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Abstract 

 

Eating habits leading to obesity may reflect non-homeostatic behavior based on excessive 

immediate-reward seeking. However, it is currently unknown to what extent excess weight is 

associated with functional alterations in the brain’s reward system in children. We tested the 

integrity of reward circuits using resting-state functional connectivity magnetic resonance 

imaging in a population of 230 children aged 8-12 years. The major components of the reward 

system were identified within the ventral striatum network defined on the basis of the nucleus 

accumbens connectivity pattern. The functional structure of the cerebral cortex was 

characterized using a combination of local functional connectivity measures. Higher body mass 

index was associated with weaker connectivity between the cortical and subcortical elements of 

the reward system, and enhanced integration of the sensorimotor cortex to superior parietal 

areas relevant to body image formation. Obese children, unlike WHO-defined overweight 

condition, showed functional structure alterations in the orbitofrontal cortex and amygdala 

region similar to those previously observed in primary obsessive-compulsive disorder and 

Prader Willi syndrome associated with obsessive eating behavior. Results further support the 

view that childhood obesity is not simply a deviant habit with restricted physical health 

consequences but is associated with reward system dysfunction characterizing behavioral 

control disorders.  

 

Keywords: Eating behavior; obsessive-compulsive behavior; excess weight; ventral striatum; 

orbitofrontal cortex 
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Introduction 

Childhood obesity is a major worldwide problem with harmful long-term health and 

occupational consequences, in addition to the adverse effect on the children’s psychological 

wellbeing (NCD-RisC 2017; Lobstein, et al. 2004; WHO 2020). The epidemic spread of obesity 

is considered to be a consequence of non-healthy habits associated with a sedentary lifestyle and 

unbalanced diets (Lobstein et al. 2004; WHO 2020; Berthoud 2004). However, eating habits 

leading to obesity may ultimately reflect the non-homeostatic use of the reward system with an 

excess of immediate-reward seeking (Berthoud 2004; Moore et al. 2017; Volkow et al. 2013; 

Lennerz and Lennerz 2018; Stice et al. 2013; Kakoschke et al. 2019; Carter et al. 2016). In this 

study, we specifically investigated whether excess weight in children is associated with 

functional alterations in the brain’s reward system. 

 

Although the reward system has not yet been comprehensively assessed by means of resting-

state functional connectivity measures in child populations, some data suggest that the system 

may be dysfunctional. Abnormal functional coupling has been reported between the middle 

frontal gyrus and ventral frontal cortices (Black et al. 2014). In adults or adolescents with excess 

weight, the evidence of functional connectivity alteration in the reward system is more 

compelling. Abnormal connectivity has been reported between the ventral striatum and 

functionally related frontal lobe areas (Contreras-Rodríguez et al. 2017a; Donofry et al. 2020; 

Coveleskie et al. 2015; Baek et al. 2017; Stoeckel et al. 2009), the orbitofrontal cortex and the 

middle temporal gyrus (Moreno-Lopez et al. 2016), core elements of the frontostriatal system 

and both the hypothalamus (Martín-Pérez et al. 2019; Contreras-Rodríguez et al. 2017b) and 

amygdala (Stoeckel et al. 2009; Dietrich et al. 2016), as well as between the amygdala/anterior 

hippocampus and the rest of the brain in terms of connectivity degree measures (Geha et al. 

2017; Farruggia et al. 2020).  

 



4 
 

Such a variety of previous findings would indicate that the reward system is dysfunctional in the 

adult obese population. However, it is currently unknown to what extent excess weight is 

associated with functional alterations in the brain’s reward system in developing children. 

Exploring the reward system may indeed be of particular interest in child populations during 

highly active shaping of neuronal connections prior to the formation of definitive personality 

traits (Cao et al. 2017; Khundrakpam et al. 2016; Larsen and Luna 2018).  

 

We assessed a large sample of school children by combining both typical region-of-interest 

(seed) functional connectivity measures and a novel mapping of local cortical connections. 

Specifically, maps of the ventral striatum network were generated according to the resting-state 

connectivity pattern of the nucleus accumbens region, as a core subcortical element in the 

brain’s reward system (Richard and Castro 2013; Wallis 2007). In addition, a multi-distance 

measure of local functional connectivity served to characterize the functional structure of the 

cerebral cortex (Macià et al. 2018). Using such imaging approaches, we previously identified 

functional alterations within the reward circuits in patients with obsessive-compulsive disorder 

(OCD) (Pujol et al. 2019) and in Prader-Willi syndrome, a genetic disorder that typically 

presents with both obsessive eating behavior and obesity (Pujol et al. 2016a). We primarily 

focused on determining whether body mass index (BMI) measures were incrementally 

associated with variations in functional connectivity (correlation analysis), and also tested for 

possible specific effects in terms of World Health Organization (WHO) weight categories 

(group analysis). 

 

Methods 

Participants 

This present study forms part of a larger project designed to assess the effects of environmental 

factors on brain development (BREATHE, The European Commission: FP7-ERC-2010-AdG, 

ID 268479) (Pujol et al. 2016b). A total of 2,897 children participated in the whole survey based 
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on 39 schools, representative of the child population in the city of Barcelona. From this sample, 

1,564 families were invited to participate in the MRI study via post, email or telephone, and 810 

of them gave an initial positive response. Children were then consecutively recruited with the 

aim of including cases from all participating schools. Parents of 491 children were directly 

contacted. Consent to participate was finally not obtained in 165 cases, 27 children were lost 

before the assessment and 21 children were not eligible due to dental braces. A group of 278 

children was therefore selected to participate in neuroimaging examinations, and a subgroup of 

255 children completed anthropometric and imaging assessments. 

 

A total of 230 cases were finally valid for the region-of-interest functional connectivity analysis 

(see below). The group included 115 boys and 115 girls and showed a mean age of 9.8 years 

(SD, 0.9 years; range, 8.0 to 12.1 years), and a mean BMI of 18.0 kg/m2 (SD, 2.8 kg/m2; range, 

13.9 to 27.0 kg/m2). A total of 147 (63.9%) children showed normal BMI, 50 (21.7%) belonged 

to the WHO overweight category and 33 (14.3%) to the WHO obese category (see below). No 

WHO-based underweight child was included in our study.  

 

A total of 218 children were valid for the analysis of the cerebral cortex functional structure. 

This group included 105 boys and 113 girls and showed a mean age of 9.8 years (SD, 0.9 years; 

range 8.0 to 12.1 years), and a mean BMI of 18.0 kg/m2 (SD, 2.8 kg/m2; range, 13.9 to 27.0 

kg/m2). A total of 139 (63.8%) children showed normal BMI, whilst 47 participants (21.6%) 

belonged to the WHO overweight category and 32 (14.7%) were obese. 

 

All parents or tutors signed the informed consent form approved by the Research Ethical 

Committee (No. 2010/41221/I) of the IMIM-Parc de Salut Mar, Barcelona, Spain and the FP7-

ERC-2010-AdG Ethics Review Committee (268479-22022011). The entire study was 

conducted in accordance with The Code of Ethics of the World Medical Association 

(Declaration of Helsinki).  
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Body mass index and WHO weight status 

Child weight (kg) and height (m) were measured by trained researchers at school and served to 

calculate the BMI as weight/height2 (Lobstein et al. 2004). BMI percentiles were then estimated 

adjusted to age and sex for each child by means of the WHO Growth Reference 2007 (de Onis 

et al. 2007; WHO 2007). The WHO categories were used to classify children according to 

adjusted BMI percentiles such as Normal or Healthy Weight (5th percentile to less than the 85th 

percentile), Overweight (85th percentile to less than the 95th percentile) and Obese (95th 

percentile or greater) (Barlow 2007). One Underweight (less than the 5th percentile) child was 

excluded from the study. Supplementary Figure 1 illustrates the distribution of BMI percentiles 

for participants included in both analyses. 

 

MRI acquisition 

We used a 1.5-T Signa Excite system (General Electric, Milwaukee, Wisconsin) equipped with 

an eight-channel phased-array head coil and single-shot echo-planar imaging (EPI) software. 

The functional sequence consisted of gradient recalled acquisition in the steady state (repetition 

time, 2000 ms; echo time, 50 ms; and pulse angle, 90º) in a 24-cm field of view, with a 64 x 64 

pixel matrix and a slice thickness of 4 mm (interslice gap, 1.5 mm), voxel size 3.75 x 3.75 x 4 

mm. Twenty-two interleaved sections, parallel to the anterior-posterior commissure line, were 

acquired to generate 180 whole-brain volumes, excluding 4 initial additional dummy volumes.  

 

MRI exams were regularly acquired from 10 AM to 2 PM (exceptionally from 3 PM to 7 PM) at 

least 1 hour after the last meal. The resting-state functional MRI sequence lasted 6 minutes and 

was always the first sequence obtained, prior to the anatomical images. All participants were 

instructed to relax, stay awake, lie still and keep their eyes closed throughout the procedure. 

When contacted verbally immediately after the acquisition, we confirmed that there was no 

participant who had fallen asleep. 
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High-resolution 3D anatomical images were also obtained using an axial T1-weighted three-

dimensional fast spoiled gradient inversion recovery-prepared sequence (repetition time 11.9 

ms; echo time 4.2 ms; flip angle 15o; field of view 30 cm; 256 x 256 pixel matrix; slice 

thickness 1.2 mm; voxel size 1.17 x 1.17 x 1.2 mm), which served to assist functional 

connectivity image preprocessing. This sequence lasted 5 minutes and 40 seconds. 

 

Anatomical and functional images were visually inspected to detect possible acquisition 

artifacts. Imaging data for both region-of-interest and IDAC analyses were subsequently 

processed using MATLAB version 2016a (The MathWorks Inc, Natick, Mass) and Statistical 

Parametric Mapping software (SPM12; The Wellcome Department of Imaging Neuroscience, 

London). 

 

Region-of-interest (seed) functional connectivity mapping 

Image preprocessing 

This analysis was based on standard procedures previously adopted by our group (Harrison et 

al. 2009; Pujol et al. 2016b). Image preprocessing steps involved motion correction, spatial 

normalization and smoothing using a Gaussian filter (full-width half-maximum, 8 mm). Data 

were directly normalized to the standard SPM EPI template and re-sliced to 2 mm isotropic 

resolution in Montreal Neurological Institute (MNI) space. A Discrete Cosine Transform (DCT) 

filter was used to remove low frequency drifts below 0.008 Hz. In addition, we derived 

estimates of white matter, CSF and global brain signal fluctuations (using standard masks in 

MNI space from SPM) to include in the regression analyses as nuisance variables. 

 

The procedures adopted to control for potential head motion effects included: (i) Conventional 

SPM time-series alignment to the first image volume in each subject. (ii) Exclusion of 24 

children with outlier head motion, namely mean “inter-frame motion” greater than 0.12 mm. 

Mean inter-frame motion is a summary measure that combines mean translations and rotations 

across the scan (Pujol et al. 2014). (iii) The use of both motion-related regressors (i.e., 6 rigid 
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body realignment parameters) and estimates of global brain signal fluctuations (white matter, 

CSF and global brain signal) as confounding variables in first-level analyses. (iv) Within-

subject, censoring-based MRI signal artifact removal (scrubbing) (Power et al. 2014) was used 

to discard motion-affected volumes. For each subject, mean inter-frame motion measures 

(Pujol et al., 2014) served as an index of data quality to flag volumes of suspect quality across 

the run. At time points with mean inter-frame motion > 0.2 mm, the corresponding volume, the 

immediately preceding and the succeeding two volumes were all discarded. Using this 

procedure, a mean of 12.2 (SD, 13.8; range, 0-61) volumes from the total of 180 volumes 

included in the functional MRI sequence were removed. (v) The use of the mean inter-frame 

motion across the fMRI run for each participant as a regressor in the second-level analyses 

(Pujol et al. 2014). 

 

Estimation of seed maps 

The identification of the reward system featured functional connectivity mapping of a basal 

ganglia region involving the nucleus accumbens. Based on a widely applied method for 

mapping basal ganglia functional connectivity, the region of interest (or ‘seed’) was centered at 

MNI coordinates (in mm) [x=±9, y=9, z=-8] (Harrison et al. 2009; Harrison et al. 2013). One 

single map of the reward system was obtained by averaging left and right ROI values. 

 

The maps were generated by mean of previously described procedures (Harrison et al. 2013). 

Each seed region was defined as a 3.5 mm radial sphere (sampling ~ 25 voxels in 2 mm 

isotropic space) using the MarsBaR region of interest (ROI) toolbox in MNI stereotaxic space 

(Brett et al. 2003). Signals of interest were then extracted by calculating the mean ROI value at 

each time point across the series. To generate the seed maps, the signal time course of the 

selected seed region was used as a regressor to be correlated with the signal time course of each 

brain voxel with a view to generating first-level (single-subject) voxel-wise statistical 

parametric maps (contrast images).  
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Iso-Distant Average Correlation (IDAC) mapping 

A novel mapping was used to characterize the functional structure of the cerebral cortex based 

on Iso-Distant Average Correlation (IDAC) measures. This imaging approach was proposed 

both to directly assess the cortical (frontal lobe) component of the reward system (Richard and 

Castro 2013; Wallis 2007) and to explore the entire cortex and tightly integrated structures such 

as the hippocampus and amygdala. Essentially, IDAC mapping expands well-established MRI 

measures of local functional connectivity (Sepulcre et al. 2010; Tomasi and Volkow 2010; Zang 

et al. 2004) by combining the connectivity maps of varying distances. Composite IDAC maps 

may uniquely inform the connectivity-related specialization of the cerebral cortex as local 

connectivity is distance-specific to a large extent and proved to discriminate well between major 

classical anatomo-functional cortical areas (Macia et al., 2018; Pujol et al., 2019).  

 

Image preprocessing 

Image preprocessing differed in some steps from that adopted in the conventional region-of-

interest analysis to optimize the accuracy of short-distance functional connectivity measures. 

Functional MRI images were slice-time corrected, realigned and then smoothed using a narrow 

Gaussian filter (full-width half-maximum, 4 mm). Image volumes were then co-registered to 

their anatomical images with an affine transformation. A warping matrix was also estimated for 

every subject to match a group template created from the 3D anatomical individual acquisitions 

and then to the MNI space using DARTEL normalization (Ashburner, 2007). Image volumes 

were re-sliced to the relatively coarse 3x3x3 mm units to reduce the high computational loading. 

Estimated DARTEL normalizations to the MNI space were applied to the IDAC results to 

enable group inferences. 

 

Analyses were conducted in a gray matter mask split into left and right hemispheres, so that no 

adjacent voxels from the medial regions of one hemisphere would be locally associated with 
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those from the other hemisphere. The two hemispheres were brought back together once the 

IDAC values had been calculated. The left and right hemisphere gray matter masks were 

obtained by setting a threshold of p>0.4 on the gray matter probability maps obtained from the 

DARTEL group template. As IDAC value estimations were carried out in every subject’s native 

space, the template masks were back-transformed with the inverse estimated normalization.  

 

As in the region-of-interest analysis, all time series were regressed on the 6 rigid body 

realignment parameters, and on the average white matter, CSF and global brain signals 

extracted from the native tissue masks. Finally, all functional MRI time series were band-passed 

with a DCT filter letting through frequencies in the 0.01-0.1 Hz interval. 

 

The control for potential head motion effects was identical to that of the region-of-interest 

analysis (see above). After scrubbing, a mean of 12.1 (SD, 15.1; range, 0-61) volumes were 

removed. A total of 36 participants were excluded on the basis of imaging quality (mean inter-

frame motion greater than 0.12 mm [n= 24] or sub-optimal 3D anatomical image quality in the 

form of signal loss or signal blurring related to motion [n= 12]). 

 

Estimation of IDAC maps 

Whole-cortex IDAC maps were generated by estimating the average temporal correlation of 

each voxel with all its neighboring voxels placed at increasingly separated Euclidean iso-distant 

intervals. IDAC was computed in native space separately for each hemisphere after realignment 

and smoothing. Three IDAC maps were obtained at distance intervals 5-10mm, 15-20mm and 

25-30mm. The definition and mathematical formulation of IDAC measures are extensively 

described in our early report (Macia et al., 2018) and in the Supplementary Material.  

 

Multi-distance IDAC color maps were generated from the overlay of the three IDAC maps 

using an RGB color codification (Suppl. Figure 2). RGB color channels permitted the display of 
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three values simultaneously. RED to display results from 5-10mm IDAC maps, GREEN from 

15-20mm and BLUE from 25-30mm. The overlapping of these primary colors produces a full 

range of secondary colors, which provide information as to functional structure variations across 

cortical areas. 

 

To establish a color-coding, each gray image corresponding to the three individual IDAC maps 

(5-10mm, 15-20mm and 25-30mm) was separately scaled to its maximal t value using 

conventional, automated SPM tools (Suppl. Figure 2). Composite RGB maps were generated 

from individual (three distances) one-sample IDAC maps, individual correlation maps and 

individual between-group comparison t-maps. 

 

Statistical analysis 

Correlation analysis. After individual preprocessing of each functional image sequence, 

separate second-level analyses were performed using SPM to map voxel-wise the across-subject 

correlation between BMI percentile and both reward system functional connectivity maps and 

IDAC maps (separately for each distance). A motion summary measure (inter-frame motion 

[Pujol et al. 2014]) for each participant was included as a nuisance variable. 

 

Group analysis according to WHO weight categories. Voxel-wise group differences in 

functional connectivity for both ROI and IDAC approaches were evaluated in SPM using the 

Student’s t-test within a random-effects ANOVA that also included the motion summary 

measure as a covariate of no interest. Analyses of interest included comparing the three groups, 

as well as the normal weight group with overweight and obese groups combined. WHO group 

[normal, overweight, obese] by distance [5-10mm, 15-20mm and 25-30mm] interactions were 

tested using a 3 x 3 full factorial ANOVA model.  
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In all analyses, results were considered significant when clusters formed at a threshold of p< 

0.005 survived whole-brain family-wise error (FWE) correction (p< 0.05), calculated by means 

of SPM. 

 

Results 

Reward system network 

In the correlation analysis, higher BMI percentiles were associated with weaker functional 

connectivity between the nucleus accumbens and both the orbitofrontal cortex and the 

sensorimotor cortex in the cortical representation of the body (Figure 1, Suppl. Table 1). The 

orbitofrontal cortex showing the significant effect is a core element of the reward system 

network (Suppl. Figure 3). In contrast, the implicated sensorimotor cortex is a region adjacent to 

superior parietal areas anticorrelated with the nucleus accumbens in normal-weight children, 

and is part of the nucleus accumbens anticorrelated map in children with excess weight (Figure 

2). 

 

The analysis comparing WHO weight categories showed that connectivity alterations between 

the nucleus accumbens and both orbitofrontal and sensorimotor areas were more evident in 

obese children. However, the changes were already present in overweight children, and the 

differences between overweight and obese groups were marginal and limited to a part of the 

sensorimotor cortex (Figure 3 and Suppl. Table 2). 

 

Cerebral cortex functional structure 

In the correlation analysis, higher BMI percentiles were associated with stronger local 

functional connectivity in a region involving the somatosensory cortex at the cortical 

representation of the body and the superior parietal cortex (Figure 4, Suppl. Table 3).  
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The group analysis showed that the alteration in the sensory cortices was already present in the 

overweight-child group or when combining overweight and obese groups, which showed 

significantly higher local functional connectivity than normal-weight children (Suppl. Table 4, 

Suppl. Figure 4). However, the effect was not specifically demonstrated for the obese category 

alone in the context of such findings.  

 

Instead, obese children showed weaker local functional connectivity specifically in the 

orbitofrontal cortex and a circumscribed region implicating the anterior hippocampus, 

parahippocampal gyrus and amygdala (Figure 5 and Suppl. Table 5). The differences were 

notable between obese and overweight children in the orbitofrontal cortex, which would 

indicate that the WHO obese category is a qualitatively distinct condition in terms of 

orbitofrontal cortex functional alteration. 

 

Specific assessment of the interaction between WHO weight categories and functional 

connectivity distances showed significant overall results (Suppl. Table 6). Post-hoc testing 

indicated that the functional connectivity of the orbitofrontal cortex and amygdala region was 

significantly weaker in obese children at local short distance (5-10mm) than local long distance 

(25-30mm) (Suppl. Figure 5, Suppl. Table 6). The analysis was, therefore, indicative of changes 

particularly in the functional structure of the regions, rather than expressing a general tendency 

of functional connectivity reduction. 

 

Discussion 

We investigated whether excess weight is associated with alteration in the functional integrity of 

the reward system in a large group of school children. We observed that higher BMI was 

associated with weaker functional connectivity between the ventral striatum and the 

orbitofrontal cortex, which are the core elements of the reward system. Higher BMI was also 

associated with increased integration of the sensorimotor cortex to superior parietal areas 
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relevant to bodily self-consciousness. Finally, obese children, unlike the overweight group, 

showed alterations in the functional structure of the orbitofrontal cortex and amygdala region. 

The results would, therefore, indicate that the reward system is dysfunctional in children with 

excess weight. 

 

Each of the identified findings may express a distinct functional disturbance. Weaker functional 

coupling within the reward system has previously been reported in adult populations with 

excess weight (Donofry et al. 2020; Baek et al. 2017; Geha et al. 2017; Contreras-Rodríguez et 

al. 2017a). Weaker connectivity may express reduced tonic activity and may be the chronic 

consequence of reward system overstimulation (Volkow et al. 2013, Lennerz et al. 2018; Stice 

et al. 2018). However, weaker connectivity in the reward system at rest may combine with 

stronger connectivity during exposure to food-related cues (Donofry et al. 2020; Geha et al. 

2017). Hyper-responses may be particularly evident in the dorsal aspects of the reward system 

and more related to food seeking and craving than to the reward itself (Volkow et al. 2013; 

Lennerz et al. 2018; Donofry et al. 2020). We observed that functional connectivity weakening 

between the elements of the reward system was already present in overweight (BMI percentile ≥ 

85th) children, which may suggest that the functional measure is both highly sensitive and most 

probably identifies the initial stage of reward system dysfunction. 

 

We observed that higher BMI was linearly associated with weaker functional connectivity 

between the ventral striatum and the sensorimotor cortex, and that this cortical region showed a 

tendency to be integrated to the superior parietal cortex in children with excess weight. In 

addition, excess weight was associated with heightened local functional connectivity in similar 

areas in IDAC-measure analyses. Both types of findings may indicate that the somatosensory 

and motor cortical representation of the body is expanded as a function of body mass. 

Importantly, research in human cognitive neuroscience has indicated that the superior parietal 

cortex gathers a set of brain areas strongly linked to body image formation or bodily self-

consciousness, which is the most somatic facet of self-consciousness (Blanke et al. 2015; 
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Ronchi et al. 2018). Our results may well suggest how self-perception could incrementally be 

distorted in children with excess weight, which could indeed contribute to altering the child’s 

psychological wellbeing and ultimately increase the risk of developing body image disorders. 

  

A qualitatively different functional connectivity alteration was identified in obese children, that 

was not present in the overweight group. Children with BMI percentile 95th or greater showed 

reduced local functional connectivity within the orbitofrontal cortex and in a region involving 

the anterior hippocampus, parahippocampal gyrus and part of the amygdala, which are all major 

afferents of the nucleus accumbens/orbitofrontal cortex complex (Rolls,2019; Kim et al. 2017). 

We have recently reported a similar functional alteration in the orbitofrontal cortex in patients 

with typical OCD (Pujol et al. 2019). In the context of OCD, the dysfunctional trait was 

interpreted as expressing deficient cortical inhibition and was associated with the severity of 

obsessions and compulsions. Significantly, therefore, the observed alteration in the orbitofrontal 

cortex functional integrity in obese, albeit otherwise typically developing, children may be of a 

pathological nature overlapping with a major disorder characterized by compulsive behavior. 

 

The results reported in the current study are also consistent with changes observed in the Prader 

Willi syndrome, which is a genetic disorder typically showing both obesity and obsessive-

compulsive symptoms including severe compulsive eating. Altered functional coupling in the 

reward system was identified at rest (Zhang et al. 2013; Zhang et al. 2015; Lukoshe et al. 2017). 

We specifically reported a significant correlation between obsessive eating behavior and 

abnormal functional connectivity both within the basal ganglia circuits and between the ventral 

striatum and amygdala (Pujol et al. 2016a). Therefore, it may be of interest in future studies the 

use of behavioral testing to investigate whether child obesity is similarly associated with 

compulsive eating. 

 

A limitation to our study relates to the use of a 1.5-T system, as opposed to a 3-T system with a 

higher MRI signal. Although we did have the 3-Tesla option, the present study was developed 
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using a 1.5-Tesla magnet following the recommendations of the FP7-ERC Ethics Review 

Committee to limit magnetic field strength in children. Our study was also limited in that 

impulse control performance and eating habits were not documented in our child sample. A 

comprehensive behavior assessment could have better characterized the dysfunctional process in 

the reward system. 

 

The set of alterations identified in our child cohort may therefore indicate that the reward 

system does not work properly in children with excess weight showing some pathophysiological 

features compatible with typical obsessive-compulsive disorders, particularly in the WHO-

defined obese condition. Our study cannot solve the extent to which the functional disturbance 

is a primary event that predisposes individuals to obesity, or a consequence of the deviant habits 

or, indeed, a combination of both factors. However, the dysfunctional status may ultimately 

interfere with the normal development of the reward system and favor more permanent brain 

damage. We would, therefore, further emphasize the need for early intervention in child obesity 

before body image and personality traits are fully established. 
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Figures 

 

 

 

Figure 1. Brain areas showing a negative correlation between body mass index (BMI) 

percentiles and functional connectivity of the ventral striatum in the whole study sample.  

 

 

 

Figure 2. Brain areas anticorrelated (negative correlation) with the ventral striatum in normal 

weight and excess weight (overweight + obese) children (top), and significant differences 

between both groups (bottom) in the contrast normal > excess weight. 
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Figure 3. Differences in ventral striatum functional connectivity between WHO weight 

categories (top rows) and plots of individual data extracted at peak differences in the contrast 

normal weight > obese children. Vertical axis expresses mean group values and 95% CI of 

ventral striatum functional connectivity beta estimates. 

 

 

Figure 4. Correlations between BMI percentiles and cortical functional connectivity Iso-

Distance Average Correlations (IDAC) measures in the whole study sample. All findings 

correspond to positive associations (i.e., higher BMI with stronger connectivity). 
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Figure 5. Differences in Iso-Distant Average Correlation (IDAC) measures between WHO 

weight categories. 
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Supplementary Tables 

 

Suppl. Table 1. Correlations between BMI percentile and functional connectivity of the 

ventral striatum in the whole study sample. 

 

 
Cluster 
size, ml 

 
PFWE-corr 

Peak 
x  y  z 

 
T 

 
P 

L Sensorimotor Cortex 23.0 0.00001 -26 -18 66 3.6 0.0002 

R Sensorimotor Cortex " " 30 -16 68 4.7 3e-6 

Medial Sensorimotor Cortex " " 0 -18 64 3.6 0.0002 

L Orbitofrontal Cortex  15.6 7e-5 -22 38 -18 4.6 3e-6 

R Orbitofrontal Cortex 12.7 0.0004 12 44 -6 4.6 4e-6 

BMI, Body Mass Index. All findings correspond to negative associations (i.e., higher BMI with 

weaker connectivity). PFWE-corr, P (Family-Wise Error corrected). x y z, coordinates given in Montreal 

Neurological Institute space.  
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Suppl. Table 2. Group differences in functional connectivity of the ventral striatum 

according to WHO weight status.  

 Cluster 
size, ml 

 
PFWE-corr 

Cluster 

Peak 
x  y  z 

T 
 

P 

Normal > excess weight 

(overweight + obese) 

L Sensorimotor Cortex 17.4 0.00003 -24 -18 66 3.9 7e-5 

R Sensorimotor Cortex " " 28 -16 68 4.7 2e-6 

Medial Sensorimotor Cortex " " -8 -26 70 3.7 0.0001 

L Orbitofrontal Cortex  11.1 0.0009 -14 26 -20 4.3 1e-5 

R Orbitofrontal Cortex 6.5 0.02 12 44 -6 4.3 1e-5 

Normal > obese 

L Sensorimotor Cortex 15.1 0.00009 -34 -22 46 3.5 0.0003 

R Sensorimotor Cortex " " 26 -16 70 4.0 4e-5 

Medial Sensorimotor Cortex " " -4 -26 66 3.7 0.0001 

L Orbitofrontal Cortex  6.4 0.02 -32 42 -22 3.7 0.0001 

R Orbitofrontal Cortex 1.9 * 12 44 -6 3.5 0.0003 

Normal > overweight 

L Sensorimotor Cortex 4.4 * -50 -30 56 3.5 0.0002 

L Orbitofrontal Cortex  5.5 0.04 -12 24 -20 3.7 0.0001 

R Orbitofrontal Cortex " " 6 32 -26 3.8 0.0001 

Overweight > obese 

L Sensorimotor Cortex 1.6 * 8 -30 64 3.2 0.0009 

PFWE-corr, P (Family-Wise Error corrected). x y z, coordinates given in Montreal Neurological Institute 

space. *Subthreshold; significant with small volume correction within the region of interest. 
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Suppl. Table 3. Correlations between BMI percentile and cortical functional connectivity 

Iso-Distance Average Correlations (IDAC) measures in the whole study sample. 

 
 

IDAC 
distance 

Cluster 
size, ml 

 
PFWE-corr 

Peak 
x  y  z 

 
T 

 
P 

L Somatosensory / Sup. Parietal 5-10mm 3.9 0.00004 -5 -78 57 4.6 3e-6 

R Somatosensory / Sup. Parietal 5-10mm 15.0 9e-14 4 -60 72 4.7 3e-6 

L Somatosensory / Sup. Parietal 15-20mm 10.6 5e-9 -8 -42 78 4.2 2e-5 

R Somatosensory / Sup. Parietal 15-20mm 18.3 6e-13 31 -60 63 4.8 2e-6 

L Somatosensory / Sup. Parietal 25-30mm 6.0 0.00003 -11 -48 75 4.6 4e-6 

R Somatosensory / Sup. Parietal 25-30mm 15.9 3e-7 13 -63 72 4.8 1e-6 

BMI, Body Mass Index. All findings correspond to positive associations (i.e., higher BMI with 

stronger connectivity). PFWE-corr, P (Family-Wise Error corrected). x y z, coordinates given in 

Montreal Neurological Institute space.  

 

  



32 
 

Suppl. Table 4. WHO group differences as to cortical Iso-Distance Average Correlation 

(IDAC) measures: POSITIVE WEIGHT STATUS EFFECTS. 

 IDAC 
distance 

Cluster 
size, ml 

PFWE-corr 

Cluster 

Peak 

x  y  z 
T P 

Normal < excess weight 

(overweight + obese) 

R Somatosensory Cortex 15-20mm 3.4 0.001 46 -33 66 3.5 0.0003 

R Superior Parietal 15-20mm 3.1 0.002 10 -72 63 4.1 3e-5 

L Somatosensory Cortex 25-30mm 2.8 0.008 -50 -12 24 3.7 0.0001 

R Somatosensory Cortex 25-30mm 2.1 0.04 49 -18 63 3.6 0.0002 

Normal < obese       

  none     

Normal < overweight       

L Somatosensory Cortex 5-10mm 2.3 0.002 -2 -45 45 3.8 9e-5 

R Superior Parietal 5-10mm 7.9 2e-8 4 -60 66 3.8 8e-5 

R Somatosensory Cortex 5-10mm 1.5 0.04 46 -18 66 3.8 0.0001 

R Superior Parietal 15-20mm 2.1 0.02 1 -54 45 4.1 3e-5 

L Sensorimotor Cortex 25-30mm 2.2 0.02 -50 -12 24 3.4 0.0004 

R Superior Parietal 25-30mm 4.7 0.0003 10 -78 60 3.9 5e-5 

Overweight < obese       

  none     

PFWE-corr, P (Family-Wise Error corrected). x y z, coordinates given in Montreal Neurological Institute 

space. 
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Supplementary Table 5. WHO group differences as to as to cortical Iso-Distance Average 

Correlation (IDAC) measures: NEGATIVE WEIGHT STATUS EFFECTS. 

 IDAC 
distance 

Cluster 
size, ml 

PFWE-corr 

Cluster 

Peak 

x  y  z 
T P 

Normal > excess weight 

(overweight + obese) 

R Amygdala Region 5-10mm 72 0.01 28 -12 -33 4.1 3e-5 

Normal > obese       

L Orbitofrontal Cortex 5-10mm 2.9 0.0006 -14 72 0 3.9 7e-5 

R Orbitofrontal Cortex 5-10mm 2.3 0.004 25 42 -21 3.5 0.0003 

L Amygdala Region 5-10mm 1.9 0.01 -23 -12 -33 4.4 1e-5 

R Amygdala Region 5-10mm 3.1 0.0004 31 -12 -33 4.3 1e-5 

R Amygdala Region 15-20mm 5.4 3e-5 28 -12 -33 4.2 2e-5 

Normal > overweight       

  none     

Overweight > obese       

L Orbitofrontal Cortex 5-10mm 6.4 6e-6 -20 -54 0 4.0 4e-5 

R Orbitofrontal Cortex 5-10mm 1.9 0.01 19 39 -18 3.8 0.0004 

L Orbitofrontal Cortex 15-20mm 9.1 6e-8 -11 48 -15 3.8 0.0001 

R Orbitofrontal Cortex 15-20mm 2.9 0.004 1 42 -24 3.6 0.0002 

L Orbitofrontal Cortex 25-30mm 6.8 8e-6 -8 60 -9 4.0 5e-5 

PFWE-corr, P (Family-Wise Error corrected). x y z, coordinates given in Montreal Neurological Institute 

space. 
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Supplementary Table 6. WHO group by distance interactions as to cortical Iso-Distance 

Average Correlation (IDAC) measures. 

 
 

Overall WHO Group-by-Distance Interactions 

  Cluster size, 
ml 

 
PFWE-corr 

Peak 
x  y  z 

 
F 

 
P 

R Orbitofrontal Cortex 3.5 1e-5 7 30 -18 7.3 9e-6 

L Amygdala Region 5.2 6e-8 -23 -12 -30 10.5 3e-8 

R Amygdala Region 5.1 1e-7 31 -12 -30 11.4 6e-9 

 Post-Hoc Effects 

Short Distance Greater Effect 

 (Obese < Normal at short distance)  
>  

(Obese < Normal at long distance) 

Cluster size, 
voxels 

 
PFWE-corr 

Peak 
x  y  z 

 
T 

 
P 

L Orbitofrontal Cortex 1.9 0.02 -20 36 -21 4.3 1e-5 

R Orbitofrontal Cortex 4.6 8e-5 19 36 -21 5.1 3e-7 

L Amygdala Region 6.4 3e-6 -23 -9 -33 5.4 5e-8 

R Amygdala Region 3.8 0.0004 22 -9 -30 5.0 4e-7 

PFWE-corr, P (Family-Wise Error corrected). x y z, coordinates given in Montreal Neurological Institute 

space.  
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Supplementary Figures 

 

 

Supplementary Figure 1. Frequency histograms illustrating the distribution of body mass index 

(BMI) percentiles for participants included in both analyses.  
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Supplementary Figure 2. One-sample Iso-Distant Average Correlation (IDAC) brain maps 

(normal-weight group). The gray images correspond to individual distance IDAC maps. The color 

image shows the result of superimposing the three IDAC maps using RGB (red, green and blue). 

The composite image is thus made up of primary RGB colors and their secondary combinations.  
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Supplementary Figure 3. One-sample maps for normal-weight children. The ventral striatum 

network corresponds to whole-brain positive correlations of the bilateral nucleus accumbens. 

The anticorrelation map corresponds to the nucleus accumbens’ negative correlations. 
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Supplementary Figure 4. One-sample Iso-Distant Average Correlation (IDAC) brain maps. The 

gray images correspond to individual distance IDAC maps. The color images show the result of 

superimposing the three IDAC maps using RGB (red, green and blue). The composite images are 

thus made up of primary RGB colors and their secondary combinations. Note that the 

differences between normal-weight (top) and excess-weight (bottom) children in the 

somatosensory cortex may already be appreciated upon visual inspection. 
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Supplementary Figure 5. Group (normal weight vs obese) by distance (5-10mm vs 25-30mm) 

interaction. The map shows areas with larger functional connectivity reduction in the obese 

group (compared with normal-weight children) at short than long local distance. 
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Supplementary Materials and Methods 

 

Definition of Iso-Distant Average Correlation (IDAC) 

We defined the concept of “Iso-Distant Average Correlation” (IDAC) to describe the pattern of 

correlation decay in the close vicinity of a voxel. IDACi(h) was consequently defined as the 

average temporal correlation of voxel i with all the voxels located at a given Euclidean distance 

interval h. Functional MRI data sets being a discrete sample, any distance interval h must be 

necessarily transformed into a discrete iso-distant interval Hk=(hk, hk+1), with hk being a set of 

successively increasing distances covering the whole vicinity of a given voxel(see Figure). 

The set of iso-distant intervals Hk were selected so that temporal correlations were mainly 

positive, decreased monotonically and in which horizontal axon collaterals were considered likely 

to form local networks. For the present study, we defined 3 iso-distant intervals: 5-10mm, 15-

20mm and 25-30mm, with constant thicknesses but increasing number of voxels.  

We first computed a correlation matrix C of Pearson coefficients comparing the functional MRI 

signal time course of all the voxels in our study mask with each other's. 

𝐶𝑖,𝑗 =
∑ (𝑌𝑖,𝑘 − 𝑌𝑖̅) · (𝑌𝑗,𝑘 − 𝑌𝑗̅)
𝑀
𝑘=1

√∑ (𝑌𝑖,𝑘 − 𝑌𝑖̅)
2𝑀

𝑘=1 · √∑ (𝑌𝑗,𝑘 − 𝑌𝑗̅)
2𝑀

𝑘=1

 

where M is the length of the functional MRI signal time series and i and j index all the voxels 

entering our study mask. We then transformed the Pearson correlation matrix C into a Gaussian 

distributed z-score correlation matrix Z by applying a Fisher transform. 

𝑍𝑖,𝑗 =
√𝑀 − 3

2
· ln⁡ (

1 + 𝐶𝑖,𝑗

1 − 𝐶𝑖,𝑗
) 
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We obtained then IDACi(hk) by averaging the correlation coefficients of voxel i with all the 

voxels j belonging to the interval Hk.  

𝐼𝐷𝐴𝐶𝑖(ℎ𝑘) =
∑ 𝑍𝑖,𝑗𝑗𝜖𝐻𝑘,𝑖

𝑁𝑘,𝑖
 

In short, IDAC values are defined as the mean correlation z-score between one voxel’s functional 

MRI signal and the functional MRI signal of all the voxels within the iso-distant interval Hk,i. 

Note that, for a given distance interval k, the number of voxels within the concentric iso-distant 

interval Nk,i is not necessarily the same for every voxel i due to the edge effects of the study mask. 

 

 

Figure. fMRI Temporal correlations between one voxel (“seed”) and its neighboring peripheries 
present a characteristic decreasing spatial gradient. LEFT: Fisher-transformed z-scores of a 
correlation map with a “seed” voxel in the visual area from a single subject. Voxel resolution is 
3x3x3mm and results are constrained to distance lags hk<30mm and within the subject’s native 
gray-matter mask (blue shade). RIGHT: Different Iso-distant intervals as they may be used to 
calculate different IDAC values. 
 

 

 


