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Abstract 

 

RNA modifications play pivotal roles in the RNA life cycle and RNA fate, and are now 

appreciated as a major post-transcriptional regulatory layer in the cell. In the last few years, 

direct RNA nanopore sequencing (dRNA-seq) has emerged as a promising technology that 

can provide single molecule resolution maps of RNA modifications in their native RNA 

context. While native RNA can be successfully sequenced using this technology, the 

detection of RNA modifications is still challenging. Here, we provide an upgraded version of 

EpiNano (version 1.2), an algorithm to predict m6A RNA modifications from dRNA-seq 

datasets. The latest version of EpiNano contains models for predicting m6A RNA 

modifications within dRNA-seq data that has been base-called with Guppy. Moreover, it can 

now train models with features extracted from both base-called dRNA-seq FASTQ data as 

well as from raw FAST5 nanopore outputs. Finally, we describe how EpiNano can be used in 

standalone mode to extract base-calling ‘error’ features and current intensity information 

from dRNA-seq datasets. In this chapter, we provide step-by-step instructions on how to 

produce in vitro transcribed constructs to train EpiNano, as well as detailed information on 

how to use EpiNano to train, test and predict m6A RNA modifications in dRNA-seq data.  
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1 Introduction 

Chemical modifications in RNA have been well-documented for over a half century.  In the 

1950s, pseudouridine was discovered to be the most abundant RNA modification present in 

cellular RNAs [1]. Later studies showed that internal modifications were also present in 

mRNAs and long-noncoding RNAs (lncRNAs), revealing that N6-methyladenosine (m6A) 

was the most abundant mRNA modification [2–5]. Interest in functionally dissecting and 

mapping RNA modifications transcriptome-wide re-emerged in the past decade, largely 

triggered by the discovery of the biological function of m6A demethylases FTO [6]  and 

ALKBH5 [6, 7]. At the same time, the availability of novel methods to map m6A RNA 

modifications transcriptome-wide (m6A-seq) opened new possibilities to study m6A 

modifications across a wide variety of conditions and tissues [8, 9]. Using m6A-Seq, m6A 

RNA modifications were found to play pivotal roles in a wide variety of biological processes, 

including cellular differentiation [10–13] and sex determination [14, 15], among others.   

While the field of RNA modifications owes largely to improved methods for detection using 

next-generation sequencing (NGS) technologies [8, 9, 16–18], these methods present several 

caveats: i)  they lack single molecule resolution [19]; ii) they are limited to those RNA 

modifications for which there are commercial antibodies and chemicals that are selective 

towards a particular RNA modification [20]; iii) they cannot provide isoform-specific 

information, due to the short-read nature of Illumina-based technologies; and iv) they are 

limited to those regions that can be reverse transcribed and/or PCR-amplified. Direct RNA 

nanopore sequencing (dRNA-seq) offers an alternative to NGS-based methods to detect RNA 

base modifications in a transcriptome-wide fashion [21]. Indeed, it is capable of sequencing 

native RNA molecules, including RNA modifications, in their native RNA context, and with 

single molecule resolution.  

In this chapter, we describe the use of EpiNano, an algorithm to detect RNA base 
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modifications from data generated using direct RNA nanopore sequencing. We exemplify the 

usage of Epinano to detect m6A RNA modifications both in in vitro transcribed constructs as 

well as in in vivo datasets.  

 

2 Materials 

2.1 In vitro transcribed RNAs with RNA modifications 

1. Plasmids containing ‘curlcake’ sequences, to be used as templates for the in vitro 

transcription reaction. The ‘curlcakes’ are a set of synthetic sequences that comprise all 

possible 5-mers (median occurrence of each 5-mer=10), while minimizing the RNA 

secondary structure, and thus can be used to systematically identify the perturbations of 

current intensity caused by the presence of a given RNA modification in all possible 5-mer 

contexts (n=1024). Plasmids can be obtained from Addgene: 

pUC57-Curlcake1 (2329 bp, Addgene # 139340) 

pUC57-Curlcake2 (2543 bp, Addgene # 139341) 

pUC57-Curlcake3 (2678 bp, Addgene # 139342) 

pUC57-Curlcake4 (2795 bp, Addgene # 139343) 

2. Competent E. coli cells: 10-beta Competent E. coli High Efficiency. 

3. SOC medium: 20 g/L Tryptone, 5 g/L Yeast Extract, 4.8 g/L MgSO4, 3.603 g/L dextrose, 

0.5 g/L NaCl, 0.186 g/L KCl. 

4. Agar Plates with Ampicillin (100 μg/mL). 

5. LB Broth. 

6. Ampicillin (100 mg/mL): Dissolve 1 g of sodium ampicillin in 10 mL nuclease-free water 

7. Qiagen Plasmid Maxi Kit. 

8. Molecular Grade Ethanol. 

9. Nuclease-Free water. 



 

10. BSA (NEB). 

11. Cutsmart Buffer, BamHI-HF, and EcoRV-HF.  

12. Phenol:Chloroform:Isoamyl Alcohol 25:24:1, Saturated with 10 mM Tris, pH 8.0, 1 mM 

EDTA.  

13. Chloroform. 

14. 3 M Sodium Acetate, pH 5.2 (Molecular Biology Grade).  

15. Pellet Paint® Co-Precipitant or glycogen.  

16. Agarose. 

17. 1xTBE Buffer: Dissolve 10.8 g Tris and 5.5 g Boric acid in 900 mL distilled water. Add 4 

mL 0.5 M Na2EDTA, pH 8.0. Adjust the volume to 1 L.  

18. Gel Red Nucleic Acid Stain (10,000X).  

19. Gel Loading Dye, Purple (6X).  

20. AmpliScribe™ T7 High Yield Transcription Kit. 

21. N6-Methyl-ATP (Jena Bioscience). 

 

2.2 Clean-up of IVT RNAs 

1. RNeasy Mini Kit.  

2. Nuclease-Free water. 

3. Qubit™ RNA HS Assay Kit.  

 

2.3 PolyA tailing, Clean-up and Quality Check 

1. SUPERase In. 

2. E. coli Poly(A) Polymerase and accompanying buffer. 

3. 10 mM ATP.  

4. Agencourt RNA Clean XP Beads.  



 

4. Nuclease-free water. 

5. Molecular Grade Ethanol. 

6. Magnetic separator, suitable for 1.5 mL Eppendorf tubes. 

7. Hula Mixer. 

8. Nanodrop or similar.  

9. Agilent Tapestation and accompanying reagents: RNA ScreenTape Sample Buffer, 

RNA ScreenTape Ladder, RNA ScreenTape, Optical tube strip caps (8x Strip), 

Optical tube strips (8x Strip), and Loading Tips. 

 

2.4 Direct RNA nanopore sequencing library preparation 

1. Direct RNA Sequencing Kit (SQK-RNA002).  

2. Flow Cell Priming Kit (EXP-FLP001). 

3. 1.5 mL Eppendorf DNA LoBind tubes 0.2 mL thin-walled PCR tubes. 

4. Nuclease-free water.  

5. Freshly prepared 70 % ethanol in nuclease-free water. 

6. SuperScript III Reverse Transcriptase and accompanying reagents.  

7. 10 mM dNTP solution.    

8. Concentrated T4 DNA Ligase 2M U/mL (NEB). 

9. NEBNext® Quick Ligation Reaction Buffer. 

10. Agencourt RNA Clean XP beads.      

11. Qubit RNA HS Assay Kit, Qubit dsDNA HS Assay Kit, and Qubit™ Assay Tubes. 

12. Hula mixer (gentle rotator mixer).    

13. Magnetic separator, suitable for 1.5 mL Eppendorf tubes. 

 

2.5 Software 



 

1. Guppy, version 3.1.5 or later (https://community.nanoporetech.com/): base-calling 

algorithm 

2. Minimap2 (https://github.com/lh3/minimap2): mapping algorithm 

3. Samtools, version 0.1.19 (https://github.com/samtools/samtools): sorting and 

manipulation of BAM files 

4. Sam2tsv, version a779a30d6af485d9cd669aa3752465132cf21eec: conversion of 

BAM to plain text files and reorganization of the read-reference alignment 

5. EpiNano, version 1.2 (https://github.com/enovoa/EpiNano): extraction of base-calling 

‘error’ features from FASTQ files and BAM/SAM alignment files, and optionally 

current intensity information from Nanopolish event align outputs 

6. Nanopolish, version 0.11.2 or later (https://github.com/jts/nanopolish): extraction of 

event information from FAST5 files 

2.6. Datasets 

1. Direct RNA sequencing data from S. cerevisiae polyA(+)-selected RNA, both from WT 

and ∆IME4 strains, can be found in SRA (SRP184486, FAST5) and GEO (code: 

GSE126213, FASTQ).  

2. Direct RNA sequencing data from S. cerevisiae 25s ribosomal RNA, both from WT 

and snR34 knockout strains, can be found in the EpiNano GitHub repository 

(https://github.com/enovoa/EpiNano/tree/master/test_data/).  

3. Direct RNA sequencing data from in vitro transcribed synthetic constructs (‘curlcakes’) 

containing unmodified (‘unm’) as well as m6A-modified (‘mod’) nucleosides can be 

found in SRA (code: SRP174366, FAST5) and GEO (code: GSE124309, FASTQ). 

 

3 Methods 

https://github.com/enovoa/EpiNano/tree/master/test_data/)


 

3.1. Preparation of modified and unmodified in vitro transcribed constructs to train 

EpiNano 

3.1.1. Plasmid transformation and isolation 

1. Adjust the water bath to 42 °C and place the competent E. coli cells into ice. 

2. Add 3 μL of the Curlcake plasmid into a 25 μL volume of competent cells and mix well. 

Incubate on ice for 30-45 min. 

3. Heat shock the cells at 42 °C for 45 sec, then incubate on ice for 5 min. 

4. Add 500 μL warm SOC/SOB medium. Don’t pipette and incubate at 37 °C for 1 hr 

shaking at 220 rpm (use thermomixer). 

5. Spread 200 μL transformant on Agar Plates containing 100 μg/μl Ampicillin. 

6. Incubate in a 37 °C incubator overnight.  

7. Next day, pick a colony and inoculate it in 200 mL LB (with Ampicillin 100 μg/μl) for 

O/N culture (for Maxiprep). 

8. Centrifuge the culture in 250 mL centrifuge vessels at 10,000 X g for 10 min (either 

disposable or reusable autoclaved ones) and isolate plasmids DNA using the Plasmid Maxi 

Kit according to the manufacturer’s instructions, resuspending the final DNA pellet in 500 μl 

RNAse-free water. 

 

3.1.2. Enzymatic Digestion of Plasmids and DNA cleanup 

1. Digest 10 μg DNA (see Note 1) in 250 μL volume as outline below and incubate 4 hr (or 

O/N) at 37 °C.  

BSA (100X) 2.5 μL 

Cutsmart Buffer (10X) 25 μL 

BamHI-HF       1 μL (20 units) 



 

EcoRV-HF 1 μL (20 units) 

DNA x μL 

dH2O Up to 250 μL 

 

2. To clean up the plasmid DNA, add one volume of phenol:chloroform:isoamyl alcohol 

(25:24:1) to your sample, shake by hand thoroughly for approximately 20 sec. 

3. Centrifuge at room temperature for 5 min at 16,000 × g. Carefully remove the upper 

aqueous phase and transfer the layer to a fresh tube. Be sure not to carry over any phenol 

during pipetting. 

4. Repeat the two previous steps until no protein is visible at the interface. 

5. Mix an equal volume of chloroform with the aqueous phase. Shake briefly and centrifuge 

at 12,000 x g for 3-5 min. 

6. Mix the upper phase with 0.1X sodium acetate and 2.5X absolute ethanol and 1 μL 

Glycogen or 2μL Pellet paint. Incubate for 15 min RT or overnight -20 °C or 1 hr at -80 °C. 

7. Centrifuge the sample at 4 °C for 30 min at 16,000 × g to pellet the DNA. 

8. Carefully remove the supernatant without disturbing the DNA pellet. Add 150 μL of 70 % 

ethanol.  

9. Centrifuge the sample at 4 °C for 2 min at 16,000 × g. Carefully remove the supernatant. 

10. Allow the pellet to air dry and resuspend the pellet in 25 μL of RNAse-free H2O. 

11. Measure the DNA concentration using a Nanodrop or similar.  

 

3.1.4. Agarose Gel Electrophoresis  

Perform gel electrophoresis to confirm plasmid DNA digestion.  

1. Dissolve 1 g Agarose in 100 mL 1xTBE/TAE Buffer in a microwavable flask and 

microwave for 1-3 min until the agarose is completely dissolved. 



 

2. Let it cool on the benchtop for 5 min and add 10 μL Gel Red Nucleic Acid Stain (10,000X) 

and mix. 

3. Pour the mixture into the gel container and allow to set.  

4. Mix 1 μL digested DNA sample with 1 μL Loading Dye (6X) and 4 μL nuclease-free 

water. 

5. Load the DNA sample into the well and run the gel for 30 min at 100 V. 

6. Image the gel using a Bio-Rad gel imager or similar to ensure DNA is completely 

linearized.  

 

3.1.5. In vitro transcription (IVT) using Ampliscribe T7-Flash Transcription Reaction 

1. For each plasmid, set up an IVT reaction by combining the following reaction components 

from the AmpliScribe™ T7 High Yield Transcription Kit with linearized DNA from the step 

above at RT, in the order listed below (See Note 2). Substitution of m6ATP in the place of 

ATP will result in the generation of RNA containing m6A residues.  

Component Volume 

RNase-Free water Up to 20 μL 

Linearized template DNA 1 μg 

AmpliScribe T7-Flash 10X Reaction Buffer   2 μL 

100 mM DTT 2 μL 

100 mM ATP (or m6ATP) 1.8 μL 

100 mM CTP 1.8 μL 

100 mM GTP 1.8 μL 



 

100 mM UTP 1.8 μL 

Riboguard RNase Inhibitor 0.5 μL 

Ampliscribe T7 Flash Enzyme Solution 2 μL 

Total 20 μL 

          

2. Incubate the reaction for 4 hr at 42 °C. 

3. Add 2 μL of RNAse-Free DNAse I to the reaction and incubate for 20 min at 37 °C. 

 

3.1.6. RNA Cleanup using RNeasy Qiagen Kit 

1. Bring the volume of the IVT reaction to 100 μL with RNase-free water. 

2. Follow the step by step instructions of the RNeasy Kit according to the manufacturer’s 

protocol.  

3. To elute RNA, pipette 20 μL RNase-free water directly onto the RNeasy Mini column 

membrane. Centrifuge for 15 min at ≥ 8000 x g to elute. 

4. Add another 20 μL RNase-free water directly onto the RNeasy Mini column membrane 

and centrifuge for 15 min at ≥ 8000 x g to elute.  

5. Measure the quality/quantity of the eluate. 

 

3.1.7. PolyA tailing 

1. Mix the following reagents to proceed with polyA tailing reaction: 

Reagent Volume 

Purified RNA (sample) (step 3.1.5 above) 1-10 µg in 15.5 µL nuclease free water 



 

RNAse Inhibitor (SUPERaseIN) 0.5 μL 

10X E. coli Poly(A) Polymerase Reaction 

Buffer 

2 µL 

ATP (10 mM) 1 µL 

E. coli Poly(A) Polymerase  1 μL 

Total 20 L 

  

2. Incubate the reaction at 37 °C for 20 min and proceed immediately to cleanup. 

 

3.1.7. Bead Cleanup of RNA using RNA Clean XP Beads 

1. Vortex the RNA clean XP Bead stock until homogenous and add 36 μL (1.8X) RNA clean 

beads to the RNA sample.  

2. Mix by pipetting up and down 10x gently and incubate for 5 min at RT. 

3. Place the reaction on the magnet and let it settle for 5-10 min. 

4. Slowly aspirate the solution and discard.  

5. Add 70 % fresh ethanol and incubate for 30 sec at RT. Remove ethanol completely and air 

dry for 2 min. 

6. Add 20 μL water and pipette the beads up and down. Incubate 5 min at RT. 

7. Use a magnetic stand to separate the beads from the RNA. Transfer the RNA solution into 

a new tube. 

8. Measure the quality and quantity of the RNA and confirm the polyA tailing. 

 

3.1.8. Quality check of PolyA tailed RNAs using TapeStation 



 

1. Load both non-polyA-tailed and polyA-tailed IVT constructs into TapeStation (see Note 3) 

according to the manufacturer’s instructions. Expected results are displayed in Fig. 1.  

 

[Figure 1 near here] 

 

3.2. Direct RNA Sequencing Library Preparation 

3.2.1. Preparing input RNA 

1. Pool each Curlcake (for unmodified and m6A modified separately) into a DNA LoBind 

tube that will contain 200 ng from each (800 ng total).  

2. Adjust the volume to 9 μL with Nuclease-free water and mix thoroughly by inversion.  

3. Spin down briefly in a microfuge. 

 

3.2.2. Adapter ligation 

1. In a 0.2 mL thin-walled PCR tube, mix the reagents in the following order including some 

components from the Direct RNA Sequencing Kit: 

Reagent Volume (μL) 

5X NEBNext Quick Ligation 

Reaction Buffer  

3 

RNA 9 

RT Adapter (RTA) 1 

Concentrated T4 DNA Ligase 1.5 

RNAse Inhibitor (SUPERase) 0.5 



 

Total 15 

  

2. Mix by pipetting and spin down. 

3. Incubate the reaction for 10 min at RT. In the meantime, proceed to the reverse 

transcription step. 

 

3.2.3. Reverse Transcription and cleanup 

1. Mix the following reagents together to make the reverse transcription master mix: 

Reagent Volume (μL) 

Nuclease-free water 9 

10 mM dNTPs 2 

5X First-Strand Buffer 8 

0.1 M DTT 4 

Total 23 

  

2. Add the master mix to the 0.2 mL PCR tube containing the RT adaptor ligated RNA from 

the “RT Adapter ligation” step above. Mix by pipetting. 

3. Add 2 μl SuperScript III reverse transcriptase to the reaction and mix by pipetting. 

4. Place the tube in a thermal cycler and incubate at 50 °C for 50 min, 70 °C for 10 min, and 

bring the sample to 4 °C before proceeding to the next step. 

5. Transfer the sample to a 1.5 mL DNA LoBind Eppendorf tube. 

6. Resuspend the stock of Agencourt RNAClean XP beads by vortexing and add 72 μL beads 

to the reverse transcription reaction and mix by pipetting. 



 

7. Incubate on a Hula mixer for 5 min at RT. 

8. Prepare 200 μL of fresh 70 % ethanol in nuclease free water. 

9. Spin down the sample and pellet on a magnet. 

10. Keep the tube on the magnet and wash the beads with 150 μL 70% ethanol without 

disturbing the pellet. 

11. Remove the ethanol and discard. Spin down tubes, place back on the magnetic rack and 

remove any residual ethanol. 

12. Remove the tube from the magnetic rack and resuspend the pellet in 20 μL nuclease-free 

water. Incubate for 5 mins at RT. 

13. Pellet the beads on the magnet until the eluate is clear and colourless. 

14. Pipette 20 μL of the eluate into a clean 1.5 mL Eppendorf DNA LoBind tube. 

15. Measure cDNA and RNA on a Qubit or similar. 

 

3.2.3. RMX adapter ligation and cleanup 

1. In a clean 1.5 mL Eppendorf DNA LoBind tube, mix the reagents in the following order: 

Reagents Volume (μL) 

Reverse-transcribed RNA from the “Reverse Transcription” step 20 

5X NEBNext Quick Ligation Reaction Buffer 8 

RNA Adaptor (RMX) 6 

Nuclease-free water 3 

Concentrated T4 DNA ligase 3 

  

2. Mix by pipetting and incubate for 10 min at RT. 



 

3. Re-suspend the stock of Agencourt RNA Clean XP beads by vortexing and add 40 μL of 

beads to the adaptor ligation reaction and mix by pipetting. 

4. Incubate on a Hula mixer for 5 min at RT. 

5. Spin down the sample and pellet on a magnet. Keep the tube on a magnet and pipette of the 

supernatant. 

6. Add 150 μL of the Wash Buffer (WSB) provided in the Direct RNA sequencing kit to the 

beads. Resuspend the beads by flicking the tube. Return the tube on the magnetic rack, allow 

beads to pellet and pipette of the supernatant. Repeat. Allow to air dry for 2 min. 

7. Remove the tube from the magnetic rack and resuspend the pellet in 21 μl Elution Buffer. 

Incubate for 10 min at RT. 

8. Pellet the beads on magnet until eluate is clear and colourless. 

9. Remove and retain 21 μL of eluate into a clear 1.5 mL Eppendorf DNA LoBind tube. 

10. Measure cDNA and RNA on Qubit or similar. 

11. Mix the library with 17.5 μl water.  

12. Add 37.5 μL RRB Buffer (Mix RRB by vortexing before using) and mix well. Library is 

now ready to be loaded to the flowcell (see Note 4).  

 

3.3. Analysis of direct RNA sequencing datasets: base-calling and mapping 

3.3.1. Base-calling  

Base-calling should be performed using Oxford Nanopore Technologies’ guppy base-caller, 

such as in the example shown below (see Note 5): 

guppy_basecaller --device cuda:0 -c rna_r9.4.1_70bps_hac.cfg --

compress_fastq -i path/to/fast5_directory -r -s 

/path/to/save/basecalling_out --fast5_out 

 

3.3.2. Mapping 



 

Map the base-called reads to the reference fasta sequences using minimap2 [22], and keep 

only the mapped reads: 

minimap2 --MD -t 6 -ax map-ont ref.fasta sample.reads.fastq | samtools view 

-hbS -F 3844 - | samtools sort -@ 6 - sample.reads 

 

Alternatively, reads can also be aligned to a reference genome using the following command 

(see Note 6): 

minimap2 --MD -t 6 -ax splice -k14 -uf  ref.fasta sample.reads.fastq | 

samtools view -hbS -F 3844 - | samtools sort -@ 6 - sample.reads 

 

3.4 Extraction of features to detect RNA modifications in direct RNA sequencing 

datasets using EpiNano 

The latest version of the EpiNano suite (version 1.2) consists of five main programs or 

modules:  

- Epinano_Variants computes systematic base-calling ‘errors’ (mismatch, deletion, 

insertion, and per-base quality score) for each base along the mapped reads and 

reports their relative frequencies in a plain text file.  

- Epinano_Current extracts raw current intensity values and dwell time for each 

reference base.  

- Epinano_Predict trains models using the features extracted with the aforementioned 

two modules and makes predictions using trained models.  

- Epinano_DiffErr predicts RNA modifications based on the differences in base-

calling ‘errors’ between two samples (typically wild type and knock-out). 

- Epinano_Plot produces scatterplots or barplots depicting the differences in base-

calling ‘errors’ or modification probabilities between two samples, highlighting 

https://paperpile.com/c/zYh3Yv/c8nB


 

positions that are identified by the algorithm as significantly altered, i.e., predicted as 

differentially modified. 

 

EpiNano 1.2 can predict RNA modifications from direct RNA sequencing datasets using two 

distinct strategies: (i) EpiNano-SVM, which employs pre-trained SVM models to predict 

RNA modifications, and (ii) EpiNano-Error, which uses the differences between base-

calling ‘errors’ (mismatches, deletions, insertions) between two samples, as well as 

alterations in per-base qualities, to predict RNA modifications (Figure 2). Both strategies 

rely on the fact that RNA modifications appear as systematic base-calling ‘errors’ in direct 

RNA sequencing datasets.   

 

[Figure 2 near here] 

 

3.4.1. Extraction of base-calling ‘error’ features using EpiNano 

1. Clone the EpiNano repository from GitHub (https://github.com/enovoa/EpiNano) using 

git:  

git clone https://github.com/enovoa/EpiNano.git 

2. Extract base-calling errors using the module Epinano_Variants. This module relies on 

sam2tsv from the jvarkit toolkit (https://github.com/lindenb/jvarkit) to extract base qualities 

and compute variant frequencies from direct RNA sequencing data. The user must provide as 

input both a BAM file containing the mapped reads as well as a reference transcriptome or 

genome in FASTA format. The $EPINANO_HOME variable corresponds to the location of the 

EpiNano scripts folder.  

 

python $EPINANO_HOME/Epinano_Variants.py -t 6 -R reference.fasta -b 

sample.reads.bam -s /path/to/sam2tsv/sam2tsv.jar --type g 

https://github.com/enovoa/EpiNano
https://github.com/enovoa/EpiNano.git
https://github.com/lindenb/jvarkit


 

 

The '--type' flag indicates the type of reference that was used to obtain the bam file. If the 

reads were mapped to a genome reference with splicing-aware mapping options, '--type g' 

should be specified, and EpiNano will discriminate the reads mapped to the forward strand 

from those mapped to the reverse strand. Otherwise, by default, the script assumes the bam 

file was generated by mapping the reads to reference transcriptome and that the reads should 

only be mapped to the forward strand.  

 

Epinano_Variants outputs two feature tables: (i) sample.per.site.var.csv, which 

contains base-calling ‘error’ information for each reference position, and (ii) 

sample.per_site.5mer.csv, which contains the same base-called features organized in 

slided 5-mer windows (see Note 7).  

 

3.4.2. Extraction of current intensity values using EpiNano  

The latest version of EpiNano (v.1.2) relies on the use of  Nanopolish [23] to extract the 

current signal level information and collapse it on a single-position basis. We offer a custom 

bash script, which carries out Nanopolish’s eventalign function and further collapses the 

current intensity and dwell time values. Epinano_Variants, this will produce a file of per-

position results consisting of raw current intensity values and their corresponding mean, 

median and standard deviations as well as a second file with results organized in 5-mer-

windows.   

 

sh $EPINANO_HOME/misc/Epinano_Current.sh -b sample.reads.bam -r 

sample.reads.fastq -f reference.fasta  -t 6  -m g -d fast5_folder/  

 

Finally, we can merge both variants and current features using the following script:  

https://paperpile.com/c/zYh3Yv/zmQw


 

python $EPINANO_HOME/misc/Join_variants_currents.py  

--variants sample.per_site_var.5mer.csv 

--intensity sample.per_site_current.5mer.csv  

--outfile sample.5mer.all_features.csv  

 

3.5. Predicting RNA modifications in vivo using trained SVM models (EpiNano-SVM) 

3.5.1. Train EpiNano models 

1. Label and merge the ‘modified’ and ‘unmodified’ datasets. To train a model, we first have 

to label the files containing EpiNano-extracted features that will be used for training the 

model (‘mod.per_site.5mer.csv’ and ‘unm.per_site.5mer.csv’) by adding the 

corresponding labels (‘mod’ and ‘unm’), as shown below:  

bash $EPINANO_HOME/misc/Epinano_LabelSamples.sh -m mod.per_site.5mer.csv -u 

unm.per_site.5mer.csv -o combined.per_site_raw_feature.5mer.csv 

 

2. Train the model using EpiNano. Epinano_Predict is the module to train EpiNano models 

using features that have been previously extracted using either Epinano_Variants and/or 

Epinano_Current, and is executed as shown below:  

 

python $EPINANO_HOME/Epinano_Predict.py  

          --train combined.per_site_raw_feature.5mer.csv   

          --predict combined.per_site_raw_feature.5mer.csv   

          --accuracy_estimation --out_prefix train_and_test  

          --columns 8,13,23 --modification_status_column 26 

 

While the user can choose to train the algorithm with one sample (--train) and test it on an 

independent sample (--predict), it is also possible to use the same input file both for 

training and testing the model, as depicted in the example above. In this scenario, 

Epinano_Predict will train the models with 50 % of the input data and make predictions 



 

with the remaining 50 % of the data. 

 

In the above command, ‘--columns’ denotes the column numbers of features that are used 

for training models (in this case, corresponding to ‘q3’, ’mis3’ and ‘del3’), while ‘--

modification_status_column’ indicates the prior knowledge of the modification statuses, 

i.e., the labels ‘mod’ and ‘unm’. Switching on --accuracy_estimation will report the 

accuracy of the trained model(s).  Unless ‘--kernel’ is used, Epinano_Predict will train 

models with multiple kernels. Finally, the user can visualize the accuracy of their trained 

models in the form of Receiver Operating Characteristic (ROC) curves (Fig. 2).  

 

[Figure 3 near here] 

 

3.5.2. Predict RNA modifications using trained SVM models 

Epinano_Predict.py can predict RNA modifications on a given dataset using previously 

trained EpiNano models (specified with ‘--model’). In the example below, we employ a 

previously trained model ‘q3.mis3.del3.MODEL.linear.model.dump’ that will predict 

m6A modifications in RRACH k-mers on a dataset that is specified with ‘--predict’ (see 

Note 8). This SVM model has been trained on RRm6ACH and RRACH k-mers produced 

using in vitro transcription, using the steps described in section 3.4, and the features used to 

train the model correspond to q3, mis3 and del3, which correspond to the per-base quality, 

mismatch frequency and deletion frequency of the middle position of the k-mer. It is 

important to note that a given model should only be used to predict modifications on the same 

set of k-mers that were used to train the model, i.e. if the model is trained on GGACA k-

mers, it should only be used to predict m6A modifications on GGACA k-mers  (see Note 9).   

python $EPINANO_HOME/Epinano_Predict.py  

--model $EPINANO_HOME/models/q3.mis3.del3.MODEL.linear.model.dump  



 

--predict sample.per_site.5mer.csv  

--columns 8,13,23 

--out_prefix sample_mod_prediction  

 

EpiNano relies on systematic base-calling ‘errors’ caused by the presence of RNA 

modifications, and as such, it can be confounded by base-calling ‘errors’ that are present in 

the data, leading to a high number of false positives (see Note 10). To remove the false 

positives, we recommend coupling the sequencing run of interest to a knockout or 

knockdown condition. For example, if the user is sequencing the RNA of a given cell line, 

they should also sequence the matched METTL3 knockdown condition to remove false 

positive predictions. In addition, if EpiNano is run in ‘paired’ mode, if can be used with pre-

trained SVM models that rely on the differences in the base-calling ‘errors’ observed between 

two samples (e.g. WT-KO) to predict the RNA modifications (Fig. 4). 

Here we tested the performance of EpiNano 1.2 in S. cerevisiae wild type and ime4∆ direct 

RNA sequencing datasets, which are publicly available (see Note 11). The performance of 

EpiNano on known m6A-modified sites from in vivo yeast mRNAs is depicted in Fig. 4, 

using two different pre-trained models, which are available in the EpiNano GitHub 

repository.  We find that SVM models trained on base-calling ‘error’ differences perform 

slightly better than those relying on absolute base-calling feature values. 

[Figure 4 near here] 

 

3.6. Predicting RNA modifications in vivo from base-calling ‘error’ differences 

(EpiNano-Error) 

In section 3.5 we have showcased the use of base-calling ‘error’ features to train Support 

Vector Machine (SVM) models to predict m6A RNA modifications, using the 



 

Epinano_Predict module, which was the original strategy employed by EpiNano to predict 

RNA modifications [21]. In the EpiNano 1.2 suite, we now provide a new module, 

Epinano_DiffErr, that can predict RNA modifications by identifying those positions that 

show differential base-calling ‘errors’ - previously extracted using the Epinano_Variants - 

when comparing two samples (e.g. a wild type and knock-out condition). 

 

Rscript $EPINANO_HOME/Epinano_DiffErr.R -k ko.per.site.var.csv -w 

wt.per.site.var.csv -d 0.1 -t 3 -p -o diffErr -f mis 

 

In the example above, Epinano_DiffErr predicts RNA modifications using mismatch 

frequency differences (-f mis). We should note that distinct RNA modification types affect 

distinct base-calling ‘error’ features, and therefore, the user should choose whichever feature 

is most affected by the RNA modification type that is being studied. Epinano_DiffErr also 

offers the possibility of using the combination of all base-calling ‘errors’ simultaneously (-f 

sum_err). 

 

To identify RNA-modified sites, Epinano_DiffErr relies on two metrics. The first one is 

based on the z-score deviance of error frequencies between two samples. The second relies 

on fitting a linear regression model between the features of the two samples, and 

modifications are then determined by identifying data points with significant residuals 

(inferred from z-scores or as Bonferroni corrected p-values through t-test of the studentized 

residuals). The thresholds for these two metrics can be adjusted by the user using parameters 

–t and –d, respectively.  

 

While Epinano_DiffErr can only identify RNA-modified sites that are changing between 

the two conditions/samples studied (i.e. it cannot predict RNA modifications ‘de novo’), it 



 

can be applied, in principle, to any RNA modification type – as long as the RNA 

modification type affects the current intensity and/or base-called features-.  

 

Finally, the user can choose to visualize the predicted RNA-modified sites using the 

Epinano_Plot module: 

 

Rscript $EPINANO_HOME/Epinano_Plot.R diffErr.delta-mis.prediction.csv 

 

This module takes as input a comma-separated file with predictions, such as the one 

generated by Epinano_DiffErr in the previous step, and will highlight the predicted sites in 

scatterplots or barplots (Fig. 5). 

 

[Figure 5 near here] 

 

4. Notes 

1. DNA volume should never be more than 25 % of the total volume. Enzyme volume should 

never be more than 10 % of total volume. 

2. If the reaction is prepared at a colder temperature, a cloudy solution will appear, which 

indicates the precipitation of spermidine and DTT. 

3. A Bioanalyzer can also be used instead of a Tape Station.  

4. Keep the library on ice if it is not immediately loaded.  

5. New versions of guppy base-caller are released every few months. The guppy base-caller is 

available from the Nanopore community (https://community.nanoporetech.com/).  The 

current code and downstream examples used in this chapter correspond to Guppy version 

3.1.5. 

https://community.nanoporetech.com/


 

6. We recommend users to try different aligners and alignment parameters and find an 

optimized approach to read mapping.  

7. If the reference FASTA used is large (i.e. not synthetic sequences, such as is the case of the 

‘curlcakes’), we recommend splitting the dataset into smaller subsets. This will greatly reduce 

the computation time and required memory. 

8. This model, which has been trained on RRACH k-mers base-called with Guppy 3.1.5, is 

available in the EpiNano GitHub repository (https://github.com/enovoa/EpiNano). 

9. There is a strong dependency between base-calling ‘errors’ and sequence context. Thus, if 

the user chooses to train on diverse k-mers simultaneously, we recommend minimizing the 

diversity of the k-mers included in the training.  

10. False positives can also be caused by low coverage. RNA modifications should be 

predicted on sites with high coverage. We recommend a minimum coverage of 20-30 reads 

for a k-mer to be included in the analysis. 

11. FAST5 data used in this work are the same from [21] and can be obtained from SRA 

database through the accession code SRP174366. Intermediate datasets used for this Chapter 

can be found at https://github.com/novoalab/EpinanoBookChapter. 

12. Raw features across the 3 replicates were merged as previously described [21] using the 

following pseudo-code:  

 if (probM1 ≥ 0.5 and ProbM2 ≥ 0.5 and probM3  ≥ 0.5)： 

   probM = 1 

 else: 

   probM = (probM1 + probM2 + probM3) / 3 

  if (probM_wt/probM_ko > 1.5): 

     prediction = 'mod' 

  else: 

     prediction = 'unm' 

 

https://github.com/enovoa/EpiNano
https://paperpile.com/c/zYh3Yv/KfUJ
https://github.com/novoalab/EpinanoBookChapter
https://paperpile.com/c/zYh3Yv/KfUJ
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Figure captions 

 

Fig. 1. Tapestation image of the Curlcake1 (CC1) products, in vitro transcribed with or 

without m6A modifications, before and after polyA tailing. Ladder illustrates the size of 

distinct bands on the electronic gel. Each IVT product shows increased size upon polyA 

tailing. 
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Fig. 2. Overview of the five main modules included in the EpiNano 1.2 suite. The latest 

version of EpiNano can predict RNA modifications using two distinct strategies: i) EpiNano-

Error, which detects RNA modifications using differential base-calling ‘errors’ that are 

detected between two samples (typically wild type and knockout), and ii) EpiNano-SVM, 

which detects RNA modifications using Support Vector Machines (SVM), where the SVM 

models have been pre-trained with modified and unmodified datasets.  
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Fig. 3. ROC curves depicting the modification detection performance using in vitro test 

data (not used for training) which includes 263 RRACH k-mers. (A) All three SVM 

models were trained with the same subset of features (q3, mis3 and del3) described 

previously [21], using three different kernels (linear, poly and rbf). (B) The models were 

trained using the difference of these features (∆q3, ∆mis3 and ∆del3) between the modified 

and unmodified positions, in a pairwise manner. AUC represents the area under the curve.  
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Fig. 4.  ROC curve depicting the performance of m6A modification detection in in vivo 

data. All shown models were trained with a linear kernel but using distinct features. Raw 

features across replicates were combined as previously described [21] (see Note 12).  
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Fig 5. Scatterplots and barplots generated by Epinano_Plot. The RNA-modified sites that 

are known to be affected by the knock-out are positions 2826 and 2880. These plots can be 

generated using test data from $EPINANO_HOME/test_data. 
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