in the rasterized pass. Thus we have
to benefit from vertex and indices buffers. Luckily the shader can make use of a custom variable
gl _InstanceCustomIndexEXT, added by the user when building the acceleration structure, which
indicates the TLAS instance hit. Knowing which TLAS instance we hit we can retrieve the IDs
stored in an array. This IDs helps us unpack the geometry data stored in other buffers. Each
position in the array is bound to an instance and stores a four component vector, each component
correspond to one of the following indices:

e instancelD: this index represents the position inside the indices buffer. This buffer is a 2D
array where each position contains the indices for a given mesh.

e materiallD: this index indicates the position in the materials array that corresponds to the
mesh.

e transformationID: this index indicates the position in the transformation matrices array
that corresponds to the mesh. Transformations are useful in the close-hit pass to convert
Normal vectors to the corresponding direction.

o firstIndex: this index helps us find the corresponding index inside the indices buffer.

With the help of the indices mention above we can unpack all necessary data. The process will
be similar to the ray-generation shader. We loop for each light and compute its contribution to
the surface depending on the material. In here rays can still keep on bouncing and new directions
must be calculated again. Nevertheless we do not shoot rays, even though it is possible, from the
closest-hit ray. Instead we will return all necessary information to the ray-generation shader where
it will recursively shoot rays. The way data is compacted in the payload is as follows:

struct hitPayload{
vec4d colourAndDist
vec4d direction
vec4 origin
uint seed

The first vector stores the RGB colour computed in the first three components and the distance the
ray has travelled in the last component. The direction vector stores the new direction in the first
three components and 0 if no more bounces are needed. Any other number would indicates that
more rays have to be shot. The origin vector stores the new origin of the ray. Finally the new seed
is stored in the last value for it to be used in the next random generation number. Figure 24 shows
how the payload is inflated in the closest-hit shader to be returned to the ray-generation shader.

36

// In to of the shader the payload is defined as follows

layout (location = 0) rayPayloadInEXT hitPayload prd;

//

//... Closest-hit Shader

//

// In the end, the payload prd receives the parameters computed above
prd = hitPayload(vec4(color, gl HitTEXT), direction, origin, prd.seed);

Figure 24: Returning the payload in the closest-hit shader.

In the ray-generation shader we loop for a maximum depth of ten shooting rays when necessary,

ending the loop otherwise.

// In ray generation shader we iterate until the maximum depth is reached or if no
more rays are needed.
for(int depth = 0; depth < MAX_RECURSIONS; depth++)

{
if (shadingMode == 0) // if not reflection or refraction material
break;
traceRayExt(...)
finalColour *= payload.colourAndDist.xyz;
const float hitDistance = payload.colourAndDist.w;
const bool isScattered = payload.direction.w > O;
if (hitDistance < O || !isScattered)
break;
origin = payload.origin.xyz;
direction = payload.direction.xyz;
}

Figure 25: Launching rays until max recursion value is reached or no more rays are needed.

37

5 Results

OS Windows 10 build version 2004
Compiler MSVC
CPU AMD Ryzen 5 2600X Six-Core Processor
GPU NVIDIA GeForce RTX 2060
Memory 12GB DDRA4

Figure 26: System properties used for development and testing.

All development and testing was done using the system with properties shown in figure 26. The
application supports multiple pipelines including a fully ray traced one which compared with the
hybrid ray-traced pipeline no much difference could be seen except for the jaggies that appear
due to the information stored in the G-Buffers which cannot take advantage of the anti-aliasing.
Both results can be seen in figures 27 and 28. All application results were taken at a resolution
of 1280x720. The software NVIDIA Nsight Systems [20] has been used for profiling purposes. It
is important to highlight that the software also takes a toll to the GPU decreasing a little bit the
application performance. This can be translated as an average of 30 to 50 frames per second drop
compared to a version not being profiled.

Figure 27: Fully ray-traced scene

38

Figure 28: Hybrid scene

Given the use of G-Buffers at previous passes and using a resolution of 1280x720 pixels we
avoid shooting primary rays, which means 921.600 rays are avoided. That huge number reduces
significantly the performance cost as we can see using the NVIDIA Nsight tool. For the average
scene shown in figure 28 we have an average of 294.86 frames per second which is an average of 3.39
ms per frame.

~ Processes 5)

Shomng Tovg 3.9 1
11 11 1 0T 00001 11101 1 O 1
10 T R 0 0000 D O

Figure 29: Average frame rate statistic of the dynamic scene.

Out of each frame we can see the ray tracing passes cost. As mentioned in the pipeline
explanation our algorithm consists of two ray traced passes, the shadow pass which is the second in
the pipeline and the most costly of the ray tracing due to its number of rays cast with a compute
time of 0.37ms and the shading one with a compute cost of 0.326ms. That second pass is the most
variable since depends on the number of rays that have to be computed in the scene. This means
that the number of pixels marked as refractive or reflective material has a direct impact on the
generation cost of the image.

39

Figure 30: Hybrid frame profiling.

If we increase the number of objects with a refractive material component, which is also the
most costly to compute due to the number of rays involved, we can see a considerably drop in
performance. For such test two glass lucy model have been included in the scene as well as an extra
glass ball. The average frames per second is down to 174 and an average 5.73 ms per frame. In this
case the shading pass can increase up to a 2ms but it is compensated with a drop cost on tracing
shadows since refractive materials, though not physically correct in reality, we decided would not
be affected by their own shadow and the number of rays is decreased 31. The cost is still affected.

Figure 31: Frame with number of reflection and refraction meshes increased.

Another important subject that can affect performance is the number of triangles in the scene.
Though it has more impact to the first pass where geometry is being rendered and the G-Buffers
created. It also has its repercussions in the ray tracing passes because of the number of computations
that have to be done but it is far less damaging since the number of rays are roughly the same for
all scenes given that the number of casts depends more on the resolution of the G-Buffers rather
than the geometry of the scene itself. This can be exemplified in figure 32 where the geometry pass
is the most costly, taking more time than both ray tracing passes combined.

40

Figure 32: Frame with geometry increased.

6 Conclusion

This project aimed to present an hybrid approach to generating images in real-time through a
combination of rasterisation and ray-tracing. The main goals was to reduce the number of necessary
rays and the addition of reflective, refractive and soft shadows into the scene, topics only available
through the use of rays, while maintaining a minimum of 30 frames per second to create the feeling
of interaction.

The first goal was achieved through the implementation and advantage of the data given by the
G-Buffers, which avoided the necessity to shoot primary rays. As mentioned in the results sections
it allowed to reduce the number of rays which in a pure ray tracing pass would directly depend on
the resolution of the image. Compared to the pure ray tracing pass we can see that even though
the optimisation is not as much as expected, it still exists. On the other hand we did not expect
that creating the G-Buffers in the first pass would take such a toll in performance and more work
into optimise such pass is necessary.

For the second goal we could implement all three key points without having a huge drop in
performance. In fact, performance for the scene tested was higher than expected, being around 200
frames per second and more. The main issue was not being able to implement a perfect denoising
technique. The temporal-accumulation pass achieves great results when the scene is static but it
can only blur the noise up to a certain point when the scene is dynamic. Thus, noise can be noticed
when moving around the scene or interacting with the objects. This only affects to the soft shadows
since perfect specular reflections and refractions were implemented. Had we implemented generic
specular reflections and refractions based on the materials properties would result in very noisy
images, with spatio-temporal accumulation not being enough to produce a perfectly clean image
due to the drawbacks mentioned.

41

7 Future Work

There is much room for improvement in this project and in this section some of the main paths to
achieve better results will be presented for further exploration.

7.1 Reducing rays for reflection and refraction

One way to reduce the time cost when computing the ray tracing passes is to reduce the number
of rays shoot. To do so a reduction of the resolution of the material G-Buffer can be considered.
That would not only reduce the number of rays shoot, but also the VRAM it takes in the GPU.
One thing to consider would be that it may produce a ray to pixels where no reflection or refraction
surface is represented and also may create noisy and low resolution reflections.

Another approach would be select small areas of 4 pixels and group them to shoot one ray
reducing the number of rays and making sure they represent a reflective or refractive surface.
Still in both cases a good denoising algorithm should be implemented to make up for the lost of
information since less samples are being taken. Careful profiling should be done to evaluate if the
loss in information is worth the performance improvement. It may be a good option for specific
scene with no perfect specular reflections and refractions.

7.2 Reducing rays for shadows

In the project we use fully ray traced shadows. This implies that a ray must be shoot for every pixel
in the image and an average is then compute to converge to a final soft shadow image. In order to
reduce the number of rays we could take advantage of a previous shadow pass where shadows are
rasterized and return a shadow map. Such output could benefit the programmer when shooting
rays allowing him to trace rays only in the edges of the shadows to smooth them or to approximate
it to a soft shadow result. Further exploration in this approach would involve computing the time
to create the shadow map plys ray tracing just the edges afterwards and both rasterized and ray
traced shadows combined may result in a lower performance output.

7.3 Acceleration Structure Instancing

Using instancing when creating or rebuilding an acceleration structure is important to reduce the
amount of data loaded. This would reuse the data of a previous mesh to create a new acceleration
structure instance without the necessity to load the data again, avoiding duplicity. Using this we
could reuse data from a mesh that appear multiple times in the scene.

7.4 Multi-Threading

One key advantage of using a low-level API as Vulkan is the ability to use multiple threads to
parallel some tasks. This is a more advanced approach when learning a new complex API such as
Vulkan but a powerful one. Multi-threading could help us to reduce the CPU cost of creating and
rebuilding acceleration structures. In this project, to reduce the cost of rebuilding the acceleration
structure each frame we considered only when the scene changed, thus when an object was being
moved. This would not be an option for an application with permanent changing scenarios or

42

having animated models. But rebuilding an acceleration structure each frame can end up being a
heavy task and multi-threading could take advantage of all cores to reduce the process time cost.

As an example, we could take advantage of one thread to rebuild the acceleration structure of
the scene for each frame while recording and submitting commands for previous passes that do not
use the acceleration structure. In our case that would be recording and submitting the geometry
commands while rebuilding the acceleration structure for the subsequent passes. If we take a look
in the result sections we can notice that the AS creation for our simple scene can take up to 0.2ms
that could be performed while submitting the geometry pass instead of taking time before.

43

8

Annex

Geometry vertex shader

#version 460

#extension GL_GOOGLE_include_directive : enable

layout (location = 0) in vec3 inPosition;
layout(location = 1) in vec3 inNormal;
layout (location = 2) in vec3 inColor;
layout (location = 3) in vec2 inUV;

layout (location = 0) out vec3 outPosition;
layout (location = 1) out vec3 outNormal;
layout (location = 2) out vec3 outColor;
layout (location = 3) out vec2 outUV;
layout(location = 4) out vec4 ndcPrev;
layout (location = 5) out vec4 ndc;

struct ObjectData{

I3

mat4 model;

// Set 0 - Camera information
layout(set = 0, binding = 0) uniform CameraBuffer

{

mat4 view;
mat4 projection;
mat4 pView;
mat4 pProj;

} cameraData;

layout (push_constant) uniform constants

{

mat4 matrix;
mat4 inv_matrix;

}pushC;

void main()

{

mat4 transformationMatrix = cameraData.projection * cameraData.view * pushC.matrix;
mat4 previousTransformation = cameraData.pProj * cameraData.pView * pushC.matrix;
gl_Position = transformationMatrix * vec4(inPosition, 1.0);

outPosition = vec3(pushC.matrix * vec4(inPosition, 1.0)).xyz;

outColor = inColor;

outNormal = mat3(transpose(pushC.inv_matrix)) * vec3(inNormal);

outUV = inUV;

ndc = transformationMatrix * vec4(inPosition, 1.0); // in homogeneous space

44

ndcPrev = previousTransformation * vec4(inPosition, 1.0);

Geometry fragment shader

#version 460

struct Light{
vecd pos; // w used for max distance
vecd color; // w used for intensity
float radius;

13

layout (location = 0) out vec4 outFragColor;
layout (location = 0) in vec2 inUV;
layout (location = 1) in vec3 inCamPosition;

layout (set = 0, binding = 0) uniform sampler2D positionTexture;
layout (set = 0, binding = 1) uniform sampler2D normalTexture;
layout (set = 0, binding = 2) uniform sampler2D albedoTexture;

layout (set = O, binding = 3) uniform sampler2D motionTexture;

layout (std140, set = O, binding = 4) buffer LightBuffer {Light lights[];} lightBuffer;

layout (set = 0, binding = 5) uniform debugInfo {int target;} debug;
layout (set = 0, binding = 6) uniform sampler2D materialTexture;
layout (set = 0, binding = 8) uniform sampler2D emissiveTexture;
layout (set = 0, binding = 9) uniform sampler2D environmentTexture;

const float PI = 3.14159265359;

float DistributionGGX(vec3 N, vec3 H, float a);

float GeometrySchlickGGX(float NdotV, float k);

float GeometrySmith(vec3 N, vec3 V, vec3 L, float k);
vec3 FresnelSchlick(float cosTheta, vec3 FO);

void main()

{
vec3 position = texture(positionTexture, inUV).xyz;
vec3 normal = texture(normalTexture, inUV).xyz * 2.0 - vec3(1);
vec3 albedo = texture(albedoTexture, inUV).xyz;
vec3 motion = texture(motionTexture, inUV).xyz * 2.0 - vec3(1);
vec3 material = texture(materialTexture, inUV).xyz;
vec3 emissive = texture(emissiveTexture, inUV).xyz;
bool background = texture(positionTexture, inUV).w == 0 && texture(normalTexture,

inUV) .w == 0;
float metallic = material.z;
float roughness = material.y;

vec3 N = normalize(normal) ;

vec3 V = normalize(inCamPosition - position.xyz);
float NdotV = max(dot(N, V), 0.0);

45

vec3 FO = mix(vec3(0.04), pow(albedo, vec3(2.2)), metallic);
vec2 envUV = vec2(0.5 + atan(N.x, N.z) / (2 * PI), 0.5 - asin(N.y) / PI);
vec3 irradiance = texture(environmentTexture, envUV).xyz;

if (debug.target > 0.001)

{

}

switch(debug.target){

}

case 1:
outFragColor
break;

case 2:
outFragColor
break;

case 3:
outFragColor
break;

case 4:
outFragColor
break;

case b:
outFragColor
break;

case 6:
outFragColor
break;

return;

vecd(position, 1);

vec4d (normal, 0);

vec4(albedo, 1);

vecd (motion, 1);

vec4d (material, 1);

vecd (emissive, 1);

vec3 color = vec3(1), Lo = vec3(0);

float attenuation = 1.0, light_intensity = 1.0;

for(int i = 0; i < lightBuffer.lights.length(); i++)

{

Light light
bool isDirectional

vec3 L =

vec3 H
float NdotL

// Calculate the directional light
if (isDirectional)

{

}

else //

{

Lo += (NdotL * light.color.xyz);

float light_max_distance
float light_distance

light_intensity

Calculate point lights

= lightBuffer.lights[i];
= light.pos.w < O;
isDirectional ? light.pos.xyz :
normalize(V + normalize(L));
max (dot (N, normalize(L)), 0.0);

= light.pos.w;
= length(L);

(light.pos.xyz - position.xyz);

= light.color.w / (light_distance * light_distance);

46

96 attenuation =
97 attenuation /= light_max_distance;

98 attenuation = max(attenuation, 0.0);

99 attenuation = attenuation * attenuation;

light_max_distance - light_distance;

100

101 vec3 radiance = light.color.xyz * light_intensity * attenuation;
102

103 float NDF = DistributionGGX(N, H, roughness);

104 float G = GeometrySmith(N, V, L, roughness);

105 vec3 F = FresnelSchlick(max(dot(H, V), 0.0), FO);

106 vec3 kD = vec3(1.0) - F;

107 kD *= 1.0 - metallic;

108

109 vec3 numerator = NDF * G * F;

110 float denominator = 4.0 * NdotV * max(dot(N, L), 0.0);
111 vec3 specular = numerator / max(denominator, 0.001);
112

113 vec3 kS = F;

115 Lo += (kD * pow(albedo, vec3(2.2)) / PI + specular) * radiance * NdotL;
117 }

119 if (!background){

120 // Ambient from IBL

121 vec3 F = FresnelSchlick(NdotV, FO);

122 vec3 kD = (1.0 - F) * (1.0 - metallic);
123 vec3 diffuse = kD * albedo * irradiance;
124 vec3 ambient = diffuse;

126 color = Lo + ambient;
127 color += emissive;

128 }

129 elseq{

130 color = albedo;

131 3

132 outFragColor = vec4(color, 1.0f);
133}

134

135 float DistributionGGX(vec3 N, vec3 H, float roughness)
136 {

137 float a = roughness * roughness;

138 float a2 = a * a;

139 float NdotH = max(dot(N, H), 0.0);
140 float NdotH2 = NdotH * NdotH;

142 float denom = (NdotH2 * (a2 - 1.0) + 1.0);
143 denom = PI * denom * denom;

47

return a2 / denom;

// Geometry Function
float GeometrySchlickGGX(float NdotV, float roughness)
{

float r = roughness + 1.0;

float k (r x r) / 8.0;

float nom = NdotV;
float denom = NdotV * (1.0 - k) + k;

return nom/denom;

float GeometrySmith(vec3 N, vec3 V, vec3 L, float roughness)
{

float NdotV = max(dot(N, V), 0.0);

float NdotL = max(dot(N, L), 0.0);

float ggxl = GeometrySchlickGGX(NdotV, roughness);

float ggx2 = GeometrySchlickGGX(NdotL, roughness);

return ggxl * ggx2;

// Fresnel Equation
vec3 FresnelSchlick(float cosTheta, vec3 F0)
{
return FO + (1.0 - FO) * pow(1.0 - cosTheta, 5.0);

Shadow ray-generation shader

#version 460

#extension GL_EXT_ray_tracing : require
#extension GL_GOOGLE_include_directive : enable
#extension GL_EXT_nonuniform_qualifier : enable

#include "helpers.glsl"

layout (binding = 0) uniform accelerationStructureEXT topLevelAS;
layout (binding = 1, rgba8) uniform image2D[3] shadowImage;
layout (binding = 2) uniform CameraProperties

{

mat4 viewInverse;
mat4 projlnverse;
float frame;

} cam;
layout (binding = 3, std140) buffer Lights { Light lights[]; } lightsBuffer;
layout (binding = 4) uniform SampleBuffer {int samples;} samplesBuffer;

48

layout (binding = 5) uniform sampler2D[3] gbuffers;

layout (binding

struct shadowPayload{
uint seed;
float frame;

18

layout (location = 0) rayPayloadEXT bool shadowed;

void main()

{

int frame

int (cam.frame) ;

6) buffer MaterialBuffer { Material mat[]; } materials;

uint seed = tea(gl_LaunchIDEXT.y * gl_LaunchSizeEXT.x + gl_LaunchIDEXT.x, uint(frame));

const vec2 pixelCenter = vec2(gl_LaunchIDEXT.xy) + vec2(0.5);
const vec2 inUV = pixelCenter / vec2(gl_LaunchSizeEXT.xy) ;

vec3 position = texture(gbuffers[0], inUV).xyz;

vec3 normal
vec2 motion

float matIdx = texture(gbuffers[0], inUV).w;
int mode = int(materials.mat[int(matIdx)].shadingMetallicRoughness.x);
vec3 N = normalize(normal);

if (mode == 4)

{

}

for(int i = 0; i < lightsBuffer.lights.length(); i++)

{

= texture(gbuffers[1], inUV).rgb * 2.0 - vec3(1.0);
= texture(gbuffers[2], inUV).xy * 2.0 - vec2(1.0);

imageStore (shadowImage[i], ivec2(gl_LaunchIDEXT.xy), vec4(1, 0, 0, 1));

}

return;

for(int i = 0; i < lightsBuffer.lights.length(); i++)

{

// Init basic light information

Light light =
const bool isDirectional =
vec3 L =
position);
const float light_max_distance
const float light_distance =
L =
const float NdotL =
const float light_intemnsity =

lightsBuffer.lights[i]
light.pos.w < 0;

s

isDirectional ? light.pos.xyz : (light.pos.xyz -

= light.pos.w;
length(L);
normalize(L);
clamp(dot(N, L), 0.0,
isDirectional 7 1.0 :

(light_distance * light_distance));

float shadowFactor =
int shadowSamples

0.0;
samplesBuffer.samples;

49

1.0);
(light.color.w /

if (NdotL > 0)

{

for(int s = 0; s < shadowSamples; s++)

{

}

if (1ight_distance < light_max_distance)

{
shadowed = true;
const vec3 dir = sampleDisk(light, position, L, seed);
const uint flags = gl_RayFlagsOpaqueEXT |
gl_RayFlagsTerminateOnFirstHitEXT | gl_RayFlagsSkipClosestHitShaderEXT;
float tmin = 0.001, tmax = light_distance + 1;
// Shadow ray cast
traceRayEXT (topLevelAS, flags, OxFF, 0, 0, O,
position + dir * le-1, tmin, dir, tmax, 0);
}
elseq{
shadowed = false;
}
if (!shadowed){
shadowFactor++;
¥

shadowFactor /= shadowSamples;

}

vec3 color = vec3(shadowFactor);
imageStore(shadowImage[i], ivec2(gl_LaunchIDEXT.xy), vec4(color, 1));

Shadow miss shader

#version 460

#extension GL_EXT_ray_tracing : enable

layout (location = 1) rayPayloadInEXT bool shadowed;

void main()

{

shadowed = false;

Compute shader

#version 450

#extension GL_EXT_nonuniform_qualifier : enable

50

#extension GL_EXT_scalar_block_layout : enable

const int SIZE = 9;
const int NLIGHTS = 3;

const int WIDTH = 1700;
const int HEIGHT = 900;

layout
layout
layout
layout
layout

struct

{

(local_size_x = 16, local_size_y = 16) in;
(binding = 0, rgba8) uniform readonly image2D[NLIGHTS] inputImage;
(binding = 1, rgba8) uniform image2D[NLIGHTS] outputImage;

(binding = 2) uniform FrameCount {int frame;} frameBuffer;
(binding = 3) uniform sampler2D motionTexture;
ImageData

float r[SIZE];

float gl[SIZE];

float b[SIZE];
} imageData;

float conv(in float[SIZE] kernel, in float[SIZE] data, in float denom, in float offset)

{

float res = 0.0;
for (int i = 0; i < SIZE; i++)

{

}

res += kernel[i] * datalil;

return clamp(res/denom + offset, 0.0, 1.0);

void main()

{

for(int 1 = 0; 1 < NLIGHTS; 1++)

{

int frame = frameBuffer.frame;
vec3 pixelColor;
if (frame > 0)

{
vec3 center = imageLoad(inputImage[l], ivec2(gl_GloballnvocationID.xy)).rgb;
vec3 old = imageLoad(outputImage[l], ivec2(gl_GlobalInvocationID.xy)).rgb;
float a = 1.0 / float(frame + 1.0);
pixelColor = mix(old, center, a);
imageStore (outputImage[1], ivec2(gl_GlobalInvocationID.xy), vec4(pixelColor,

1.0));

}

else

{

vec2 motionUV = vec2(float(gl_GlobalInvocationID.x) / float(WIDTH),
float(gl_GlobalInvocationID.y) / float(HEIGHT));

o1

vec2 reprojectedUV = texture(motionTexture, motionUV).rg * 2.0 - vec2(1.0);
vec2 lastUV = vec2(gl_GlobalInvocationID.x + reprojectedUV.x * WIDTH,
gl_GloballInvocationID.y + reprojectedUV * HEIGHT);

vec3 center = imageload(inputImage[1l], ivec2(gl_GlobalInvocationID.xy)).rgb;

vec3 minColor = center;
vec3 maxColor = center;

for(int y = -1; y <= 1; y++)
{
for(int x = -1; x <= 1; x++)
{
if(x == 0 && y == 0)

continue;

ivec2 offsetUV = ivec2(gl_GlobalInvocationID.x + x, gl_GlobalInvocationID.y

+y);

vec3 color = imageLoad(inputImage[l], offsetUV).rgb;

minColor = min(minColor, color);
maxColor = max(maxColor, color);

}

vec3 old = imageLoad(outputImage[l], ivec2(lastUV)).rgb;

0ld = max(minColor, old);
0ld = min(maxColor, old);

float a = 0.4f;

pixelColor = mix(old, center, a);

imageStore (outputImage[1], ivec2(gl_GlobalInvocationID.xy), vec4(pixelColor,

1.0));

Ray-generation shader and shading pass

#version 460
#extension GL_EXT_ray_tracing :

require

#extension GL_EXT_nonuniform_qualifier : enable
#extension GL_EXT_scalar_block_layout : enable
#extension GL_GOOGLE_include_directive : enable

#include "raycommon.glsl"
#include "helpers.glsl"

layout (set = O, binding = 0) uniform accelerationStructureEXT topLevelAS;
0, binding = 1, rgba8) uniform image2D image;
0, binding = 2) uniform CameraProperties

layout (set
layout (set

{

52

mat4 viewInverse;
mat4 projlnverse;
vec4d frame;
} cam;
layout (set =
layout (set =

layout (set =
layout (set =

0
0
layout (set = 0, binding
0
0

, binding
, binding

, binding = 3) uniform sampler2D[] gbuffers;
, binding = 4) buffer Lights { Light lights[]; } lightsBuffer;

9) buffer MaterialBuffer { Material mat[]; } materials;
10) uniform sampler2D[] environmentTexture;
12, rgba8) uniform readonly image2D[] shadowImage;

layout (location = 0) rayPayloadEXT hitPayload prd;

layout (location

void main()

{

1) rayPayloadEXT bool isShadowed;

uint frame = int(cam.frame.x);
prd.seed = tea(gl_LaunchIDEXT.y * gl_LaunchSizeEXT.x + gl_LaunchIDEXT.x, frame);

const vec2 pixelCenter = vec2(gl_LaunchIDEXT.xy) + vec2(0.5); // gl_LaunchIDEXT
represents the floating-point pixel coordinates normalized between O and 1

const vec2 inUV

pixelCenter/vec2(gl_LaunchSizeEXT.xy); //gl_LaunchSizeExt is the

image size provided in the traceRayEXT function

float matIdx
Material mat
int shadingMode

vec3 position
vec3 normal
vec3 albedo
vec2 motion
vec3 material
vec3 emissive
bool background
== 0;

texture (gbuffers[0], inUV).w;
materials.mat [int (matIdx)];
int (mat.shadingMetallicRoughness.x);

= texture(gbuffers[0], inUV).xyz;
texture(gbuffers([1], inUV).xyz * 2.0 - vec3(1);

= pow(texture(gbuffers[2], inUV).xyz, vec3(2.2));

texture(gbuffers[3], inUV).xy;
texture(gbuffers[4], inUV).xyz;
texture(gbuffers([5], inUV).xyz;
texture(gbuffers[0], inUV).w == 0 && texture(gbuffers[1], inUV).w

const float roughness = material.y;
const float metallic
const vec3 FO = mix(vec3(0.04), albedo, metallic);

= material.z;

// Using the pixel coordinates we can apply the inverse transformation of the view and
procjection matrices of the camera to obtain

// the origin and target of the ray

const vec4 camPosition = cam.viewInverse * vec4(0,0,0,1);

const vec3 V
const vec3 N
const float NdotV

// Environment
vec2 environmentUV

normalize(camPosition.xyz - position);
normalize (normal) ;
= clamp(dot(N, V), 0.0, 1.0);

vec2(0.5 + atan(N.x, N.z) / (2 * PI), 0.5 - asin(N.y) / PI);

53

99

100

101

102

103

104

105

106

vec3 irradiance = texture(environmentTexture[1], environmentUV).xyz;

float tmin
float tmax

vec3 finalColor
vec3 origin

vec3 direction
float attenuation
float shadowFactor

0.001;
1000.0;

= vec3(0);

vec3(0);
vec3(0);
1.0;
0.0;

// Calculate the light influence for each light
vec3 rayColor = vec3(0.0);
for(int i = 0; i < lightsBuffer.lights.length(); i++)

{
Light light = lightsBuffer.lights[i];
const bool isDirectional = light.pos.w < O;
vec3 L = isDirectional ? light.pos.xyz : (light.pos.xyz -

position.xyz)

>

const float light_max_distance = light.pos.w;

const float light_distance = length(L);

const float light_intensity = isDirectional 7 1.0f : (light.color.w /
(light_distance * light_distance));

1L,
const float NdotL
shadowFactor

= normalize(L);
= clamp(dot(N, L), 0.0, 1.0);
= imagelLoad(shadowImage[i], ivec2(gl_LaunchIDEXT.xy)).x;

// Check if visible for light

if (NdotL > 0.0)
{

// Calculate attenuation factor

[/ —=—mmmmmm oo
if(light_intensity == 0){

attenuation =

¥

elsed{
attenuation
attenuation
attenuation
attenuation

¥

¥
tmax = 1000.0;

0.0;
= light_max_distance - light_distance;
/= light_max_distance;
= max(attenuation, 0.0);
= isDirectional ? 0.3 : (attenuation * attenuation);

// Calculate illumination

// In case material is diffuse, no need to ray trace at the moment
if (shadingMode == 0)

{

vec3 radiance

= light.color.xyz * light_intensity * attenuation * shadowFactor;

54

const vec3 H = normalize(V + L);

float D = DistributionGGX(N, H, roughness);
float G = GeometrySmith(N, V, L, roughness);
vec3 F = FresnelSchlick(max(dot(H, V), 0.0), FO);

vec3 kD = vec3(1.0) - F;
kD *= 1.0 - metallic;

vec3 numerator =D *x G x F;

float denominator = 4.0 * NdotV * NdotL;

vec3 specular = numerator / max(denominator, 0.001);
vec3 kS = F;

rayColor += (kD * albedo / PI + specular) * radiance * NdotL;
}
if (shadingMode == 3)
{

direction reflect (normalize(-V), N);
origin position;
rayColor += (NdotL > 0.0 &% light_intensity > 0.0) 7
light.color.xyz * light_intensity * attenuation * shadowFactor * albedo *
metallic :
irradiance * albedo * metallic;

}
if (shadingMode == 4)
{
float ior = mat.diffuse.w;
origin = position;
const float cosAlpha = dot(N, V);
const vec3 I = -V; // incident ray
float NdotI =dot(N, I);
vec3 refrNormal = NdotI > 0.0 7 -N : N;
float refrEta = NdotI > 0.0 ? 1 / ior : ior;

prd.direction.w 1;
float radicand = 1 + pow(refrEta, 2.0) * (cosAlpha * cosAlpha - 1);
direction = radicand < 0.0 ? reflect(I, N) : refract(I, refrNormal, refrEta);
rayColor += (light_intensity > 0.0) 7
light_intensity * light.color.xyz * attenuation * albedo * metallic :
irradiance * albedo * metallic;

}

// RECURSION IF NEEDED FOR BOUNCING
A R
for(int depth = 0; depth < MAX_RECURSION; depth++)
{
if (shadingMode == 0)
break;

55

traceRayEXT (topLevelAS, gl_RayFlagsOpaqueEXT, Oxff, O, O, O, origin.xyz + direction
* le-2, tmin, direction, tmax, 0);

rayColor *= prd.colorAndDist.xyz;

const float hitDistance = prd.colorAndDist.w;

const bool isScattered = prd.direction.w > O;
if (hitDistance < O || !isScattered){
break;
}
elseq
origin.xyz = prd.origin.xyz;
direction.xyz = prd.direction.xyz;
}

finalColor = rayColor;

// Ambient from IBL

vec3 F = FresnelSchlick(NdotV, FO);
vec3 kD (1.0 - F) * (1.0 - metallic);
vec3 diffuse kD * albedo * irradiance;
vec3 ambient diffuse;

finalColor += ambient + emissive;

if (background)
finalColor = albedo;

imageStore (image, ivec2(gl_LaunchIDEXT.xy), vec4(finalColor, 1.0));

Closest-hit shader

#version 460

#extension GL_EXT_ray_tracing : require
#extension GL_EXT_nonuniform_qualifier : enable
#extension GL_EXT_scalar_block_layout : enable
#extension GL_GOOGLE_include_directive : enable

#include "raycommon.glsl"
#include "helpers.glsl"

layout (location = 0) rayPayloadInEXT hitPayload prd;
layout (location = 1) rayPayloadEXT bool shadowed;
hitAttributeEXT vec3 attribs;

layout (set = 0, binding = 0) uniform accelerationStructureEXT topLevelAS;
layout (set = 0, binding = 4) buffer Lights { Light lights[]; } lightsBuffer;
layout (set = O, binding = 5, scalar) buffer Vertices { Vertex v[]; } vertices[];

56

layout (set = O, binding = 6) buffer Indices { int i[]; } indices[];

layout (set = 0, binding = 7) uniform sampler2D[] textures;

layout (set = O, binding = 8) buffer sceneBuffer { vec4 idx[]; } objIndices;
layout (set 0, binding = 9) buffer MaterialBuffer { Material mat[]; } materials;
layout (set = 0, binding = 10) uniform sampler2D[] environmentTexture;

layout (set = O, binding = 11, scalar) buffer Matrices { mat4 m[]; } matrices;

void main()

{

// Do all vertices, indices and barycentrics calculations

const vec3 barycentricCoords = vec3(1.0f - attribs.x - attribs.y, attribs.x, attribs.y);

vec4 objIdx

int instancelID
int materiallD
int transformationID = int(objldx.z);
int firstIndex

ivec3 ind

int (objIdx.x) ;
int (objldx.y);

= int(objIdx.w);

objIndices.idx[gl_InstanceCustomIndexEXT] ;

= ivec3(indices[instanceID].i[3 * gl_PrimitiveID + firstIndex + 0],
indices[instanceID] .i[3 * gl _PrimitiveID + firstIndex + 1],
indices[instanceID] .i[3 * gl _PrimitiveID + firstIndex + 2]);

Vertex vO
Vertex vi
Vertex v2

const mat4 model = matrices.m[transformationID] ;

vertices[instanceID] .v[ind.x];
vertices[instanceID].v[ind.y];
vertices[instanceID] .v[ind.z];

// Use above results to calculate normal vector
// Calculate worldPos by using ray information

const vec3 normal = v0.normal.xyz * barycentricCoords.x + vl.normal.xyz *

const vec3 N

const vec3 V

const float NdotV
const vec3 worldPos

barycentricCoords.y + v2.normal.xyz * barycentricCoords.z;
const vec2 uv
v2.uv.xy * barycentricCoords.z;

= v0.uv.xy * barycentricCoords.x + vl.uv.xy * barycentricCoords.y +

clamp(dot(N, V), 0.0, 1.0);

// Init values used for lightning
vec3 Lo
float attenuation = 1.0;

float light_intensity = 1.0;

= vec3(0);

// Init all material values

const Material mat
const int shadingMode
vec3 albedo

= mat.textures.x > -1 7

texture (textures[int (mat.textures.x)], uv).xyz

LY

normalize (mat3(transpose(inverse(model))) * normal).xyz;
normalize(-gl_WorldRayDirectionEXT) ;

gl_WorldRayOriginEXT + gl_WorldRayDirectionEXT * gl HitTEXT,;

= materials.mat [materiallD];
int (mat.shadingMetallicRoughness.x) ;

: mat.diffuse.xyz;

99

100

101

102

103

104

105

106

107

108

const vec3 emissive = mat.textures.z > -1 7
texture(textures[int (mat.textures.z)], uv).xyz : vec3(0);

const vec3 roughnessMetallic = mat.textures.w > -1 7
texture(textures[int (mat.textures.w)], uv).xyz : vec3(0,
mat.shadingMetallicRoughness.z, mat.shadingMetallicRoughness.y) ;

albedo

const float roughness
const float metallic

vec3 FO

// Environment
vec2 environmentUV = vec2(0.5 + atan(N.x, N.z) / (2 * PI), 0.5 - asin(N.y) / PI);
texture(environmentTexture[1], environmentUV).xyz;

vec3 irradiance

vec4d direction

= vec4(1l, 1, 1, 0);
vecd origin = vec4(worldPos, 0);

pow(albedo, vec3(2.2));
roughnessMetallic.y;
roughnessMetallic.z;
mix(vec3(0.

04), albedo, metallic);

for(int i = 0; i < lightsBuffer.lights.length(); i++)

{

// Init basic light information

Light light

= lightsBuffer.lights[i];

const bool isDirectional = light.pos.w < O;
vec3 L = isDirectional ? light.pos.xyz : (light.pos.xyz -
worldPos) ;
const float light_max_distance = light.pos.w;
const float light_distance = length(L);
L = normalize(L);
const float light_intensity = isDirectional ? 1.0f : (light.color.w /

(light_distance * light_distance));

const vec3 H

normalize(V + L);

const float NdotL = clamp(dot(N, L), 0.0, 1.0);

const float NdotH

float shadowFactor =1.0;

// Check if light has impact
// Calculate attenuation factor
if (light_intensity == 0){

attenuation
}
elsed{
attenuation
attenuation
attenuation
attenuation

vec3 difColor

/=

0.0;

= clamp(dot(N, H), 0.0, 1.0);

light_max_distance - light_distance;

light_max_distance;
max (attenuation, 0.0);
isDirectional 7 0.3

vec3(0);

if (shadingMode == 0) // DIFUS

: attenuation * attenuation;

58

if (NdotL > 0)
{
for(int a = 0; a < 1; a++)
{
// Init as shadowed
shadowed = true;
if (light_distance < light_max_distance)
{
vec3 dir = sampleDisk(light, worldPos, L, prd.seed);
const uint flags = gl_RayFlagsOpaqueEXT | gl_RayFlagsTerminateOnFirstHitEXT |
gl_RayFlagsSkipClosestHitShaderEXT;
float tmin = 0.001, tmax = light_distance + 1;

// Shadow ray cast
traceRayEXT (topLevelAS, flags, Oxff, 0, 0, 1,
worldPos.xyz + dir * le-2, tmin, dir, tmax, 1);

}

if (!shadowed){
shadowFactor++;
}
}
¥

vec3 radiance = light_intensity * light.color.xyz * attenuation * shadowFactor;
vec3 F = FresnelSchlick(NdotH, FO);

float D = DistributionGGX(N, H, roughness);

float G = GeometrySmith(N, V, L, roughness);

vec3 numerator =D *x G *x F;

float denominator = max(4.0 * clamp(dot(N, V), 0.0, 1.0) * NdotL, 0.000001);
vec3 specular = numerator / denominator;

vec3 kS = F;

vec3 kD = (vec3(1.0) - kS) * (1.0 - metallic);

Lo += (kD * albedo / PI + specular) * radiance * NdotL;
direction = vec4(1, 1, 1, 0);
}
else if(shadingMode == 3) // MIRALL
{
const vec3 reflected = reflect(normalize(gl_WorldRayDirectionEXT), N);
const bool isScattered = dot(reflected, N) > 0;

Lo += (NdotL > 0.0 &% light_intensity > 0.0) 7
light_intensity * light.color.xyz * attenuation * albedo * metallic :
irradiance * albedo * metallic;

direction = vec4(reflected, isScattered 7 1 : 0);

}

59

else if(shadingMode == 4) // VIDRE

{

const float ior
const float NdotV = dot(N, normalize(gl_WorldRayDirectionEXT));
const vec3 refrNormal = NdotV > 0.0 ? -N : N;

const float refrEta = NdotV > 0.0 ? 1 / ior : ior;

mat.diffuse.w;

Lo += (light_intensity > 0.0) ?

light_intensity * light.color.xyz * attenuation * albedo * metallic :

irradiance * albedo * metallic;

float radicand = 1 + pow(refrEta, 2.0) * (NdotV * NdotV - 1);
direction = radicand < 0.0 7
vec4(reflect(gl_WorldRayDirectionEXT, N), 1)

vec4(refract(normalize(gl_WorldRayDirectionEXT), refrNormal, refrEta),

1);

// Ambient from IBL

vec3 F

FresnelSchlick(NdotV, FO);

vec3 kD = (1.0 - F) * (1.0 - metallic);
vec3 diffuse = kD * albedo * irradiance;
vec3 ambient = diffuse;

vec3 color = Lo + ambient + emissive;
prd = hitPayload(vec4(color, gl HitTEXT), direction, origin, prd.seed);

Post vertex shader

#version 450

layout (location =
layout (location =
layout (location =
layout (location =

layout (location =

out gl_PerVertex
{
vec4 gl_Position;

I8

void main()

{
outUV = inUV;

0)
1)
2)
3)

0)

in vec3 inPosition;
in vec3 inNormal;
in vec3 inColor;

in vec2 inUV;

out vec2 outUV;

gl_Position = vec4(outUV * 2.0f - 1.0f, 1.0f, 1.0f);

}

60

Post fragment shader

#version 450
layout (location = 0) in vec2 outUV;
layout (location = 0) out vec4 fragColor;

layout(set = 0, binding = 0) uniform sampler2D finalTexture;

void main()

{
vec2 uv = outUV;
float gamma = 1. / 2.2;

vecd color = texture(finalTexture, uv);
vec3 rgb = color.xyz;

rgb = max(rgb, 0.001);

//rgb = rgb / (rgb + vec3(1.0));

rgb = pow(rgb, vec3(gamma));

fragColor = vec4(rgb, color.w);

61

References

[1] J. Agenjo, “Grafics a temps real.” Website available at https://tamats.com/upf/?page;d = 793.

2] J. de Vries, “Learn opengl website.” Website available at
https://learnopengl.com/Introduction.

[3] R. Guy and M. Agopian, “Physically based rendering in filament.” Website available at
https://google.github.io/filament /Filament.htmlabout.

[4] Wikipedia, “Subsurface scattering — Wikipedia, the free encyclopedia.” Website available at
https://en.wikipedia.org/wiki/Subsurfacescattering.

[5] T. Akenine-Moller, Real-time Rendering fourth edition. CRC Press, 2018.

[6] M.-K. Lefrancois, P. Gautron, N. Bickford, and D. Akeley, “Nvidia vulkan ray-tracing tutorial.”
Website available at https://nvpro-samples.github.io/vk,aytracing,utorialx HR/.

[7] Wikipedia, “Penumbra — Wikipedia, the free encyclopedia.” Website available at
https://es.wikipedia.org/wiki/Penumbra.

T. K. G. Inc, “Vulkan sdk.” Website available at https://www.khronos.org/vulkan/.

‘©

]
| C. Giessen, “Vk-bootstrap.” https://github.com/charles-lunarg/vk-bootstrap.
0] G. Sellers, Vulkan Programming Guide. Addison-Wesley, 2017.
| P. Singh, Learning Vulkan. Pack Publishing, 2016.

]

T. K. G. Inc, “Ray tracing in vulkan.” Website available at https://www.khronos.org/blog/ray-
tracing-in-vulkan.

[13] C. Barré-Brisebois, H. Halén, G. Wihlidal, A. Lauritzen, J. Bekkers, T. Stachowiak, and
J. Andersson, “Hybrid rendering for real-time ray tracing,” 2019.

[14] T. K. G. Inc, “Gltf tutorial.” Website available at https://github.com/KhronosGroup/glTF-
Tutorials/blob/master/gltfTutorial/ README.md.

[15] “Vulkan 1.2 specification.” Website available at https://www.khronos.org/registry /vulkan/specs/1.2 /pdf/vkspec.pd:

[16] W. Usher, “The ray-tracing shader binding table three ways.” Website available at
https://www.willusher.io/graphics/2019/11/20/the-sbt-three-ways.

[17] T. K. G. Inc, “vkemdtracerayskhr(3) manual page.” Web-
site available at https://www.khronos.org/registry /vulkan/specs/1.2-
extensions/man/html/vkCmdTraceRaysKHR.html.

18] T. K. G. Inc, “Mix glsl references.” Website available at

https://www.khronos.org/registry /OpenGL-Refpages/gl4 /html/mix.xhtml.

[19] K. Xu, “Temporal antialiasing in uncharted 4.” A lecture from Advances in Real-Time Ren-
dering course, SIGGRAPH 2016 http://advances.realtimerendering.com/s2016/.

[20] NVIDIA, “Nvidia nsight systems.” Website available at https://developer.nvidia.com/nsight-
systems.

62

