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Nanopore RNA sequencing shows promise as a method for discriminating and identifying 35 

different RNA modifications in native RNA. Expanding on the ability of nanopore sequencing 36 

to detect N6-methyladenosine (m6A), we show that other modifications, in particular 37 

pseudouridine (Ѱ) and 2’-O-methylation (Nm), also result in characteristic base-calling ‘error’ 38 

signatures in the nanopore data.  Focusing on Ѱ modification sites, we detect known and 39 

uncover previously unreported Ѱ sites in mRNAs, ncRNAs and rRNAs, including a Pus4-40 

dependent Ѱ modification in yeast mitochondrial rRNA. To explore the dynamics of 41 

pseudouridylation, we treat yeast cells with oxidative, cold and heat stresses and detect heat-42 

sensitive Ѱ-modified sites in snRNAs, snoRNAs and mRNAs. Finally, we develop a software, 43 

nanoRMS, that estimates per-site modification stoichiometries by identifying single-molecule 44 

reads with altered current intensity and trace profiles. This work demonstrates that Nm and Ѱ 45 

RNA modifications can be detected in cellular RNAs and that Ѱ RNA can be identified in a 46 

quantitative manner by nanopore sequencing of native RNA.  47 

 48 

 49 

 50 

  51 



 52 

RNA modifications are chemical moieties that decorate RNA molecules, expanding their lexicon. By 53 

coupling antibody immunoprecipitation or chemical probing with next-generation sequencing (NGS), 54 

transcriptome-wide maps of several RNA modifications have been constructed, including N6-55 

methyladenosine (m6A) 1,2, pseudouridine (Ѱ) 3–6, 5-methylcytosine (m5C) 7,8, 5-56 

hydroxymethylcytosine (hm5C) 9, 1-methyladenosine (m1A) 10,11, N3-methylcytosine (m3C) 12, N4-57 

acetylcytosine (ac4C) 13,14 and 7-methylguanosine (m7G) 15,16. These studies have revealed that RNA 58 

modifications play a pivotal role in many cellular processes, including regulation of cellular fate 17, sex 59 

determination 18 and cellular differentiation 19. 60 

Despite these advances, a fundamental challenge in the field is the lack of a generic approach for 61 

mapping diverse RNA modification types simultaneously 20–23. Currently, customized protocols must 62 

be optimized for each RNA modification type, leading to experimental designs in which the RNA 63 

modification type to be studied is chosen beforehand, hindering the ability to characterize the plasticity 64 

of the epitranscriptome in a systematic and unbiased manner. Moreover, even in those cases where a 65 

selective antibody or chemical is available, NGS-based methods are often not quantitative, have high 66 

false positive rates 21, are inconsistent when using distinct antibodies 24, are unable to produce maps 67 

for highly repetitive regions, cannot provide information regarding the co-occurrence of distant 68 

modifications in same transcripts, do not provide isoform-specific information, and require multiple 69 

ligations steps and extensive PCR amplification during the library preparation, introducing undesired 70 

biases in the sequencing data 25.  71 

A promising alternative to NGS-based technologies is the direct RNA sequencing platform developed 72 

by Oxford Nanopore Technologies (ONT), which has the potential to detect virtually any given RNA 73 

modification present in native RNA molecules 20,26,27. Several studies have shown that RNA 74 

modifications can be identified using this technology 28–30; however, most efforts have been so far 75 

limited to the detection of m6A modifications 28–34, and it is largely unknown whether other RNA 76 

modifications may be distinguishable from their unmodified counterparts. Thus, a systematic approach 77 

that can map and quantify diverse RNA modifications simultaneously is currently missing.  78 

 79 

Here, we examine the S. cerevisiae coding and non-coding transcriptome at single molecule 80 

resolution using native RNA nanopore sequencing. We find that most RNA modifications cause 81 

systematic base-calling errors, and that the signature of these base-calling ‘errors’ can be used to 82 

identify the underlying RNA modification type. For example, we find that pseudouridine typically 83 

appears in the form of U-to-C mismatches, whereas m5C modifications appear in the form of 84 

insertions. We then exploit the identified signatures to de novo predict RNA modifications in rRNAs, 85 

identifying two previously unreported Ѱ modifications in mitochondrial rRNA, which we confirm using 86 

CMC-probing coupled to nanopore sequencing (nanoCMC-seq). We demonstrate that one of these Ѱ 87 

modifications (15s:Ѱ854) is placed by the enzyme Pus4, which was previously thought to 88 

pseudouridylate only mRNAs and tRNAs 4. Moreover, we show that once RNA modifications have 89 

been accurately predicted using base-calling ‘errors’, the stoichiometry of a given Ѱ- or Nm-modified 90 



site can be estimated by clustering per-read features (current intensities and trace) of the modified 91 

regions.  92 

 93 

We then explore the dynamics of RNA modifications present in non-coding RNAs. It has been 94 

proposed that differential rRNA modifications may constitute a source of ribosomal heterogeneity 35–37. 95 

Indeed, previous studies have shown that temperature changes affect rRNA pseudouridylation levels, 96 

suggesting that cells may be able to generate compositionally distinct ribosomes in response to 97 

environmental cues 4,38,39. Similarly, alterations in the stoichiometry of 2’-O-methylation (Am, Cm, Gm, 98 

Um) 40–42 and pseudouridylation (Ѱ) 35–37 can affect translation initiation of mRNAs containing internal 99 

ribosome entry sites (IRES) 43,44. Here we re-examine this question using direct RNA sequencing, and 100 

characterize the RNA modification dynamics in rRNAs, snRNAs and snoRNAs upon a battery of 101 

environmental cues, translational repertoires and genetic strains. Contrary to expectations, we find 102 

that none of the environmental stresses tested lead to significant changes in the ribosomal 103 

epitranscriptome. By contrast, our method does recapitulate previously reported heat-dependent Ѱ 104 

snRNA modifications, as well as identifies previously unreported heat-sensitive sites in snRNAs and 105 

snoRNAs.  106 

 107 

Finally, we develop an algorithm, nanoRMS, which we demonstrate can predict Ѱ RNA modifications 108 

de novo, and estimate the stoichiometry of modification both in highly- and lowly-modified Ѱ and Nm 109 

sites across diverse types of RNA molecules, including rRNAs, sn/snoRNAs and mRNAs. Our 110 

approach recapitulates known Pus1-dependent, Pus4-dependent and heat stress-dependent mRNA 111 

sites, as well as reveals Ѱ mRNA sites that had not been previously reported. Altogether, our work 112 

establishes a framework for the study of RNA modification dynamics using direct RNA nanopore 113 

sequencing, opening avenues to study the plasticity of the epitranscriptome at single molecule 114 

resolution. 115 

 116 

  117 



RESULTS  118 

 119 

RNA modification detection depends on base-calling and mapping algorithms  120 

Previous studies have shown that m6A RNA modifications can be detected in the form of non-random 121 

base-calling ‘errors’ in direct RNA sequencing datasets 29–33. However, it is unclear how these ‘errors’ 122 

may vary with the choice of base-calling and mapping algorithms, and consequently, affect the ability 123 

to detect RNA modifications. Here, we compared the performance of commonly used base-calling and 124 

mapping algorithms on in vitro transcribed RNA sequences that contained all possible combinations of 125 

5-mers, referred to as ‘curlcakes’ (CCs) 29, that included: (i) unmodified nucleosides (UNM), (ii) N6-126 

methyladenosine (m6A), (iii) pseudouridine (Ѱ), (iv) N5-methylcytosine (m5C), and (v) N5-127 

hydroxymethylcytosine (hm5C) (Figure 1A). In addition, a sixth dataset containing unmodified short 128 

RNAs (UNM-S), with median length of 200 nucleotides, was included in the analysis to assess the 129 

effect of input sequence length in base-calling (see Methods). Each dataset was base-called with two 130 

distinct algorithms (Albacore and Guppy), and using two different versions for each of them, namely: 131 

(i) Albacore version 2.1.7 (AL 2.1.7); (ii) its latest version, Albacore 2.3.4 (AL 2.3.4); (iii) Guppy 2.3.1 132 

(GU 2.3.1); and (iv) a more recent version of the latter base-caller, Guppy 3.0.3 (GU 3.0.3), which 133 

employs a flip-flop algorithm. We found that the latest version of Albacore (2.3.4) base-called 100% of 134 

sequenced reads in all 6 datasets, whereas its previous version did not (average of 90.8%) (Figure 135 

1B). By contrast, both versions of Guppy (2.3.1 and 3.0.3) produced similar results in terms of 136 

percentage of base-called reads (99.96% and 100%, respectively) (Table S1).  137 

 138 

We then assessed whether the choice of mapper might affect the ability to detect RNA modifications. 139 

To this end, we employed two commonly used long-read mappers, minimap2 45 and GraphMap 46, 140 

using either ‘default’ or ‘sensitive’ parameter settings (see Methods). Notably, both the choice of 141 

mapper and parameters used severely affected the number of mapped reads (Figure 1C, see also 142 

Table S1). The most extreme case was observed with the Ѱ-modified dataset, where minimap2 was 143 

unable to map the majority of the reads (0-0.3% mapped reads) (Figure 1C,D, see also Figure S1A). 144 

By contrast, GraphMap ‘sensitive’ was able to map 35.5% of Ѱ-modified base-called reads, with only 145 

a minor loss in accuracy (3%) (Figure S1B, see also Table S2), proving to be a more appropriate 146 

choice for highly modified datasets.  147 

 148 

Base-calling ‘error’ signatures can be used to predict RNA modification type 149 

While base-calling ‘errors’ can be used to identify m6A RNA modified sites 29,30,32, whether this 150 

approach is applicable for the detection of other RNA modifications, and whether these signatures 151 

could be employed to distinguish among distinct RNA modification types, is largely unknown. To this 152 

end, we systematically characterized the base-calling errors caused by the presence of m6A, Ѱ, m5C 153 

and hm5C. We found that, regardless of the base-caller and mapper settings used, modified RNA 154 

sequences presented decreased quality scores (Figure S1C-E) and higher mismatch frequencies 155 

(Figure 1E), being these differences more prominent in Ѱ-modified datasets. Principal component 156 

analysis of base-calling ‘errors’ of each modified dataset (m6A, Ѱ, m5C and hm5C) -relative to 157 



unmodified- showed that this difference was greatest in Ѱ-modified datasets (Figure 1F), and 158 

maximized in datasets that were base-called with GU 3.0.3. Thus, we find that all four RNA 159 

modifications can be detected in direct RNA sequencing data; however, their detection is severely 160 

affected by the choice of both base-calling and mapping algorithms, and varies depending on the 161 

RNA modification type. 162 

 163 

We then examined whether the base-called ‘errors’ observed in modified and unmodified datasets 164 

occurred in the modified position. We found that both m6A and Ѱ modifications led to increased 165 

mismatch frequencies at the modified site (Figure 1G), mainly in the form of U-to-C mismatches in the 166 

case of Ѱ modifications (Figure S1F). By contrast, m5C and hm5C modifications did not appear in the 167 

form of increased mismatch frequencies at the modified site; rather, these modifications appeared in 168 

the form of increased mismatch frequencies in the neighbouring residues (position -1 and +1 in the 169 

case of m5C modifications; position +1 in hm5C) (Figure 1G). Moreover, the base-called ‘error’ 170 

signatures of m5C and hm5C were also dependent on the sequence context (Figure S1G). Altogether, 171 

we found that all four RNA modifications studied (m6A, m5C, hm5C and Ѱ) cause base-calling ‘errors’, 172 

and that these ‘errors’ follow specific patterns that depend on the RNA modification type. 173 

 174 

Ѱ modifications can be detected as U-to-C mismatches  175 

We then examined whether the results obtained using in vitro transcribed constructs would be 176 

applicable to in vivo RNA sequences. To this end, total RNA from S. cerevisiae was prepared for 177 

direct RNA sequencing (see Methods). Visual inspection of the mapped reads revealed a high 178 

proportion of base-calling errors present in 25s and 18s rRNAs, as could be expected from sequences 179 

that are highly enriched in RNA modifications (Figure 2A). By contrast, 5s and 5.8s rRNAs did not 180 

show such base-calling errors, in agreement with their low level of modification.  181 

 182 

Then, we systematically analyzed base-called features (mismatch, deletion, insertion and per-base 183 

qualities) of rRNA modified sites relative to unmodified ones (Figure 2B), and found that all rRNA 184 

modification types consistently led to decreased per-base qualities at modified sites, suggesting that 185 

per-base qualities can be employed to identify RNA modifications, but not the underlying RNA 186 

modification type. We found that Ѱ modifications caused significant variations in mismatch 187 

frequencies, in agreement with our observations using in vitro constructs. By contrast, other RNA 188 

modifications, such as 2’-O-methylcytidine (Cm) or 5-methylcytosine (m5C) did not appear in the form 189 

of increased mismatch frequencies at modified sites, but rather, in the form of increased insertions. In 190 

addition, Ѱ modifications typically appeared in the form of U-to-C mismatches (Figure 2C, see also 191 

Figure S2), in agreement with our in vitro observations, whereas other RNA modifications such as 2’-192 

O-methyladenosine (Am) did not cause mismatches with unique directionality. Thus, we conclude that 193 

distinct rRNA modification types can be detected in the form altered base-called features in vivo, and 194 

that their base-calling ‘error’ signature is dependent on the RNA modification type.  195 

 196 



To confirm that the detected signal (U-to-C mismatches) in Ѱ positions was caused by the presence 197 

of the Ѱ modification, we compared rRNA modification profiles from wild type S. cerevisiae to those 198 

from snoRNA-knockout strains (snR3, snR34 and snR36) (Figure 3A, see also Table S3). Our results 199 

show that changes in rRNA modification profiles were consistently and exclusively observed in those 200 

Ѱ positions reported as targets of each snoRNA. Moreover, the remaining Ѱ-modified positions were 201 

not significantly altered by the lack of Ѱ modifications guided by snR3, snR34 or snR36 (Figure 3B). 202 

 203 

We then sequenced 3 additional S. cerevisiae strains depleted of snoRNAs (snR60, snR61 and 204 

snR62, respectively) guiding 2’-O-methylation (Nm) at specific positions (Table S3). In contrast to Ѱ 205 

modifications, we found that 2’-O-methylations often caused increased errors not only at the modified 206 

position, but also at neighbouring positions (Figure 3C, see also Figure S3A). These errors 207 

disappeared in the knockout strain, confirming that neighbouring base-calling errors were indeed 208 

caused by the 2’-O-methylation (Figure 3C). On the other hand, while Ѱ modifications mainly affected 209 

mismatch frequency, we observed that Nm modifications often affected several base-called ‘error’ 210 

features (mismatch, insertion and deletion frequency) (Figure S3B). Thus, we reasoned that 211 

combining all three features might improve the signal-to-noise ratio for the detection of 2’-O-212 

methylated sites, and found that the combination of features led to improved detection of Nm-modified 213 

sites (Figure 3D).  214 

 215 

Current intensity variations cannot accurately predict the modified site  216 

We then wondered whether Ѱ and Nm sites would also be detected at the level of current intensity 217 

changes. We observed that certain Ѱ and Nm-modified sites, such as 25s:Ѱ2129 or 25s:Am1133, 218 

showed drastic alterations in their current intensity values in the snoRNA-depleted strain, while no 219 

significant alteration was observed in control sites (Figure 3E,F). However, in other sites the 220 

distribution of current intensities did not significantly change in the knockout strain (18s:Ѱ1187, 221 

Figure 3E lower panel) or did not differ in their mean (25s:Ѱ2133, Figure S4A).  222 

 223 

We hypothesized that deviations in current intensity alterations might not always be maximal in the 224 

modified site, but might sometimes appear in neighboring sites. To test this, we examined the 225 

difference in current intensity values along the rRNA molecules for each wild type-knockout pair 226 

(Figure 4A, see also Figure S4B). However, the highest deviations in current intensity were often not 227 

observed at the modified sites (Figure 4A lower panel). From all 6 Ѱ sites that were depleted in the 3 228 

knockout strains studied, only 2 of them (25s:Ѱ2826 and 25s:Ѱ2880) showed a maximal deviation in 229 

current intensity in the modified site (Figure 4B, see also Figure S4C). Similarly, depletion of Nm 230 

sites led to changes in current intensity values, but the largest deviations were not observed at the 231 

modified site (Figure S4C). Thus, we conclude that current intensity-based methods can detect both 232 

Ѱ and Nm RNA modifications; however, base-calling errors are a better choice to achieve single 233 

nucleotide resolution, at least in the case of Ѱ RNA modifications.  234 

 235 

Detection of Ѱ and Nm modifications in individual reads  236 



Direct RNA sequencing produces current intensity measurements for each individual native RNA 237 

molecule. Thus, modification stoichiometries can be, in principle, estimated by identifying the 238 

proportion of reads with altered current intensity at a given site. To this end, we first examined the per-239 

read current intensity values of wild type and knockout strains at the Ѱ- and Nm-depleted sites. 240 

Despite the significant variability of current intensities across reads, we were able to observe robust 241 

differences in current intensities across strains at the depleted RNA modified sites at the per-read 242 

level (Figure 4C, upper panel). As a control, we performed the same analysis in Ѱ sites unaffected by 243 

snoRNA depletion, finding no significant differences between wild type and knockout strains (Figure 244 

4C, lower panel). However, in some sites such as 18s:1187, the per-read shifts in current intensity 245 

between the wild type and knockout strain were far more modest (Figure S4D). Principal Component 246 

Analysis (PCA) of the current intensity values of 15-mer regions that contained the modified site 247 

showed that the reads clustered into two distinct populations: the first population mainly comprised 248 

unmodified reads from the snoRNA-depleted strain, whereas the second comprised reads from the 3 249 

other strains, which are mostly modified (Figure 4C right panels, see also Figure S4E). 250 

 251 

To our surprise, we observed that Nanopolish software did not resquiggle the reads evenly across 252 

sites. For example, it failed at resquiggling the majority of reads in the region surrounding 25s:Ѱ2264 253 

(Figure S4D). Thus, we examined whether Tombo, which uses global resquiggling instead of local 254 

resquiggling, might overcome this limitation. We found that Tombo resquiggling led to a global 255 

increase in the proportion of resquiggled reads (Figure S5A). Moreover, Tombo showed a uniform 256 

proportion of resquiggled reads along the same transcript, whereas Nanopolish showed a variable 257 

proportion of resquiggled reads depending on the site. Notably, Tombo was equally effective at 258 

resquiggling both modified and unmodified reads, whereas Nanopolish preferentially resquiggled 259 

unmodified reads relative to modified ones, biasing the unmodified:modified proportion up to 7:1 260 

(Figure S5B). This uneven resquiggling from Nanopolish implies that using Nanopolish for predicting 261 

RNA modification levels at individual sites may cause a dramatic bias in the predicted stoichiometry of 262 

individual sites. Thus, based on these results, we decided to adopt Tombo resquiggling instead of 263 

Nanopolish resquiggling for the prediction of RNA modification stoichiometries from individual RNA 264 

reads in all our downstream analyses.  265 

 266 

Stoichiometry prediction using signal intensity, dwell time and trace   267 

Ѱ and Nm modifications can lead to significant alterations in the current intensity profiles at the 268 

modified region (e.g. 25s:Ѱ2880, Figure 4B-C). However, in other sites such as 18s:Ѱ1187, current 269 

intensity alone was insufficient to bin the reads into two separate clusters (Figure S4D,E), suggesting 270 

that, in addition to current intensity, other features might be needed to distinguish modified from 271 

unmodified reads.   272 

 273 

Previous works predicting DNA modifications from individual nanopore reads typically relied on 274 

features such as signal intensity or dwell time to distinguish modified and unmodified read populations 275 
47–50. Here, in addition to these two features, we explored whether the use of ‘trace’ would improve our 276 



ability to predict RNA modification stoichiometry. Trace (also termed ‘base probability’) represents the 277 

probability that a given signal intensity chunk may be originating from each of the 4 canonical bases 278 

(A, C, G and T/U). To this end, we first examined how the presence of Ѱ and Nm modifications 279 

altered each of the features (signal intensity, dwell time and trace) in Ѱ and Nm modified sites, both at 280 

snoRNA-targeted positions and control sites (Figure S6). We found that in addition to signal intensity, 281 

base probability (trace) was significantly different in all examined sites. Moreover, in some sites such 282 

as 25s:Ѱ2264, trace was the most altered feature from those examined. By contrast, dwell time was 283 

not consistently different in snoRNA-targeted sites relative to wild type (e.g. 25s:Ѱ2264, 25s:Ѱ2826, 284 

18s:Ѱ1187). 285 

 286 

We then proceeded to systematically benchmark the use of distinct features for RNA modification 287 

stoichiometry. To this end, we built nanoRMS, a software that extracts signal intensity, trace and dwell 288 

time from individual reads, and then predicts RNA modification stoichiometry by using distinct feature 289 

combinations as well as various machine learning algorithms. Firstly, we generated different mixes of 290 

modified (wild type) and unmodified (knockout) reads to simulate varying read stoichiometry (0, 20, 291 

40, 60, 80 and 100%), for each of the Ѱ and Nm positions for which knockouts were available (Table 292 

S3). Then, we examined how different supervised and unsupervised algorithms would predict the 293 

stoichiometry of each of the sites, and using distinct combinations of the 3 features (signal intensity, 294 

trace and dwell time) for each individual site (Figure S5C). Our results show that the combination of 295 

signal intensity and trace outperformed all the other feature combinations for predicting both Ѱ and 296 

Nm modification stoichiometry, and that the supervised k-nearest neighbor (KNN) was the best 297 

performing algorithm. The k-means clustering algorithm (KMEANS) was the best-performing algorithm 298 

among the unsupervised clustering methods tested, although its performance in predicting Ѱ 299 

modification stoichiometry was slightly better than in the case of Nm modification stoichiometry 300 

predictions. Overall, we find that nanoRMS can accurately predict Ѱ and Nm RNA modification 301 

stoichiometry from individual RNA reads (Figure 4D), with predicted stoichiometry values that are 302 

similar to those that have been previously reported by Mass Spectrometry 51 (Table S4).  303 

 304 

De novo prediction reveals a Pus4-dependent mitochondrial Ѱ rRNA modification  305 

The identification of RNA modification-specific signatures allows us to perform de novo prediction of Ѱ 306 

RNA modifications transcriptome-wide using direct RNA sequencing. In this regard, S. cerevisiae 307 

mitochondrial rRNAs remains much less characterized than cytosolic rRNAs, with only 3 modified 308 

sites identified so far in S. cerevisiae LSU (21s) 52, and none in SSU (15s) rRNAs. Thus, we 309 

hypothesized that direct RNA might reveal previously uncharacterized Ѱ-modified sites in 310 

mitochondrial rRNAs. To this end, we first determined the ‘error’-based thresholds (mismatch 311 

frequency and C mismatch frequency) that would distinguish unmodified uridines from pseudouridines 312 

in cytosolic rRNAs (Figure 5A). We then applied this filter to predict Ѱ modifications on 15s rRNA and 313 

21s rRNA, identifying two novel candidate Ѱ sites (15s:854 and 15s:579) that displayed high 314 

modification frequency as well as U-to-C mismatch signature (Figure 5B,C). 315 

 316 



To further confirm that the two predicted 15s rRNA sites are pseudouridylated, we developed 317 

nanoCMC-seq, a protocol that identifies Ѱ modifications by coupling CMC probing with nanopore 318 

cDNA sequencing. This method allows capturing reverse-transcription drop-off information by 319 

sequencing only the first-strand cDNA molecules of CMC-probed RNAs using a customized direct 320 

cDNA sequencing protocol (Figure 5D, see also Methods). NanoCMC-seq captured known sites in 321 

cytoplasmic rRNA with a very high signal-to-noise ratio, as well as confirmed the existence of Ѱ in 322 

position 854 and 579 of 15s rRNA, validating our de novo predictions using direct RNA sequencing 323 

(Figure 5E, see also Figure S7A). 324 

 325 

We observed that 15s:Ѱ854 was embedded in a similar sequence context and structure as the t-arm 326 

of tRNAs, which contains a pseudouridylated (Ѱ55) position placed by Pus4 (Figure 5F). Given the 327 

resemblance between these two sequences and structures, we hypothesized that Pus4 might be 328 

responsible for this modification. To validate our hypothesis, we sequenced total RNA from a Pus4-329 

deficient S. cerevisiae strain, finding that the 15s:854 position loses its mismatch signature upon 330 

deleting Pus4 gene, confirming that this site is not only pseudouridylated, but also that it is Pus4-331 

dependent (Figure 5G, see also Figure S7B). Additionally, we observed that previously reported 332 

Pus4 target sites (TEF1:239,TEF2:239) 3–5 completely lost their mismatch signature in Pus4 knockout 333 

cells (Figure S7B,C), confirming that our method is able to capture previously reported Pus4-334 

dependent Ѱ sites, in addition to previously unknown ones.  335 

 336 

rRNA modification profiles do not vary upon oxidative or thermal stress 337 

Ribosomal RNAs are extensively modified as part of their normal maturation, and their modification 338 

landscape is relatively well-defined for a series of organisms 39,53–57. Despite the central role that rRNA 339 

molecules play in protein translation, recent evidence has shown that rRNA modifications are in fact 340 

dynamically regulated 58,59, and that their alterations can lead to disease states 41,42,60–66. Moreover, 341 

the stoichiometry of some pseudouridylated and 2′-O-methylated rRNA sites is cell-type dependent, 342 

suggesting that rRNA modifications may be an important source of ribosomal heterogeneity 43,51,54,67–343 
69. However, a systematic and comprehensive analysis of which environmental cues may lead to 344 

changes in rRNA modification stoichiometries, which RNA modifications may be subject to this tuning, 345 

and to which extent, is largely missing. 346 

 347 

To assess whether rRNA modification profiles change in response to environmental stimuli, we 348 

treated S. cerevisiae cells with diverse environmental cues (oxidative, cold and heat stress) and 349 

sequenced their RNA using direct RNA sequencing. Firstly, we confirmed that the rRNA modification 350 

profiles from independent biological replicates were highly reproducible (Pearson r2=0.976-0.996, see 351 

also Figure S8). Then, we examined whether exposure to stress would lead to significant changes in 352 

base-calling ‘errors’ in rRNA molecules, finding no significant differences in rRNA modification profiles 353 

between normal and stress conditions (Figure 6A). In contrast, we recapitulated previously reported 354 

changes in snRNA Ѱ modifications upon exposure to environmental cues 4 (Figure 6B, see also 355 

Figure S7D), as well as identified 8 additional Ѱ modification sites in snRNAs and snoRNAs whose 356 



stoichiometry varies upon heat exposure, which had not been previously described (Figure 6, see 357 

also Figure S7E and Table S5) 3,4,38,70. Overall, our approach confirmed previous reports and 358 

predicted novel Ѱ sites in ncRNAs whose modification levels vary upon heat shock exposure (Figure 359 

6B-D, see also S7D-E), but did not identify any rRNA modified site to be varying in its stoichiometry 360 

upon any of the tested stress conditions.  361 

 362 

rRNA modification profiles do not vary across translational repertoires 363 

Next, we questioned whether pseudouridylation changes in distinct translational repertoires may be 364 

more nuanced, in that Ѱ levels may differ between rRNAs present in different translational fractions 365 

along a polysome gradient, which would not be detected when examining rRNAs as a whole. To test 366 

this, we sequenced both total (input) and polysomal rRNAs from untreated and H2O2-treated yeast 367 

cells (Figure S7F). However, we observed no significant changes in Ѱ rRNA modification profiles 368 

when comparing rRNAs from actively translating ribosomes in untreated versus H2O2-treated cells 369 

(Figure S7G).  370 

 371 

In an attempt to further dissect the different translational repertoires into a higher number of rRNA 372 

pools, we sequenced: i) rRNAs from unassembled free rRNA fractions (F1), ii) rRNAs from 40s and 373 

60s subunits (F2), iii) rRNAs from monosomal fractions (F3) and iv) rRNAs from polysomal fractions 374 

(F4) (Figure 6E). While two positions showed slightly decreased levels of Ѱ (5.8s:Ѱ73 and 25s:Ѱ776) 375 

in the free rRNA fraction (F1) compared to assembled ribosomes and/or subunits, no significant 376 

changes were observed across the other translational fractions (Figure 6F, see also Figure S7H). 377 

Globally, these results indicate that differential rRNA modifications are likely not the mechanism 378 

employed by yeast cells to adapt to environmental stress conditions, in agreement with previous 379 

observations 3.  380 

 381 

De novo prediction of Ѱ modifications in mRNAs  382 

Ribosomal RNAs are modified at very high stoichiometries 51,54. By contrast, other molecules such as 383 

mRNAs are modified at lower stoichiometries, making the detection of their RNA modifications a much 384 

more challenging task 21. To ascertain whether our methodology would be applicable to lowly modified 385 

RNA sites, such as those present in mRNAs, we first assessed the performance of nanoRMS in RNA 386 

molecules that contained Ѱ RNA modifications at low RNA modification stoichiometries (0, 3, 7 and 387 

20%) (Figure 7A, see also Methods). The relative incorporation of Ѱ RNA modifications was 388 

validated using Mass Spectrometry. We then examined the quantitative performance of nanoRMS 389 

under low stoichiometry conditions using both KNN and k-means, finding that the combination of 390 

signal intensity and trace features yielded the most accurate results in terms of stoichiometry 391 

prediction (Figure 7B), in agreement with our previous results (Figure S5C).  392 

 393 

Next, we sequenced polyA(+)-selected RNA from S. cerevisiae wild type, Pus1 knockout, Pus4 394 

knockout and heat stress-exposed strains using direct RNA sequencing, in biological duplicates. 395 

Considering that mRNA sites are lowly modified, we restricted our de novo identification of mRNA Ѱ 396 



sites to those whose base-calling ‘error’ features significantly changed between pairwise conditions 397 

(Figure 7C, see also Methods), met the pseudouridine ‘error’ signature, and had a minimum coverage 398 

of 30 reads in both conditions and biological replicates (Table S6, see also Methods). Through this 399 

approach, we predicted 13 Pus1-dependent Ѱ mRNA modifications, 14 Pus4-dependent Ѱ mRNA 400 

modifications, 17 heat stress-dependent Ѱ mRNA modifications and 16 heat stress-dependent Ѱ 401 

ncRNA modifications, respectively (Figure 7D-G left panels, see also Tables S7-10), some of which 402 

were not previously reported to be Ѱ-modified.  403 

 404 

NanoRMS recovered 11% of previously reported Pus1-dependent Ѱ sites as well as 75% Pus4-405 

dependent Ѱ sites, in addition to predicting 10 not previously reported Pus1 and 11 not previously 406 

reported Pus4-dependent mRNA Ѱ-modified sites (Table S7 and S8). These novel predicted Ѱ 407 

mRNA sites displayed similar mismatch signatures to those observed in previously reported Ѱ sites 408 

(Figure 7D-E, right panels), were highly replicable across biological replicates, and their signature 409 

disappeared in Pus1 or Pus4 knockout strains. Similarly, nanoRMS was able to capture previously 410 

reported heat-responsive Ѱ sites present in mRNAs and ncRNAs, which resulted in predicting 17 411 

heat-responsive Ѱ mRNAs sites, among which 6 of them were previously reported Ѱ sites (Figure 412 

7F, see also Table S9), as well as 16 heat-responsive Ѱ ncRNAs sites, from which 10 were 413 

previously reported Ѱ sites (Figure 7G, see also Table S10).  414 

 415 

Surprised by the relatively poor overlap between our predictions and previously reported Pus1 mRNA 416 

Ѱ-modified sites (3 out of 16 sites), as well as between predicted and previously reported heat stress-417 

dependent sites (7 out of 128 sites), we inspected the individual per-read features at previously 418 

reported Pus1- and heat stress-dependent sites (Figure S9A,B). Indeed, the Ѱ sites that nanoRMS 419 

did not report as Pus1 or heat stress-dependent were not significantly different for any of the features 420 

examined (current intensity, dwell time or trace). Thus, we wondered whether some of these sites 421 

might have been misassigned as Pus1 or heat stress-dependent by previous works. A closer 422 

examination of the overlap between Ѱ sites predicted by the two previously published studies using 423 

CMC probing coupled to Illumina sequencing 3,4, which we used to define the set of ‘previously 424 

reported Pus1-, Pus4- and heat stress-dependent Ѱ sites’, showed that the overlap was in fact very 425 

poor (Figure S9C), both when examining the set of predicted mRNA and ncRNA Ѱ sites (7% and 426 

17%, respectively), as well as when examining the sets of predicted Pus1- and Pus4-dependent 427 

mRNA and ncRNA Ѱ sites (6% and 50%, respectively). Altogether, our approach detected 100% of 428 

Pus1- and Pus4-dependent sites that were identified by both studies, but very few of those that were 429 

identified by only one of the studies. Thus, we conclude that the poor overlap between our results and 430 

previously reported Ѱ sites is in fact a direct consequence of the poor overlap between the set of 431 

predicted Pus1-, Pus4- and heat stress-dependent mRNA and ncRNA Ѱ sites by the two previous 432 

studies (Figure S9C).  433 

 434 

Finally, we applied nanoRMS to predict the modification stoichiometry of all Ѱ sites predicted in 435 

mRNAs and ncRNAs. Reads were classified based on the per-read signal intensity and trace features 436 



from positions -1, 0, and +1 using the k-means unsupervised clustering algorithm (Figure 7H-K). As 437 

expected, per-read stoichiometry predictions were low in non-targeted Ѱ sites. By contrast, predicted 438 

Ѱ Pus1/Pus4/heat stress-dependent sites (which included all Ѱ sites) typically showed significant 439 

RNA modification stoichiometry changes, ranging from 5 to 50% change in their Ѱ modification 440 

stoichiometries between the two conditions.  441 

 442 

Altogether, we find that differential ‘error’ Ѱ signatures are a useful approach to identify dynamic Ѱ 443 

RNA modifications across two conditions even at low stoichiometry sites, and that nanoRMS can be 444 

used to de novo predict and quantify the RNA modification stoichiometry dynamics, both in previously 445 

reported Ѱ sites as well as in de novo predicted Ѱ sites.  446 

 447 

DISCUSSION 448 

 449 

RNA modifications regulate a wide range of biological processes 71–73. They can modulate the fate of 450 

RNA molecules by altering mRNA splicing 74–76 or mRNA decay 77,78, as well as affect major cell and 451 

organism-level decisions, such as cellular differentiation 79,80 and sex determination 18,81,82. While the 452 

biological relevance of RNA modifications is out of question, a major difficulty in studying them has 453 

been the need for tailored protocols to map each modification individually 20,83. In this context, direct 454 

RNA nanopore sequencing can overcome many of the limitations that NGS-based methods suffer 455 

from, as it can sequence full-length native RNA molecules, including their RNA modifications.  456 

 457 

Direct RNA nanopore sequencing has been successfully applied in a wide variety of organisms 29–458 
31,84–87. However, the detection of distinct RNA modification types in individual native RNA molecules 459 

is still an unsolved challenge. While both current intensity-based and ‘error’-based methods have 460 

proven useful strategies to detect RNA modifications, these have been mainly focused on the 461 

detection of m6A 29–31,33-, and are typically unable to predict which RNA modification type they are in 462 

fact detecting (e.g. m6A, Ѱ, Am or m5C) 28,50.  Moreover, current algorithms to study RNA 463 

modifications using direct RNA sequencing are not quantitative.  464 

 465 

To overcome these limitations, here we first explored how distinct RNA modifications may affect direct 466 

RNA nanopore signals and base-calling ‘errors’. We find that different RNA modification types (e.g. Ѱ 467 

versus m5C) produce distinct yet characteristic base-calling ‘error’ signatures, both in vitro (Figure 1, 468 

S1F) and in vivo (Figure 2). Consequently, base-calling errors can be used not only to predict 469 

whether a given site is modified or not, but also to identify the underlying RNA modification type. 470 

While base-calling signatures depend to some extent on the surrounding sequence context, we find 471 

that Ѱ modifications lead to robust U-to-C mismatch signatures, which can be exploited for de novo 472 

prediction of Ѱ modifications (Figure 5). Through this approach, we identified two previously 473 

unreported Ѱ modifications in yeast 15s mitochondrial rRNA (15s:579 and 15s:Ѱ854), as well as 474 

confirmed reported Ѱ-modified sites in rRNAs, snRNAs and mRNAs (Figures 3-7). Moreover, we 475 

revealed that Pus4, which was previously thought to modify only tRNAs and mRNAs, is the enzyme 476 



responsible for placing Ѱ854 in mitochondrial rRNA. These findings were further validated using 477 

nanoCMC-seq, a novel orthogonal method that can detect Ѱ modifications with single nucleotide 478 

resolution by coupling CMC probing to nanopore cDNA sequencing (Figure 5D).   479 

 480 

While Ѱ modifications can be detected both in the form of base-calling ‘errors’ and altered current 481 

intensities (Figures 3-4), we observe that the latter does not provide single nucleotide resolution, with 482 

maximal current intensity shifts often seen a few nucleotides away from the real modified site. Thus, 483 

current intensity-based methods alone may suffer from imprecisions in the assignment of the RNA-484 

modified site. Here we propose that the combination of both approaches is the optimal design to 485 

obtain stoichiometric information of Ѱ-modified sites with single nucleotide resolution. Specifically, we 486 

show that once the site has been located using base-calling error features, per-read features (current 487 

intensity and trace) from the regions surrounding Ѱ or Nm-modified site are sufficient to robustly bin 488 

the reads into two separate clusters (modified and unmodified), and provide good estimates of Ѱ and 489 

Nm modification stoichiometries (Figure 4D and 7B).   490 

 491 

One surprising feature of base-calling ‘errors’ is that fully modified sites do not always lead to same 492 

mismatch frequencies, suggesting that mismatch frequencies alone cannot be used per se as an 493 

estimation of the stoichiometry of the site (Figure 2B). While within the same sequence context, 494 

higher mismatch frequencies correspond to higher modification levels, this same rule cannot be used 495 

to compare across distinct RNA-modified sites. We speculate that the differences observed in 496 

mismatch frequency across different sites might be in fact a consequence of the distinct deviations in 497 

current intensity of the modified k-mer relative to unmodified counterparts (Figure S9D).  498 

 499 

Finally, we should note that while nanoRMS allows predicting and studying the dynamics of diverse 500 

RNA modifications in a quantitative manner, there are caveats and limitations, leaving ample room for 501 

future improvements. First, not all RNA modifications lead to strong alterations in the base-calling 502 

features and/or current intensity patterns, such as 2'-O-methylcytosine (Cm), which is poorly detected 503 

in direct RNA sequencing datasets, compared to other RNA modifications (Figure 2C). Second, the 504 

detection of RNA modifications is partly dependent on the sequence context; for example, we were 505 

unable to detect 25s:Gm908 (Figure S3). Similarly, some Ѱ-modified sites, such as 18s:Ѱ1187, 506 

cause weaker alterations in base-calling features and current intensity shifts than other Ѱ-modified 507 

positions (Figures 3-4), although this limitation can be alleviated by the incorporation of additional 508 

features into the model (Figure S5C). Third, not all RNA modifications lead to base-calling errors with 509 

single nucleotide resolution, as with pseudouridine. For example, 2'-O-methylations often affect 510 

neighboring bases (Figure 3C and S4A), making it challenging to de novo predict modified sites 511 

without any prior information. Fourth, stoichiometry prediction is heavily affected by the choice of 512 

resquiggling algorithms (Figure S5 and S10). For example, we were unable to predict stoichiometry in 513 

25s:Ѱ2264 when using resquiggling due to the low number of reads that the Nanopolish algorithm 514 

was able to resquiggle (Figure S4E); however, this limitation could be overcome when using Tombo 515 

resquiggling, leading to stoichiometry predictions similar to those observed using Mass Spectrometry 516 



(Figure 4D). Finally, we should note that while nanoRMS was successful at detecting RNA 517 

modification stoichiometry changes as low as 5-10% (Figure 7), the detection of RNA modification 518 

changes in low modification stoichiometry sites was only possible when using pairwise comparisons.  519 

 520 

Despite these challenges and limitations, our work provides a framework for the systematic and 521 

comprehensive analysis of the epitranscriptome with single molecule resolution, showing that direct 522 

RNA sequencing can be employed to estimate Ѱ and Nm modification stoichiometry as well as to de 523 

novo predict Ѱ RNA modifications transcriptome-wide, in rRNAs, ncRNAs and mRNAs. Future work 524 

will be needed to functionally dissect the biological roles and dynamics of RNA modifications, to better 525 

comprehend how and when the epitranscriptome is tuned to regulate diverse cellular functions. 526 

 527 

FIGURE LEGENDS 528 

 529 

Figure 1. Systematic analysis of base-calling and mapping algorithms for the detection of RNA 530 

modifications in direct RNA sequencing datasets. (A) Overview of the synthetic constructs used to 531 

benchmark the algorithms, which included both unmodified (UNM and UNM-S) and modified (m6A, 532 

m5C, hm5C and Ѱ) sequences. For each dataset, we performed: i) comparison of base-calling 533 

algorithms, ii) comparison of mapping algorithms, iii) detection of RNA modifications using base-called 534 

features and iv) comparative analysis of features to distinguish similar RNA modifications. (B) 535 

Barplots comparing the percentage of base-called reads using 4 different base-calling algorithms in 6 536 

different unmodified and modified datasets. (C) Relative proportion of base-called and mapped reads 537 

using all possible combinations (16) of base-callers and mappers included in this study, for each of 538 

the 6 datasets analyzed. (D) IGV snapshots illustrating the differences in mapping for 3 distinct 539 

datasets: UNM, m6A-modified and Ѱ-modified when base-called with GU 3.0.3. Positions with 540 

mismatch frequencies greater than 0.1 have been colored, gray represents match to reference. (E) 541 

Comparison of global mismatch frequencies using different base-calling algorithms, for the 6 datasets 542 

analyzed. Box, first to last quartiles; whiskers, 1.5x interquartile range; center line, median; points, 543 

outliers; violin, distribution of density. (F) Principal Component Analysis (PCA) using as input the 544 

base-calling error features of quality, mismatch frequency and deletion frequency in positions -2, -1, 0, 545 

1 and 2, for all datasets base-called with GU 3.0.3 and AL 2.1.7 and mapped with GraphMap and 546 

minimap2 on sensitive settings. Only k-mers that contained a modification at position 0, and no other 547 

modifications in the 5-mer, were included in the analysis, and the equivalent set of unmodified k-mers 548 

was used as a control. (G) Mismatch frequency of each position of the 5-mers centered in the 549 

modified position (position 0). Box, first to last quartiles; whiskers, 1.5x interquartile range; center line, 550 

median; points, outliers. See also Figure S1. 551 

 552 

Figure 2. RNA modifications can be detected in yeast ribosomal RNA in the form of base-553 

calling errors, and each RNA modification type shows a distinct ‘error’ signature. (A) IGV 554 

snapshots of yeast ribosomal subunits 5s, 5.8s, 18s and 25s. Known modification sites are indicated 555 

below each snapshot and nucleotides with mismatch frequencies greater than >0.1 have been 556 



colored and gray represents match to reference or no mismatch (B) Comparison of base-calling 557 

features (base quality, mismatch, deletion and insertion frequency) from distinct RNA modification 558 

types present in yeast ribosomal RNA. The most descriptive base-calling error per modification is 559 

outlined in red. Only RNA modification sites without additional neighboring RNA modifications in the 5-560 

mer were included in the analysis: Ѱ (n=37), Gm (n=8), m1A (n=2), Am (n=14), m5C (n=2), Cm (n=8), 561 

ac4C (n=2), Um (n=7). Box, first to last quartiles; whiskers, 1.5x interquartile range; center line, 562 

median; dots: individual data points. (C) Ternary plots and barplots depicting the mismatch 563 

directionality for selected rRNA modifications (Ѱ, Am, Cm, Gm). Ѱ rRNA modifications tend towards 564 

U-to-C mismatches while Am, Cm and Gm modifications did not show specific mismatch directionality 565 

patterns. See also Figure S2 and S3. 566 

 567 

Figure 3. Pseudouridylation and 2’-O-methylations cause systematic base-calling ‘errors’ as 568 

well as altered current intensities, and their signature disappears upon depletion of snoRNAs 569 

guiding the modification. (A) IGV snapshots of wild type and three snoRNA-depleted strains 570 

depicting the site-specific loss of base-called errors at known Ѱ target positions (indicated by 571 

asterisks). Nucleotides with mismatch frequencies greater than 0.1 have been colored. (B) 572 

Comparison of snoRNA knockout mismatch frequencies for each base, relative to wild type, with 573 

snoRNA targets sites indicated in red, and non-target sites in gray. (C) IGV snapshots of wild type and 574 

three snoRNA knockout yeast strains depicting the site-specific loss of base-calling errors at known 575 

Nm target positions. Nucleotides with mismatch frequencies greater than 0.1 have been colored. (D) 576 

Comparison of snoRNA knockout summed error frequencies for each base, relative to wild type, with 577 

snoRNA targets sites indicated in red, neighboring sites in blue and non-target sites in gray. (E,F) 578 

Distributions of per-read current intensity at known Ѱ-modified (E), 2’-O-methylated (F) and negative 579 

control sites. Current intensities at Ѱ and 2’-O-methylated positions were altered upon deletion of 580 

specific snoRNAs relative to wild type, whereas no shift was observed in control sites.  581 

 582 

Figure 4. Loss of specific Ѱ rRNA modifications causes deviations in current intensity in 583 

regions surrounding the Ѱ sites. (A) Current intensity changes along the 25s rRNA molecule upon 584 

snR3 depletion, relative to the wild type strain. In the lower panel, a zoomed subset focusing on the 585 

two regions with the most significant current intensity deviations is shown; the first one comprising the 586 

25s:Ѱ2129 and 25s:Ѱ2133 sites, and the second one comprising the 25s:Ѱ2264 site. (B) Comparison 587 

of current intensities in the 15-mer regions surrounding Ѱ and 2’-O-methyl knockout sites, for each of 588 

the 4 strains. The dotted vertical line indicates the modified position. See also Figure S4 for current 589 

intensity changes in other knockout strains and sites. (C) Per-read current intensity analysis centered 590 

at the 25s:Ѱ2880 site targeted by snR34 (upper panel) and a control site, 25s:Ѱ2880, which is not 591 

targeted by any of the knockouts (lower panel). For each site, Principal Component Analysis was 592 

performed using 15-mer current intensity values, and the corresponding scatterplot of the two first 593 

principal components (PC1 and PC2) is shown on the right, using as input the same read populations 594 

as in the left panels. Each dot corresponds to a different read, and is colored according to the strain. 595 

(D) Predicted stoichiometry of Ѱ- and Nm-modified sites using a k-nearest neighbors (KNN) algorithm 596 



trained to classify the reads into 2 classes: modified or unmodified. The features used to predict 597 

modifications status of every read from which stoichiometry was calculated were signal intensity 598 

(positions -1,0,+1) and trace (positions -1,0,+1). See also Figures S4 and S5.  599 

 600 

Figure 5. De novo prediction of Ѱ modifications reveals a novel Pus4-dependent mitochondrial 601 

rRNA modification. (A) Density distributions of mismatch and C mismatch frequency in unmodified 602 

uridine (red) and pseudouridine (cyan) positions. The dashed lines represent the optimal cutpoints 603 

between two groups determined by maximizing the Youden-Index. In the right panel, the ROC curve 604 

illustrates the sensitivity and specificity at these two cutpoints. (B) IGV coverage tracks of the 15s 605 

mitochondrial rRNA, including a zoomed version showing the tracks centered at the 15s:854 and 606 

15s:579 sites, in two biological replicates. Nucleotides with mismatch frequencies greater than 0.15 607 

have been colored. (C) Location of the putative Ѱ854 modified site in the yeast mitochondrial 608 

ribosome. The PDB structure shown corresponds to 5MRC. (D) Validation of putative Ѱ sites with 609 

nanoCMC-Seq, which combines CMC treatment with Nanopore cDNA sequencing in order to capture 610 

RT-drops that occur at Ѱ-modified sites upon CMC probing. RT-drops are defined by counting the 611 

number of reads ending (3’) at a given position. (E) Predicted Ѱ sites U854 and U579 (orange) in the 612 

15s rRNA are validated using nanoCMC-seq (upper panel). Dashed lines indicate the CMC-score 613 

threshold used for determining the positive sites (upper panel). As a control, we analysed the 614 

nanoCMC-seq results in other rRNAs (lower panel), finding that all positions with a significant CMC 615 

Score (>25) correspond to known Ѱ rRNA modification sites (blue). See also Figure S7A for CMC 616 

scores in additional rRNA transcripts. (F) The candidate Ѱ854 site is located at the 852-860 loop of 617 

the 15s rRNA, which resembles the t-arm of the tRNAs that is modified by Pus4. The binding motif of 618 

Pus4 (RRUUCNA) matches the motif surrounding the 854U site 4. (G) Scatterplot of mismatch 619 

frequencies in WT and Pus4KO cells, showing that the only significant position affected by the 620 

knockout of Pus4 is 15s:U854 (left panel). IGV coverage tracks showing that Pus4 knockout leads to 621 

depletion of the mismatch signature in the 15s:854 position (right panel), but not at the 15s:579 622 

position.  623 

 624 

Figure 6. Comparative analysis of yeast rRNA and snRNA Ѱ modifications upon distinct 625 

environmental stresses identifies known and previously unknown heat-sensitive snRNA and 626 

snoRNA Ѱ modifications. (A) Comparison of mismatch frequencies for all rRNA bases from 627 

untreated or yeast exposed to oxidative stress (H2O2, left panel), cold stress (4ºC, middle panel) or 628 

heat stress (45ºC, right panel). Each dot represents a uridine base. All rRNA bases from cytosolic 629 

rRNAs were included in the analyses. (B) Comparison of mismatch frequencies in untreated versus 630 

stressed-exposed yeast cells (oxidative, cold or heat), in previously reported ncRNA Ѱ sites 3,4. (C) 631 

Stress scores in sn/snoRNA Ѱ sites calculated by ∆ mismatch frequency between heat shock and 632 

WT. (D) IGV snapshots of normal condition (rep1 and rep2) and heat shock condition (rep1 and rep2) 633 

yeast cells zoomed into the known sn/snoRNA Ѱ positions (indicated by an asterisk). Nucleotides with 634 

mismatch frequencies greater than 0.1 have been colored. Coverage for each position/condition is 635 

given on the top left of each row. (E) Profiles of ribosomal fractions isolated from yeast grown under 636 



normal conditions, using sucrose gradient fractionation, including free rRNAs which are not 637 

assembled into ribosomal subunits (F1), rRNAs from 40s and 60s subunits (F2), rRNAs extracted 638 

from monosomal fractions (F3) and polysome fractions (F4). (F) IGV snapshots of the two Ѱ sites that 639 

change stoichiometry between translational fractions and four representative Ѱ sites that show no 640 

significant change. Nucleotides with mismatch frequencies greater than 0.1 have been colored. See 641 

also Figure S7 and S8.     642 

 643 

Figure 7. Quantitative prediction of pseudouridine stoichiometry transcriptome-wide and 644 

systematic benchmarking of nanoRMS using RNA molecules with diverse modification 645 

stoichiometries. (A) LC-MS/MS validation of pseudouridine incorporation at different proportions 646 

(0%, 3%, 20%, 100%) in the in vitro transcribed products, relative to the expected incorporation (% 647 

ѰTP relative to UTP) (left panel). Dotplot illustrates the mismatch frequency distribution of the uridine 648 

positions in the in vitro transcribed products incorporated with different concentrations of Ѱ (right 649 

panel). Each dot represents one uridine position. (B) Stoichiometry predictions of the Ѱ incorporated 650 

in vitro transcription products using two different algorithms (KNN and k-means) with different current 651 

information (middle right and right panels). (C) Conditions and strains used to predict Ѱ mRNA 652 

modifications transcriptome-wide. (D-K) Transcriptome-wide Ѱ RNA modification predictions and 653 

predicted stoichiometries in mRNAs and ncRNAs, for Pus1-dependent mRNA Ѱ sites (D,H), Pus4-654 

dependent mRNA Ѱ sites (E,I), heat stress-dependent mRNA Ѱ sites (F,J) and heat stress-655 

dependent ncRNA Ѱ sites (G,K). (D-G) Venn diagrams depict the overlap between Ѱ sites predicted 656 

by our analysis and the previously reported pseudouridine sites. IGV snapshots of reported and not 657 

previously reported predicted sites illustrate the absence of the mismatch signature in the Pus1 (D) or 658 

Pus4 (E) knockout samples as well as under normal conditions, relative to heat stress conditions in 659 

mRNA (F) and ncRNA (G). The reported or predicted Ѱ site is indicated by an asterisk. Nucleotides 660 

with mismatch frequencies greater than 0.15 have been colored. We should note that IGV snapshots 661 

that show a reference “A” with mismatch signature to G are genes that are in the minus strand (and 662 

thus are in reality positions showing U-to-C mismatch signatures). (H-K) Quantitative analysis of 663 

previously reported and de novo predicted Ѱ sites in mRNAs and ncRNAs. In the left panels, 664 

comparative scatterplots of mismatch frequency illustrate differentially modified sites of reported and 665 

de novo predicted Ѱ sites. In the right panels, stoichiometry prediction differences between WT and 666 

knockout strains (H-I) or between normal and heat stress conditions (J-K) are shown as boxplots. 667 

Box, first to last quartiles; whiskers, 1.5x interquartile range; center line, median; points, individual Ѱ 668 

sites. See also Figure S9. 669 

 670 

METHODS 671 

 672 

Yeast culturing  673 

Saccharomyces cerevisiae (strain BY4741) was grown at 30ºC in standard YPD medium (1% yeast 674 

extract, 2% Bacto Peptone and 2% dextrose). The deletion strains snR3∆, snR34∆ and snR36∆ were 675 

generated on the background of the BY4741 strain by replacing the genomic snoRNA sequence with 676 



a kanMX4 cassette as detailed in Parker et al. 88. Cells were then quickly transferred into 50 mL pre-677 

chilled falcon tubes, and centrifuged for 5 minutes at 3,000 g in a 4ºC pre-chilled centrifuge. 678 

Supernatant was discarded, and cells were flash frozen. For thermal stress, Saccharomyces 679 

cerevisiae BY4741 cultures were grown in 4 mL of YPD overnight at 30ºC. The next day, cultures 680 

were diluted to 0.0001 OD600 in 200 mL of YPD and grown overnight at 30ºC shaking (250 rpm). 681 

When the cultures reached an OD600 of 0.4-0.5, the cultures were divided into 3 x 50 mL subcultures, 682 

which were then incubated at 30ºC (control), 45ºC (heat shock) or 4ºC (cold shock) for 1 hour. Cells 683 

were collected by pelleting and snap freezing. For the analysis of rRNAs modifications across 684 

polysomal fractions, yeast BY4741 starter cultures were grown in 6 mL YPD medium at 30ºC with 685 

shaking (250 rpm) overnight. 100 mL of fresh YPD medium was inoculated with 10 µL of the 686 

stationary culture in a 250 mL erlenmeyer flask, in biological duplicates. Cells were incubated at 30ºC 687 

with shaking (250 rpm) until the cultures reached mid-exponential growth phase (O.D660.~ 0.4-0.6). 688 

Yeast cells were then treated with 1 mM H202 or left without treatment (control) for 30 minutes. 1 mL 689 

of cycloheximide stock solution (10 mg/mL) was added to each culture. Pus4 knockout strains 690 

(BY4741 MATa pus4::KAN) and its parental strain were obtained from the Yeast Knockout Collection 691 

(Dharmacon) and grown under standard conditions in YPD (1% [w/v] yeast extract, 2% [w/v] peptone 692 

supplemented with 2% glucose) at 30°C unless stated otherwise.  693 

 694 

Total RNA extraction from yeast cultures 695 

Saccharomyces cerevisiae BY4741 cells (strains: snR3Δ, snR34Δ snR36Δ, snR60∆, snR61∆, 696 

snR62∆ and WT) were harvested via centrifugation at 3000 rpm for 1 minute, followed by two washes 697 

with water. RNA was purified from pelleted cells using a MasterPure Yeast RNA extraction kit 698 

(Lucigen, MPY03100), according to manufacturer’s instructions. Total RNA was then treated with 699 

Turbo DNase (Thermo, #AM2238) with a subsequent RNAClean XP bead cleanup prior to starting the 700 

library preparation. For stress conditions and the Pus4KO strain, flash frozen pellets were 701 

resuspended in 700 µL Trizol with 350 µL acid washed and autoclaved glass beads (425-600 µm, 702 

Sigma G8772). The cells were disrupted using a vortex on top speed for 7 cycles of 15 seconds (the 703 

samples were chilled on ice for 30 seconds between cycles). Afterwards, the samples were incubated 704 

at room temperature for 5 minutes and 200 µL chloroform was added. After briefly vortexing the 705 

suspension, the samples were incubated for 5 minutes at room temperature. Then they were 706 

centrifuged at 14,000 g for 15 minutes at 4ºC and the upper aqueous phase was transferred to a new 707 

tube. RNA was precipitated with 2X volume Molecular Grade Absolute ethanol and 0.1X volume 708 

Sodium Acetate. The samples were then incubated for 1 hour at -20ºC and centrifuged at 14,000 g for 709 

15 minutes at 4ºC. The  pellet was then washed with 70% ethanol and resuspended with nuclease-710 

free water after air drying for 5 minutes on the benchtop. Purity of the total RNA was measured with 711 

the NanoDrop 2000 Spectrophotometer. Total RNA was then treated with Turbo DNase (Thermo, 712 

#AM2238) with a subsequent RNAClean XP bead cleanup.  713 

 714 



mRNA extraction from yeast cultures 715 

Saccharomyces cerevisiae BY4741 (strains: BY4741 MATa pus4::KAN, BY4741 MATa pus1::KAN 716 

and BY4741 MATa) were cultured up to log phase at 30ºC. The cultures were then divided into two 717 

flasks and cultivated at 30ºC or 45ºC for 1 hour. The cells were harvested via centrifugation at 3,000 718 

rpm for 5 minutes and snap frozen. Total RNA was purified from pelleted cells using a MasterPure 719 

Yeast RNA extraction kit (Lucigen, MPY03100), according to manufacturer’s instructions. Total RNA 720 

was then DNAse-treated (Ambion, AM2239) at 37ºC for 20 minutes with a subsequent clean up using 721 

RNeasy MinElute Cleanup Kit (Qiagen, 74204). 70-100 ug of total RNA was subjected to double 722 

polyA-selection using Dynabeads Oligo(dT)25 (Invitrogen, 61002) and finally eluted in ice-cold 10 mM 723 

Tris pH 7.5.  724 

 725 

Polysome gradient fractionation and rRNA extraction 726 

Yeast pellets from 100 mL cultures were washed with 6 mL of ice-cold Polysome Extraction Buffer 727 

(PEB), which contained 20 mM Tris-HCl pH 7.4, 100 mM KCl, 10 mM MgCl2, 0.5 mM DTT, 0.1 mg/mL 728 

cycloheximide and 100 U/mL RNAse inhibitors (RNaseOUT, Invitrogen, #18080051). Cells were 729 

centrifuged for 5 minutes at 3,000 g at 4ºC. Washing was repeated by adding 6 mL of ice-cold PEB, 730 

followed by centrifugation. Cells were then resuspended in 700 µL of ice-cold PEB, and transferred 731 

into pre-chilled 2 mL Eppendorf tubes containing 450 µL of pre-chilled RNAse-free 425-600 μm 732 

diameter glass beads (Sigma G8772). Cells were lysed by vortexing at maximum speed for 5 minutes 733 

at 4ºC, followed by centrifugation also at maximum speed at bench centrifuge for 5 minutes at 4ºC. 734 

10% of the supernatant was aliquoted into Trizol for total RNA isolation, and kept at -80ºC, which was 735 

later used as input. The remaining volume, corresponding approximately to 8 x 108 cells, was 736 

subsequently loaded onto the sucrose gradient. Linear sucrose gradients of 10-50% were prepared 737 

using the Gradient Station (BioComp). Briefly, SW41 centrifugation tubes (Beckman, Ultra-ClearTM 738 

344059) were filled with Gradient Solution 1 (GS1), which consisted of 20 mM Tris-HCl pH 7.4, 100 739 

mM KCl, 10 mM MgCl2, 0.5 mM DTT, 0.1 mg/mL cycloheximide and 10% w/v RNAse-free sucrose. 740 

Solutions GS1 and GS2 were prepared with RNase-DNase free UltraPure water and filtered with a 741 

0.22 µM filter. The tube was then filled with 6.3 mL of Gradient Solution 2 (GS2) layered at the bottom 742 

of the tube, which consisted of 20 mM Tris-HCl pH 7.4, 100 mM KCl, 10 mM MgCl2, 0.5 mM DTT, 0.1 743 

mg/mL cycloheximide and 50% w/v RNAse-free sucrose. The linear gradient was formed using the 744 

tilted methodology, with the Gradient Station Maker (Biocomp). Once the gradients were formed, 350 745 

µL of each lysate was carefully loaded on top of the gradients, and tubes were balanced in pairs, 746 

placed into pre-chilled SW41Ti buckets and centrifuged at 4ºC for 150 minutes at 35,000 rpm. 747 

Gradients were then immediately fractionated using the Gradient Station, and 20 x 500 µL fractions 748 

were collected in 1.5 mL Eppendorf tubes, while absorbance was monitored at 260 nm continuously. 749 

Fractions were combined in the following way: the free rRNA (F1, fractions 1 and 2), the unassembled 750 

subunits (F2, fractions 3-6), the lowly-translating monosomes (F3, fractions 7-10) and the highly-751 

translating polysomes (F4, fractions 12-17). The pooled fractions were then concentrated using 752 

Amicon-Ultra 100K columns (Millipore), and washed two times with cold PEB. The final volume was 753 



brought down to 200 µL, and RNA was extracted using TRIzol reagent. Purity of the RNA was 754 

measured with a NanoDrop 2000 Spectrophotometer.  755 

 756 

In vitro transcription of modified and unmodified RNAs  757 

The synthetic ‘curlcake’ sequences 29 used in this study are designed to include all possible 5-mers 758 

while minimizing the secondary RNA structure, and consist in 4 in vitro transcribed constructs: (i) 759 

Curlcake 1, 2244 bp; (ii) Curlcake 2, 2459 bp; (iii) Curlcake 3, 2595 bp, and (iv) Curlcake 4, 2709. The 760 

curlcake constructs were in vitro transcribed using Ampliscribe™ T7-Flash™ Transcription Kit 761 

(Lucigen-ASF3507) with either unmodified rNTPs (UNM), N6-methyladenosine triphosphate (m6ATP), 762 

5-methylcytosine triphosphate (m5CTP), 5-hydroxymethylcytosine triphosphate (hm5CTP) or 763 

pseudouridine triphosphate (ѰTP). All modified NTPs were purchased from TriLink. The sequences 764 

included in the short unmodified dataset (UNM-S), which included B. subtilis guanine riboswitch, B. 765 

subtilis lysine riboswitch and Tetrahymena ribozyme, were also produced by in vitro transcription 766 

using Ampliscribe™ T7-Flash™ Transcription Kit (Lucigen-ASF3507). All constructs were 5’ capped 767 

using vaccinia capping enzyme (NEB-M2080S) and polyadenylated using E. coli Poly(A) Polymerase 768 

(NEB-M0276S). Poly(A)-tailed RNAs were purified using RNAClean XP beads, and the addition of 769 

poly(A)-tail was confirmed using Agilent 4200 Tapestation. Concentration was determined using Qubit 770 

Fluorometric Quantitation. Purity of the IVT product was measured with NanoDrop 2000 771 

Spectrophotometer. 772 

 773 

Direct RNA library preparation and sequencing of in vitro transcribed constructs 774 

The RNA libraries for direct RNA Sequencing (SQK-RNA001) were prepared following the ONT Direct 775 

RNA Sequencing protocol version DRS_9026_v1_revP_15Dec2016, which corresponds to the 776 

flowcell FLO-MIN106. Briefly, 800 ng of Poly(A)-tailed and capped RNA (200 ng per construct) was 777 

ligated to ONT RT Adaptor (RTA) using concentrated T4 DNA Ligase (NEB-M0202T), and was 778 

reverse transcribed using SuperScript III RT (Thermo Fisher Scientific-18080044). The products were 779 

purified using 1.8X Agencourt RNAClean XP beads (Fisher Scientific-NC0068576), washing with 70% 780 

freshly prepared ethanol. RNA Adapter (RMX) was ligated onto the RNA:DNA hybrid, and the mix was 781 

purified using 1X Agencourt RNAClean XP beads, washing with Wash buffer (WSB) twice. The 782 

sample was then eluted in Elution Buffer (ELB) and mixed with RNA running buffer (RRB) prior to 783 

loading onto a primed R9.4.1 flowcell, and ran on a MinION sequencer with MinKNOW acquisition 784 

software version 1.15.1. The sequencing was performed in independent days and using a different 785 

flowcell for each sample (UNM, m6A, m5C, hm5C, Ѱ, UNM-S).  786 

 787 

Direct RNA library preparation and sequencing of yeast total RNAs and mRNAs 788 

Here we performed direct RNA sequencing of two types of S. cerevisiae RNA inputs: i) total RNA from 789 

S. cerevisiae, and ii) polyA-selected RNA from S. cerevisiae. Yeast total RNAs were polyadenylated 790 

using E. coli Poly(A) Polymerase (NEB, M0276S), following the commercial protocol, prior to starting 791 

the library prep. Yeast polyA-selected RNA was directly used as input to start the libraries since they 792 

already contain poly(A) tail. Four different direct RNA libraries were barcoded according to the recent 793 



protocol that we recently published 89. Custom RT adaptors (IDT) were annealed using following 794 

conditions: custom Oligo A and B (Table S11) were mixed in annealing buffer (0.01 M Tris-Cl pH 7.5, 795 

0.05M NaCl) to the final concentration of 1.4 µM each in a total volume of 75 µL. The mixture was 796 

incubated at 94°C for 5 minutes and slowly cooled down (-0.1°C/s) to room temperature. RNA library 797 

for direct RNA Sequencing (SQK-RNA002) was prepared following the ONT Direct RNA Sequencing 798 

protocol version DRS_9080_v2_revI_14Aug2019 with half reaction for each library until the RNA 799 

Adapter (RMX) ligation step. Per reaction (half), 250 ng total of yeast RNAs were ligated to pre-800 

annealed custom RT adaptors (IDT) 89 using concentrated T4 DNA Ligase (NEB-M0202T), and was 801 

reverse transcribed using Maxima H Minus RT (Thermo Scientific, EP0752), without the heat 802 

inactivation step. The products were purified using 1.8X Agencourt RNAClean XP beads (Fisher 803 

Scientific-NC0068576) and washed with 70% freshly prepared ethanol. 50 ng of reverse transcribed 804 

RNA from each reaction was pooled and RMX adapter, composed of sequencing adapters with motor 805 

protein, was ligated onto the RNA:DNA hybrid and the mix was purified using 1X Agencourt 806 

RNAClean XP beads, washing with Wash Buffer (WSB) twice. The sample was then eluted in Elution 807 

Buffer (EB) and mixed with RNA Running Buffer (RRB) prior to loading onto a primed R9.4.1 flowcell, 808 

and ran on a MinION sequencer with MinKNOW acquisition software version v.3.5.5. 809 

 810 

NanoCMC-seq 811 

CMC treatment was adapted from Schwartz et al 4 with minor changes. Briefly, 20 ug total RNA was 812 

incubated in NEBNext® Magnesium RNA Fragmentation Module at 94°C for 1.5 minutes. The 813 

fragmented RNA was then incubated with either 0.3 M CMC dissolved in 100 µL TEU buffer (50 mM 814 

Tris pH 8.5, 4 mM EDTA, 7 M Urea) or 100 µL TEU buffer (no CMC) for 20 minutes at 37°C. Reaction 815 

was stopped with 100 µL of Buffer A (0.3 M NaOAc and 0.1 mM EDTA, pH 5.6), 700 µL absolute 816 

ethanol, and 1 µL GlycoBlue (Thermo Scientific, AM9515). RNA in the stop solution was chilled on dry 817 

ice for 5 minutes, and then centrifuged at maximum speed for 15 minutes at 4°C. Supernatant was 818 

removed and the pellet was washed with 70% ethanol. After air drying for a few minutes, the pellet 819 

was dissolved in 100 µL Buffer A and mixed with 300 µL absolute ethanol and 1 µL GlycoBlue. After 820 

chilling on dry ice for 5 minutes, the solution was then centrifuged at maximum speed for 15 minutes 821 

at 4°C. Supernatant was removed, and the pellet was washed with 70% ethanol. After washing, the 822 

pellet was air dried, and resuspended in 40 µL of 50 mM sodium bicarbonate, pH 10.4, and incubated 823 

at 37°C for 3 hours. Furthermore, RNA was mixed with 100 µL Buffer A, 700 µl ethanol, and 1 µL 824 

Glycoblue overnight at -20°C. The next day, the solution was centrifuged at maximum speed for 15 825 

minutes at 4°C and the pellet was washed with 70% ethanol and dissolved in the appropriate amount 826 

of water after air drying. Unprobed and probed RNAs were treated with T4 Polynucleotide Kinase 827 

(PNK) (NEB, M0201S) as described above before proceeding with ONT Direct cDNA sequencing.  828 

 829 

Before starting the library preparation, 9 µL of 100 µM Reverse-transcription primer (Original ONT 830 

VNP: 5’ /5Phos/ACTTGCCTGTCGCTCTATCTTCTTTTTTTTTTTTTTTTTTTTVN 3’) and 9 µL of 100 831 

µM complementary oligo (CompA: 5’ GAAGATAGAGCGACAGGCAAGTA 3’ ) were mixed with 1 µL 832 

0.2 M Tris pH 7.5 and 1 µL 1 M NaCl. The mix was incubated at 94°C for 1 minute and the 833 



temperature was ramped down to 25°C (-0.1°C/s) in order to pre-anneal the oligos. Then, 100 ng 834 

polyA-tailed RNA was mixed with 1 µL pre-annealed VNP+CompA, 1 µL 10 mM dNTP mix, 4 µL 5X 835 

RT Buffer, 1 µL RNasin® Ribonuclease Inhibitor (Promega, N2511), 1 µL Maxima H Minus RT 836 

(Thermo Scientific. EP0742) and nuclease-free water up to 20 µL. The reverse-transcription mix was 837 

incubated at 60°C for 60 minutes and inactivated by heating at 85°C for 5 minutes before moving 838 

ontoice. Furthermore, RNAse Cocktail (Thermo Scientific, AM2286) was added to the mix in order to 839 

digest the RNA and the mix was incubated at 37°C for 10 minutes. Then the reaction was cleaned up 840 

using 1.2X AMPure XP Beads (Agencourt, A63881). In order to be able to ligate the sequencing 841 

adapters the the first strand, 1 µL 100 µM CompA was again annealed to the 15 µL cDNA in a tube 842 

with 2.25 µL 0.1 M Tris pH 7.5, 2.25 µL 0.5 M NaCl and 2 µL nuclease-free water. The mix was 843 

incubated at 94°C for 1 minute and the temperature was ramped down to 25 °C (-0.1°C/s) in order to 844 

anneal the complementary to the first strand cDNA. Furthermore, 22.5 µL first strand cDNA was mixed 845 

with 2.5 µL Native Barcode (EXP-NBD104) and 25 µL Blunt/TA Ligase Mix (NEB, M0367S) and 846 

incubated in room temperature for 10 minutes. The reaction was cleaned up using 1X AMPure XP 847 

beads and the libraries were pooled into one tube that finally contains 200 fmol library. The pooled 848 

library was then ligated to the sequencing adapter (AMII) using Quick T4 DNA Ligase (NEB, M2200S) 849 

in room temperature for 10 minutes, followed with 0.65X AMPure XP Bead cleanup using ABB Buffer 850 

for washing. The sample was then eluted in Elution Buffer (EB) and mixed with Sequencing Buffer 851 

(SQB) and Loading Beads (LB) prior to loading onto a primed R9.4.1 flowcell, and ran on a MinION 852 

sequencer with MinKNOW acquisition software version v.3.5.5. 853 

 854 

Analysis of nanoCMC-seq 855 

Reads were base-called with stand-alone Guppy version 3.6.1 with default parameters running in 856 

GPU, with built-in demultiplexing tool of Guppy. Unclassified reads were then demultiplexed further 857 

using Porechop with --barcode_threshold 50 option (https://github.com/rrwick/Porechop). Then all the 858 

merged classified reads were mapped to cytosolic and mitochondrial ribosomal RNA sequences in S. 859 

cerevisiae using minimap2 default. Furthermore, a custom script was used to extract RT-drop 860 

signatures and the RT-drop scores were plotted using ggplot2. All scripts used to process nanoCMC-861 

seq data with RT-Drop information have been made available in GitHub 862 

(https://github.com/novoalab/yeast_RNA_Mod). Notably, due to the 5’ end truncation of the nanopore 863 

sequencing reads by ~13 nt, RT-drop positions were shifted by 13 nt to accurately determine the exact 864 

RT-drop positions. To identify significant RT drops in a given transcript, we first computed RT-drop 865 

scores at each site, which took the difference in the coverage at a given position (0) relative to the 866 

previous position (-1). We then computed the difference (delta RT drop-off score) in RT-drop scores 867 

between CMC-probed and unprobed conditions. Lastly, we normalized the delta RT drop-off score at 868 

each position by the median RT drop-off per transcript, leading to final CMC-Scores, which can be 869 

compared across transcripts. Positions with CMC-Score greater than 25 were considered significant, 870 

i.e. to contain a pseudouridine. We should note that the nanoCMC-seq signal-to-noise ratio is 871 

dependent on the coverage of the individual transcript.  872 

 873 



Demultiplexing direct RNA sequencing  874 

Demultiplexing of the barcoded direct RNA sequencing libraries was performed using DeePlexiCon 875 

with default parameters 89. Reads with demultiplexing confidence scores greater than 0.95 were kept 876 

for downstream analyses. We used a lower score in the case of polysomal fractions and mRNA runs 877 

(0.8), due to the low read coverage of some fractions and/or genes. We should note that the dataset 878 

was also analyzed using 0.95 threshold, and results and conclusions of the analysis did not change, 879 

compared to those obtained using 0.80 threshold.  880 

 881 

Base-calling direct RNA sequencing 882 

Reads were base-called with stand-alone Albacore versions 2.1.7 and 2.3.4 with the --disable_filtering 883 

parameter, and stand-alone Guppy versions 2.3.1 and 3.0.3 with default parameters running in CPU. 884 

In-house scripts were used for computing the number of unique and common base-called reads 885 

between the different approaches, as well as to compare the tendency of each base-caller regarding 886 

read lengths and qualities. Both Albacore and Guppy are available to ONT customers via their 887 

community site (https://community.nanoporetech.com/). Differences between the base-called features 888 

using distinct base-callers were determined using Kruskal-Wallis test with Bonferroni correction for 889 

pairwise comparisons, whereas differences between unmodified and modified sites were assessed 890 

using Mann-Whitney-Wilcoxon test.  891 

 892 

Mapping algorithms and parameters 893 

Reads were mapped using either Minimap2 45 or GraphMap 46. Minimap2 version 2.14 was run with 894 

two different parameter settings: (i) minimap2 -ax map-ont, which is the recommended setting for 895 

direct RNA sequencing mapping, and thus we refer to as ‘default’, and (ii) minimap2 -ax map-ont -k 5, 896 

which we refer to as ‘sensitive’. GraphMap version 0.5.2 was also run with two different parameter 897 

settings, for comparison, (i) graphmap align, using ‘default’ parameters, and (ii) graphmap align --898 

rebuild-index -v 1 --double-index --mapq -1 -x sensitive -z 1 -K fastq --min-read-len 0 -A 7 -k 5, which 899 

is expected to increase the tolerance to errors that may occur under the presence of RNA 900 

modifications, and thus we refer to as ‘sensitive’. Yeast total RNA runs were mapped to ribosomal 901 

RNAs and non-coding RNA transcripts using graphmap with default settings. Yeast poly(A)-selected 902 

runs were mapped to the yeast genome (SacCer3) using minimap2 with -ax splice -k14 -uf 903 

parameters. The scripts can be found in the GitHub repository 904 

https://github.com/novoalab/yeast_RNA_Mod. Sequencing, base-calling and mapping statistics for all 905 

yeast sequencing runs (total RNA and polyA-selected RNA) can be found in Tables S12 and 13.  906 

 907 

Analysis of base-called features in curlcakes 908 

Sam files were transformed into bam files using Samtools version 1.9 90, and were then sorted and 909 

indexed in order to visualize the data using the Integrative Genomics Viewer (IGV) version 2.4.16 91. 910 

Base-called features were extracted with EpiNano version 1.1 (https://github.com/enovoa/EpiNano). 911 

Principal Component Analysis (PCA) was used to reduce the dimensionality of the base-calling error 912 

data to visually inspect for base-calling differences, using as input the base-called features (mismatch 913 



frequency, deletion frequency and per-base quality) from all 5 positions of each k-mer. Only k-mers 914 

that contained a given modification once in the 5-mer were included in the analysis. All scripts used to 915 

analyze in vitro transcribed sequences using different base-calling algorithms and mappers, as well as 916 

to generate the Figures related to their analysis are available in 917 

https://github.com/novoalab/Best_Practices_dRNAseq_analysis.  918 

 919 

Analysis of base-called features in yeast RNAs 920 

Sam files were transformed into bam files using Samtools version 1.9 90, then sorted and indexed in 921 

order to visualize the data using the Integrative Genomics Viewer (IGV) version 2.4.16 91. Base-called 922 

features were extracted using EpiNano version 1.1 with minor modifications, which consisted in 923 

including in the output csv file the directionality of mismatched bases (C_frequency, G_frequency, 924 

A_frequency, U_frequency). The modified EpiNano script can be found at 925 

https://github.com/novoalab/yeast_RNA_Mod. Scripts for the analysis and visualization of base-called 926 

features are also included in the same GitHub repository.  927 

 928 

Visualization per-read current intensities using Nanopolish  929 

Nanopolish eventalign output was processed to extract the current intensity values corresponding to 930 

the 15-mer regions centered in the modified sites, for the following sites: (i) 6 Ѱ rRNA sites for which 931 

knockout data was available (25s:2133, 25s:2129, 25s:2826, 25s:2880, 25s:2264, 18s:1187), for all 4 932 

sequencing datasets (wild type, snR3-KO, snR34-KO, snR36-KO); (ii) 4 Nm sites for which knockout 933 

data was available (25s:817, 25s:908, 25s:1133, 25s:1888), for all 4 sequencing datasets (wild type, 934 

snR60-KO, snR61-KO, snR62-KO); (iii) 7 Ѱ snRNA/snoRNA sites which were identified as heat-935 

sensitive, for which there was a minimum of 100 reads of coverage. Reads with empty values in the 936 

15-mer region in the Nanopolish eventalign output were omitted from the analysis.  937 

 938 

Analysis of current intensity, dwell time and trace 939 

In this work, we used two different softwares to extract current intensity: Nanopolish 92 and Tombo 50. 940 

Nanpolish was used to extract the aligned current intensity values per read and position, using the 941 

option --scale-events. Mean current intensity per-position was computed by summing the current 942 

intensities of all reads aligned to the same position, divided by the total number of reads mapping at a 943 

given position. All scripts used to process Nanopolish event align output, including scripts to display 944 

mean current intensity values along transcripts have been made available in GitHub 945 

(https://github.com/novoalab/nanoRMS).  946 

 947 

Signal intensity, dwell time and trace were retrieved using get_features.py script, which is available as 948 

part of nanoRMS. This program internally uses: minimap2 (read alignment), Tombo (calculation of 949 

signal intensity and dwell time) and ont-fast5-api (retrieval of trace). Trace represents the probability 950 

that a given signal intensity chunk may be originating from each of the 4 canonical bases (A, C, G and 951 

T/U), and it is reported relative to the reference base. For example, in a T reference position that is 952 

incorrectly reported as C (common base-calling error observed for Ѱ sites), the trace value will be 953 



reported for the reference base (T in this case). Then, the final read alignment and all the features are 954 

stored into sorted BAM files. All scripts necessary to retrieve and store per-read, per-position features 955 

and plot/calculate results are available within the nanoRMS GitHub repository 956 

(https://github.com/novoalab/nanoRMS).  957 

 958 

De novo prediction of pseudouridine modifications on yeast mitochondrial rRNAs 959 

To systematically identify Ѱ sites de novo based on the Ѱ base-calling signatures, we first extracted 960 

the mismatch frequency and per-base mismatch frequency (C_freq, A_freq, U_freq, G_freq) from both 961 

unmodified (U) and modified (Ѱ) sites from cytosolic ribosomal RNAs, from three biological replicates. 962 

As expected, C mismatch frequency (C_freq) and global mismatch frequency (mis_freq) showed 963 

clearly distinct distributions when comparing unmodified and Ѱ-modified sites (Figure 5A). We then 964 

determined the optimal cut-points for these two features using the cutpointr package in R with 965 

oc_youden_kernel method, which applies Kernel smoothing and maximizes the Youden-Indexing. 966 

This approach predicted C_freq=0.137 and mis_freq= 0.587 as optimal cut-offs. For the mitochondrial 967 

ribosomal RNA, we filtered the uridine sites based on the selected features and assigned those that 968 

are replicable in three biological replicates as “candidate” pseudouridine sites. 969 

 970 

De novo prediction of pseudouridine modifications in yeast mRNAs and non-coding RNAs 971 

Due to the lower stoichiometry of modification of noncoding RNAs (snRNA and snoRNAs) and 972 

mRNAs, we focused on analysis of the de novo detection of Ѱ sites whose pseudouridylation levels 973 

would be changing between two conditions, either by comparing normal and stress (heat-shock) 974 

conditions, or by comparing the base-calling ‘error’ patterns of wild type strains and Pus1 or Pus4-975 

deficient strains. Only sites which passed the coverage filter (n>30 reads) in both biological replicates 976 

from both conditions were considered in the analysis (Table S6). Sites with minimal mismatch 977 

frequency difference of 0.1 between the two conditions in both replicates that met the identified Ѱ 978 

signature (C_freq=0.137 and mis_freq= 0.587) were considered as true Ѱ sites that were either heat-979 

sensitive, Pus1-dependent, or Pus4-dependent, respectively. The individual candidate Ѱ mRNA and 980 

ncRNA sites identified using nanopore sequencing, as well as the previously reported Ѱ mRNA and 981 

ncRNA sites (using CMC probing coupled to Illumina sequencing) can be found in Tables S7-S10. 982 

 983 

Prediction of RNA modification stoichiometry using nanoRMS 984 

Per-position features from individual reads were stored in BAM files using pysam 985 

(https://github.com/pysam-developers/pysam) and stored them either in Numpy arrays 986 

(https://numpy.org/) or Pandas DataFrames (https://pandas.pydata.org/) using the script 987 

get_features.py, which is available as part of nanoRMS. Models were trained with combinations of 988 

features with diverse ranges of sequence contexts surrounding the modified sites (k=1-15). Features 989 

used to predict stoichiometry included: (i) current intensity (SI), (ii) dwell time in the centre of the pore 990 

(at position 0, DT/DT0), (iii) dwell time at helicase centre (shifted by 10 positions, DT10) and (iv) base 991 

probability (trace, TR). Estimation of modification frequency was performed using unsupervised 992 

(GMM, KMEANS, IsolationForest, OneClassSVM) and supervised (KNN, RandomForest) machine 993 



learning methods implemented in sklearn (https://sklearn.org/). Plots were built using matplotlib and 994 

seaborn (https://seaborn.pydata.org/).   995 

 996 

Trained models were first benchmarked with unmodified (KO) and modified (WT) reads from rRNA 997 

mutants dataset, to identify which machine learning methods and which combination of features 998 

discriminated between modified and unmodified reads. Then, we tested how the diverse models 999 

would perform at diverse stoichiometries of modification. To this end, we simulated samples with 1000 

varying levels of modification: 0%, 20%, 40%, 60%, 80% and 100% (using mixes of KO and WT 1001 

reads) and estimated the modification level in those simulated samples by comparing them to KO 1002 

(Figure S5C).  1003 

 1004 

NanoRMS performed best when trained with signal intensity (SI) + trace (TR) as features, and when 1005 

using KNN supervised models or KMEANS unsupervised models, both for Ѱ and Nm-modified sites. 1006 

Predictions by each clustering algorithm, and for each individual rRNA modified site, are shown in 1007 

Table S4. For mRNA and ncRNA analysis, only sites with more than 30 reads of coverage in all 1008 

conditions and replicates were included for predicting RNA modification stoichiometry.  Prediction of 1009 

RNA modification stoichiometry in mRNAs and non-coding RNAs was performed using signal intensity 1010 

+ trace as features, and k-means as classification algorithm. Stoichiometry changes were reported as 1011 

the difference in predicted stoichiometry between the two conditions. All code and examples to predict 1012 

RNA modification stoichiometry are available as part of the nanoRMS GitHub repository 1013 

(https://github.com/novoalab/nanoRMS).  1014 

 1015 

DATA AVAILABILITY 1016 

For in vitro transcribed datasets, FAST5 files used in this work were already publicly available (UNM 1017 

and m6A: PRJNA511582), or have been made publicly available in SRA (m5C: PRJNA563591; hm5C: 1018 

PRJNA548268; Ѱ: PRJNA549001, UNM-S: PRJNA575545, Ѱ with varying stoichiometries: 1019 

PRJNA695584). Base-called and demultiplexed FASTQ from all yeast RNA direct RNA sequencing 1020 

data runs have been made publicly available in GEO, under the accession number GSE148603, 1021 

including processed EpiNano outputs. FAST5 files for all yeast RNA direct RNA sequencing are 1022 

available in ENA under accession PRJEB37798 and PRJEB41495. A detailed description of the 1023 

datasets used and sequenced in this work, with their corresponding GEO and ENA/SRA IDs can be 1024 

found in Table S14.  1025 

 1026 

CODE AVAILABILITY 1027 

All scripts and code used in this work have been made available in GitHub: 1028 

https://github.com/novoalab/Best_Practices_dRNAseq_analysis (analysis of in vitro curlcake 1029 

datasets), https://github.com/novoalab/yeast_RNA_Mod (analysis of in vivo datasets) and 1030 

https://github.com/novoalab/nanoRMS (prediction of RNA modifications and estimation of RNA 1031 

modification stoichiometries).  1032 
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