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Abstract. Image completion or image inpainting is the task of filling in
missing regions of an image. When those areas are large and the missing
information is unique such that the information and redundancy avail-
able in the image is not useful to guide the completion, the task becomes
even more challenging. This paper proposes an automatic semantic in-
painting method able to reconstruct corrupted information of an image
by semantically interpreting the image itself. It is based on an adver-
sarial strategy followed by an energy-based completion algorithm. First,
the data latent space is learned by training a modified Wasserstein gen-
erative adversarial network. Second, the learned semantic information is
combined with a novel optimization loss able to recover missing regions
conditioned by the available information. Moreover, we present an ap-
plication in the context of face inpainting, where our method is used to
generate a new face by integrating desired facial attributes or expres-
sions from a reference face. This is achieved by slightly modifying the
objective energy. Quantitative and qualitative top-tier results show the
power and realism of the presented method.

Keywords: Generative Models · Wasserstein GAN · Image Inpainting
· Semantic Understanding.

1 Introduction

When looking at a censored photograph or at a portrait whose eyes, nose and/or
mouth are occluded, our brain has no difficulty in hallucinating a plausible com-
pletion of the face. Moreover, if the visible parts of the face are familiar to us
because, e.g., they remind us a friend or a celebrity, we mentally conceive a
face having the whole set of attributes: the visible ones and the ones we infer.
However, as an automatic computer vision task, it remains a challenging task.

The mentioned task falls into the so-called image inpainting where the goal
is to recover missing information of an image in a realistic manner. Its applica-
tions are numerous and range from automatizing cinema post-production tasks
enabling, e.g., the deletion of annoying objects, to new view synthesis genera-
tion for, e.g., broadcasting of sport events. Classical methods use the available



2 P. Vitoria et al.

h!

Fig. 1. Several inpainted images resulting from the proposed algorithm using different
masks.

redundancy of the incomplete input image: smoothness priors in the case of
geometry-oriented approaches and self-similarity principles in the non-local or
exemplar-based ones. Nevertheless, they fail in recovering large regions when
the available image redundancy is not useful, such as the cases of Figure 1. In
this paper we capitalize on the understanding of more abstract and high level
information that learning strategies may provide. We propose an extension of
the semantic image inpainting model proposed in [34] to automatically complete
any region of an image including those challenging cases. It consists of a deep
learning based strategy which uses generative adversarial networks (GANs) to
learn the image space and an appropriate loss for an inpainting optimization
algorithm which outputs a semantically plausible completion where the missing
content is conditioned by the available data. Our method can be applied to re-
cover any incomplete image no matter the shape and the size of the holes of
information.

In this work, following our previous paper [34], we will train an improved
version of the Wasserstein GAN (WGAN) to implicitly learn a data latent space
and subsequently to generate new samples from it. We incorporate in this paper
the PatchGAN network structure [20] in the discriminator as well as we update
the generator to handle images with higher resolution. The new discriminator
is able to take decisions over patches of the image and it is combined with the
original global discriminator that takes a decision for the whole image itself.
With this purpose, we define a new energy function able to generate the missing
content conditioned to a reference image. We deploy it on hallucinating faces
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Fig. 2. Image inpainting results using three different approaches. (a) Input images,
each with a big hole or mask. (b) Results obtained with the non-local method [14].
(c) Results with the local method [15]. (d) Our semantic inpainting method. Figure
retrieved from our previous work [34].

conditioned by reference facial attributes or expressions. We quantitatively and
qualitatively show that our proposal achieves top-tier results on two datasets:
CelebA and Street View House Numbers. Additionally, we show qualitative re-
sults in our application for face hallucination. The code has been made publicly
available.

The remainder of the paper is organized as follows. In Section 2, we review
some preliminaries and state-of-the-art related work on that topic focusing first
on generative adversarial networks and then on inpainting methods and face
complation. Section 3 details both methods for image inpainting and face hal-
lucination. In Section 4, we present quantitative and qualitative assessments of
all parts of the proposed method. Section 5 concludes the paper.

2 Preliminaries and State-of-the-Art Related Work

2.1 Generative Adversarial Networks

GAN [16] learning strategy is based on a game theory scenario between two
networks, the generator and the discriminator, competing against each other.
The goal of the generator is to generate samples of data from an implicitly
learned probability distribution that is aimed to be as closer as possible as the
probability distribution the real data. On the other hand, the discriminator tries
to distinguish real from fake data. To do so, the discriminator, denote here by
D, is trained to maximize the probability of correctly distinguish between real
examples and samples created by the generator, denoted by G, while G is trained
to fool the discriminator and to minimize log(1−D(G(z))) by generating realistic
examples. In other words, D and G play the following min-max game with value
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function V (G,D) defined as follows:

min
G

max
D

V (D,G) = min
G

max
D

E
x∼Preal(x)

[logD(x)] + E
z∼pz(z)

[log(1−D(G(z)))],

(1)
where Preal denotes the probability distribution the real data, and pz repre-
sents the distribution of the latent variables z. The authors of [31] introduced
convolutional layers to the GANs architecture, and proposed the so-called Deep
Convolutional Generative Adversarial Network (DCGAN) able to learn more
complex data.

GANs have been applied with success to many computer vision related tasks
such as image colorization [8], text to image synthesis [32], super-resolution [21],
image inpainting [39, 6, 11], and image generation [31, 25, 17, 28], to mention just
a few. They have also been applied to other modalities such as speech, audio
and text. However, three difficulties still persist as challenges. One of them is the
quality of the generated images and the remaining two are related to the well-
known instability problem in the training procedure. For instance, two problems
can appear: vanishing gradients and mode collapse.

Aiming a stable training of GANs, several authors have promoted the use
of the Wasserstein GAN (WGAN). WGAN minimizes an approximation of the
Earth-Mover (EM) distance or Wasserstein-1 metric between two probability
distributions. The authors of [2] analyzed the properties of this distance. They
showed that one of the main benefits of the Wasserstein distance is that it is
continuous. This property allows to robustly learn a probability distribution by
smoothly modifying the parameters through gradient descend. Moreover, the
Wasserstein or EM distance is known to be a powerful tool to compare probabil-
ity distributions with non-overlapping supports, in contrast to other distances
such as the Kullback-Leibler divergence and the Jensen-Shannon divergence
(used in the DCGAN and other GAN approaches) which produce the vanishing
gradients problem, as mentioned above. Using the Kantorovich-Rubinstein du-
ality, the Wasserstein distance between two distributions, say a real distribution
Preal and an estimated distribution Pg, can be computed as

W (Preal, Pg) = supEx∼Preal
[f(x)]− Ex∼Pg [f(x)] (2)

where the supremum is taken over all the 1-Lipschitz functions f (notice that, if
f is differentiable, it implies that ‖∇f‖ ≤ 1). Let us notice that f in Equation (2)
can be thought to take the role of the discriminatorD in the GAN terminology. In
[2], the WGAN is defined as the network whose parameters are learned through
optimization of

min
G

max
D∈D

Ex∼Preal
[D(x)]− Ex∼PG

[D(x)] (3)

where D denotes the set of 1-Lipschitz functions. Under an optimal discriminator
(called a critic in [2]), minimizing the value function with respect to the genera-
tor parameters minimizes W (Preal, Pg). To enforce the Lipschitz constraint, the
authors proposed to use an appropriate weight clipping. The resulting WGAN
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solves the vanishing problem, but several authors [17, 1] have noticed that weight
clipping is not the best solution to enforce the Lipschitz constraint and it causes
optimization difficulties. For instance, the WGAN discriminator ends up learn-
ing an extremely simple function and not the real distribution. Also, the clipping
threshold must be properly adjusted. Since a differentiable function is 1-Lipschitz
if it has gradient with norm at most 1 everywhere, [17] proposed an alternative
to weight clipping by adding a gradient penalty term constraining the L2 norm of
the gradient while optimizing the original WGAN during training called WGAN-
GP. The WGAN-GP minimization loss is defined as

min
G

max
D∈D

Ex̃∼Preal
[D(x̃)]− Ex∼PG

[D(x)]− λEx̃∼Px̃

[
(‖∇x̃D(x̃)‖2 − 1)2

]
(4)

As in [17], Px̃ is implicitly defined sampling uniformly along straight lines be-
tween pairs of point sampled from the data distribution Preal and the generator
distribution PG. Let us notice that the minus before the gradient penalty term
in (4) corresponds to the fact that, in practice, when optimizing with respect to
the discriminator parameters, one minimizes the negative of the loss instead of
maximizing it.

In this work, we leverage the mentioned WGAN-GP improved with a new
design of the generator and discriminator architectures.

2.2 Image Inpainting

In general, image inpainting methods found in the literature can be classified
into two groups: model-based approaches and deep learning approaches. In the
former, two main groups can be distinguished: local and non-local methods. In
local methods, images are modeled as functions with some degree of smoothness
(see [5, 26, 9, 7] to mention but a few of the related literature). These methods
show good performance in propagating smooth level lines or gradients but fail in
the presence of texture or large missing regions. Non-local methods exploit the
self-similarity prior by directly sampling the desired texture to perform the syn-
thesis (e.g., [10, 3, 13]. They provide impressive results while inpainting textures
and repetitive structures even in the case of large regions to recover. However,
as both type of methods use the redundancy present in known parts of the in-
complete input image, through smoothness priors in the case of geometry-based
and through self-similarity principles in the non-local or patch-based ones and
thus fail in completing singular information.

In the last decade, most of the state-of-the-art methods are based on deep
learning approaches [39, 11, 29, 38, 40]. The authors of [29] (see also [35, 33]) mod-
ified the original GAN architecture by inputting the image context instead of
random noise to predict the missing patch. [39] proposes an algorithm which
generates the missing content by conditioning on the available data given a
trained generative model, while [38] adapts multi-scale techniques to generate
high-frequency details on top of the reconstructed object to achieve high reso-
lution results. The work [19] adds a local discriminator network that considers
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only the filled region to emphasize the adversarial loss on top of the global dis-
criminator. This additional network, called the local discriminator (L-GAN),
facilitates exposing the local structural details. Also, the authors of [11] design
a discriminator that aggregates the local and global information by combining
a global GAN and a Patch-GAN.

2.3 Face Completion

Several works focus on the task of face completion. For example, the classical
work of [18] completes a face by computing the least squares solution giving
the appropriate optimal coefficients combining a a set of prototypes of shape
and texture. [12] uses a spectral-graph-based filling-in algorithm to fill-in the
occluded regions of a face. The occluded region is automatically detected and
reconstructed in [23] by using GraphCut-based detection and confidence-oriented
sampling, respectively. For a detailed account of the face completion and halluci-
nation literature we refer to [37]. Deep learning strategies are used in [22].Their
method is based on a GAN, two adversarial loss functions (local and global) and
a semantic parsing loss.

3 Proposed Approach

We construct from our previous work on semantic image inpainting [34] which
is built on two main blocks. First, given a dataset of (non-corrupted) images, it
trains the proposed version of the WGAN [34] to implicitly learn a data latent
space to subsequently generate new random samples from the dataset. Once the
model is trained, given an incomplete image and the trained generative model, an
iterative minimization procedure is performed to infer the missing content of the
incomplete image by conditioning the resulting image on the known regions. This
procedure consists on searching the closest encoding of the corrupted data in the
latent manifold by minimizing the proposed loss which is made of a combination
of contextual, through image values and image gradients, and prior losses.

In this paper we introduce two updates in the WGAN architecture. The first
one allows us to train with images of higher resolution. The second improvement
is aimed at the discriminator, where instead of having a single decision for each
input image, the discriminator additionally takes decisions over patches of the
image.

Additionally, we propose a method for conditional face completion. As in the
previous method, given a dataset of images of faces, we train our network in
order to learn the data distribution. Then, given an image of a face, say y1 (that
can be either complete or incomplete), and the previously trained generative
model, we perform an energy-based optimization procedure to generate a new
image which is similar to y1 but has some meaningful visage portions (such as
the eyes, mouth or nose) similar to a reference image y2 by conditioning the
generated image through the objective loss function.
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3.1 Adversarial based Learning of the Data Distribution

The adversarial architecture presented in [34] was built on the top of the WGAN-
GP [17]. Several improvements were proposed in [34] to increase the stability of
the network:

– Deep networks can learn more complex, non-linear functions, but are more
difficult to train. One of the improvements were the introduction of residual
learning in both the generator and discriminator which eases the training
of these networks, and enables them to be substantially deeper and stable.
Instead of hoping each sequence of layers to directly fit a desired mapping,
we explicitly let these layers fit a residual mapping. Therefore, the input x
of the residual block is recast into F (x) + x at the output. Figure 3 and 4
show the layers that make up a residual block in our model. Figure 5 and 6
display a visualization of the architecture of the generator (Figure 6) and of
the discriminators (Figure 5).

– The omition of batch normalization in the discriminator. To not introduce
correlation between samples, it uses layer normalization [4] as a drop-in
replacement for batch normalization in the discriminator.

– Finally, the ReLU activation is used in the generator with the exception of
the output layer which uses the Tanh function. Within the discriminator
ReLU activation are also used. This is in contrast to the DCGAN, which
makes use of the LeakyReLu.

Fig. 3. An example of the residual block used in the generator. Figure retrieved from
our previous work [34].

Additionally to the previous mentioned changes applied in the work [34], fur-
ther modifications have been applied: an extra discriminator architecture based
on PatchGAN and a modification on the model architecture to deal with higher
resolution images.

PatchGAN Discriminator. Inspired by the Markovian architecture (Patch-
GAN [20]) we have added a new discriminator in our adversarial architecture.
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Fig. 4. An example of the residual block used in the discriminator. Figure retrieved
from [34].

The PatchGAN discriminator keeps track of the high-frequency structures of the
generated image by focusing on local patches. Thus, instead of penalizing at the
full image scale, it tries to classify each patch as real or fake. Hence, rather than
giving a single output for each input image, it generates a decission value for
each patch.

3.2 Semantic Image Inpainting

Once the model is trained until the mapping from the data latent space to un-
corrupted data has been properly estimated, semantic image completion can be
performed. More precisely, after traning, the generator is able to take a random
vector z drawn from pz and generate an image mimicking samples from Preal.
In order to perform inpainting or completion of an incomplete image, the aim
is to recover the encoding ẑ that is closest to the corrupted image while being
constrained to the learned encoding manifold of z. Then, when ẑ is found, the
damaged areas can be restored by using the trained generator G on ẑ.

We formulate the process of finding ẑ as an optimization problem. Let y be a
damaged image and M a binary mask of the same spatial size as the input image
y, where the white pixels (that is, the pixels i such that M(i) = 1) determine the
uncorrupted areas of y. The closest encoding ẑ can be defined as the optimum
of the following optimization problem with the loss defined as [34]:

ẑ = argmin
z
{Lc(z|y,M) + ηLp(z)} (5)

where Lp stays for prior loss and Lc for contextual loss defined as

Lc(z|y,M) = αW‖M(G(z)− y)‖+ βW‖M(∇G(z)−∇y)‖ (6)

where α, β, η are positive constants and ∇ denotes the gradient operator. In
particular, the contextual loss Lc constrains the generated image to the color
and gradients of the image y to be inpainted on the regions with available data



Semantic Image Completion through an Adversarial Strategy 9

Original Discriminator

3

12
8

64

12
8

RB

64

64

RB

128

32

RB

256
16

RB

512
8

RB
512

4 8192
1

Real
or
Fake?

PatchGAN - Discriminator

3

12
8

64

12
8

RB

64

64

RB

128

32

RB

256
16

RB

512
8

RB
512

4
1

4

Fig. 5. Overview of the original discriminator architecture (above) and PatchGAN
Discriminator (below). In our model we use both types of discriminators. RB stands
for Residual Block.

given by M ≡ 1. Moreover, the contextual loss Lc is defined as the L1 norm
between the generated samples G(z) and the uncorrupted parts of the input
image y weighted in such a way that the optimization loss pays more attention
to the pixels that are close to the corrupted area when searching for the optimum
encoding ẑ. Notice, that the proposed contextual loss does not only constrain
the color information but also the structure of the generated image given the
structure of the input corrupted image. The benefits are specially noticeable for
a sharp and detailed inpainting of large missing regions which typically contain
some kind of structure (e.g. nose, mouth, eyes, texture, etc, in the case of faces).
In practice, the image gradient computation is approximated by central finite
differences. In the boundary of the inpainting hole, we use either forward or
backward differences depending on whether the non-corrupted information is
available.

The weight matrix W is defined for each uncorrupted pixel i as
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Fig. 6. Overview of the generator architecture.

W (i) =


∑
j∈Ni

(1−M(j))

|Ni|
ifM(i) 6= 0

0 ifM(i) = 0

(7)

where Ni denotes a local neighborhood or window centered at i, and |Ni| denotes
its cardinality, i.e., the area (or number of pixels) of Ni. This weighting term
has also been used by [39]. In order to compare our results with them, we have
fixed the window size to the value used by them (7× 7) for all the experiments.

Finally, the prior loss Lp is defined such as it favours realistic images, similar
to the samples that are used to train our generative model, that is,

Lp(z) = −Dw1
(Gθ(z))−Dpatch

w2
(Gθ(z)) (8)

where Dw1
and Dpatch

w2
are the output of the discriminator D and Dpatch with

parameters w1 and w2 given the image Gθ(z) generated by the generator with
parameters θ and input vector z. In other words, the prior loss is defined as
the second WGAN loss term in (3) penalizing unrealistic images. Without Lp
the mapping from y to z may converge to a perceptually implausible result.
Therefore z is updated to fool the discriminator and make the corresponding
generated image more realistic.

(a) (b) (c) (d)

Fig. 7. Images (b) and (d) show the results obtained after applying Poisson editing
(equation (9) in the text) to the inpainting results shown in (a) and (c), respectively.
Figure retrieved from [34].
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The parameters α, β and η in Equation (6) allow to balance among the three
losses. With the defined contextual, gradient and prior losses, the corrupted im-
age can be mapped to the closest z in the latent representation space, denoted
by ẑ. z is randomly initialized with Gaussian noise of zero mean and unit stan-
dard deviation and updated using back-propagation on the total loss given in
the equation (6). Once G(ẑ) is generated, the inpainting result can be obtained
by overlaying the uncorrupted pixels of the original damaged image to the gen-
erated image. Even so, the reconstructed pixels may not exactly preserve the
same intensities of the surrounding pixels although the content and structure is
correctly well aligned. To solve this problem, a Poisson editing step [30] is added
at the end of the pipeline in order to reserve the gradients of G(ẑ) without mis-
matching intensities of the input image y. Thus, the final reconstructed image x̂
is equal to:

x̂ = argmin
x
‖∇x−∇G(ẑ)‖22

such that x(i) = y(i) if M(i) = 1
(9)

In Figure 7 two examples can be seen where visible seams are appreciated in (a)
and (c), but less in (b) and (d) after applying Poisson editing (9).

3.3 Conditional Face Completion

Let G be the previously defined generator mapping the noise vector z belonging
to the latent space to an image G(z) as obtained in Section 3.1. In order to
generate a new face by integrating the desired facial attributes or expressions
from a reference face, similar to the previous outline, we formulate the process
of finding the closed encoding of the corrupted data in the latent manifold as
an optimization problem. Let y1 be an image of a face, y2 a reference image,
M a binary mask of the same spatial size as the image where the white pixels
(M(i) = 1) determine the area to preserve of y1 (last row, second column, of
Figure 12 displays an example of M). We define the closest encoding ẑ to y1
conditioned by y2 as the optimum of following optimization problem with the
new proposed loss:

ẑ = arg min
z
Lc1(z|y1,M) + Lc2(z|y2, I −M) + βL̃p(z) (10)

where the first two terms are contextual losses as defined in Section 3.2 that
penalize on complementary regions (given by the masks M and I−M , where I is
constant and equal to 1 on all the pixels). More specifically, the first contextual
loss favours to maintain color and structure from the image to be inpainted,
and the second contextual loss favours to maintain structure from the reference
image. The third term is the prior loss as defined in 3.2. Let us write them again
now in this conditional face completion context:

Lc1(z|y1,M) = α1W1‖M(G(z)− y1)‖+ α2W1‖M(∇G(z)−∇y1)‖, (11)

Lc2(z|y2, I −M) = α3W2‖(I −M)(∇G(z)−∇y2)‖, (12)
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L̃p(z) = −Dw(Gθ(z)) (13)

where W1 and W2 denote the weights defined for each pixel i and its neighbor-
hood Ni as

W1(i) = M(i)
∑
j∈Ni

(1−M(j))

|Ni|
(14)

W2(i) = (I −M)(i)

1−
∑
j∈Ni

M(j)

|Ni|

 (15)

4 Experimental Results

In this section we present qualitative and quantitative results of the proposed
methods. We will show qualitative and quantitative results of our inpainting
method proposed in [34]. The results will be compared with the ones obtained by
[39] as both algorithms use first a GAN procedure to learn semantic information
from a dataset and, second, combine it with an optimization loss for inpaint-
ing in order to infer the missing content. Additionally, further visual results in
higher resolution images will be shown. To conclude, results on conditional face
completion will be presented.

For all the experiments we use a fixed number of epochs equal to 10, batch
size equal to 64, learning rate equal to 0.0001 and exponential decay rate for the
first and second moment estimates in the Adam update technique, β1 = 0, 0 and
β2 = 0, 9, respectively. Training the generative model required three days using
an NVIDIA QUADRO P6000.

During the inpainting stage, the window size used to compute W (i) in (7) is
fixed to 7 × 7 pixels. In our algorithm, we use back-propagation to compute ẑ
from the latent space. We make use of an Adam optimizer and restrict z to fall
into [−1, 1] in each iteration, which we found it produces more stable results. In
that stage we used the Adam hyperparameters learning rate, α, equal to 0.03 and
the exponential decay rate for the first and second moment estimates, β1 = 0, 9
and β2 = 0, 999, respectively. After initializing with a random 128 dimensional
vector z drawn from a normal distribution, we perform 1000 iterations.

The assessment is given on two different datasets in order to check the ro-
bustness of our method: the CelebFaces Attributes Datases [24] and the Street
View House Numbers (SVHN) [27]. CelebA dataset contains a total of 202.599
celebrity images covering large pose variations and background clutter. We split
them into two groups: 201,599 for training and 1,000 for testing. In contrast,
SVHN contains only 73,257 training images and 26,032 testing images. SVHN
images are not aligned and have different shapes, sizes and backgrounds. The
images of both datasets have been cropped with the provided bounding boxes
and resized to only 64x64 pixel size.

Remark that we have trained the proposed improved WGAN by using di-
rectly the images from the datasets without any mask application. Afterwards,
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our semanting inpainting method is evaluated on both datasets using the inpaint-
ing masks. Notice that our algorithm can be used with any type of inpainting
mask.

4.1 Qualitative Assessment

In [34] we have analyzed separately each step of our algorithm: The training
of the adversarial model and the minimization procedure to infer the missing
content. Since the inpainting result of the latter strongly depends on what the
generative model is able to produce, a good estimation of the data latent space
is crucial for our task. Notice that the CelebA dataset will be better estimated
than SVHN dataset due to the fact that the number of images as well as the
diversity of the dataset directly affects the prediction of the latent space and the
estimated underlying probability density function (pdf). In contrast, as bigger
the variability of the dataset, more spread is the pdf which difficult its estimation.

To evaluate the proposed inpainting method, a comparison with the semantic
inpainting method by [39] was performed. While training our model, we use the
proposed architecture (see Section 3.1) where the model takes a random vector,
of dimension 128, drawn from a normal distribution. In contrast, [39] uses the
DCGAN architecture where the generative model takes a random 100 dimen-
sional vector following a uniform distribution between [−1, 1]. Some qualitative
results are displayed in Figures 8 and 9. Focusing on the CelebA results (Fig-
ure 8), obviously the algorithm by [39] performs better than local and non-local
methods (Figure 2) since it also makes use of adversarial models. However, al-
though it is able to recover the semantic information of the image and infer the
content of the missing areas, in some cases it keeps producing results with lack
of structure and detail which can be caused either by the generative model or
by the procedure to search the closest encoding in the latent space. It will be
further analyzed with a quantitative ablation study. Since the proposed method
takes into account not only the pixel values but also the structure of the image,
this kind of problems are solved. In many cases, our results are as realistic as
the real images. Notice that challenging examples, such as the first and sixth
row from Figure 8, which image structures are not well defined, are not properly
recovered with our method nor with [39].

Regarding the results on SVHN dataset (Figure 9), although they are not
as realistic as the CelebA ones, the missing content is well recovered even when
different numbers may semantically fit the context. As mentioned before, the lack
of detail is probably caused by the training stage, due to the large variability of
the dataset (and the size of the dataset). Despite of this, let us notice that our
results outperform qualitatively the ones obtained by [39]. This may indicate
that our algorithm is more robust when using smaller datasets than [39]. Some
examples of failure cases found on both datasets are shown in Figure 11.

Additional Results in Higher Resolution Images
Figure 10 shows several resulting higher resolution images after applying the
proposed algorithm in the corrupted regions of the image. Notice, that our al-
gorithm is able to inpaint any region regardless of its shape. One can see that
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the obtained results look realistic even in challenging parts of the image such as
the eyes or nose. Also, it obtains good results when the observer does not see all
the face, such in the middle example in the second row.

4.2 Quantitative Analysis and Evaluation Metrics

The goal of semantic inpainting is to fill-in the missing information with realis-
tic content. However, with this purpose, there are many correct possibilities to
semantically fill the missing information apart from the ground truth solution.
Thus, in order to provide a thorough analysis and quantify the quality of our
method in comparison with other methods, an ablation study was presented in
[34]. We include it here for the sake of completeness. Different evaluation metrics
were used: First, metrics based on a distance with respect to the ground truth
and, second, a perceptual quality measure that is acknowledged to agree with
similarity perception of the human visual system.

Table 1. Quantitative inpainting results for the central square mask, including an
ablation study of our contributions in comparison with [39]. The best results for each
dataset are marked in bold and the best results for each method are underlined. Table
retrieved from [34].

CelebA dataset SVHN dataset

Loss formulation MSE PSNR SSIM MSE PSNR SSIM

[39] 872.8672 18.7213 0.9071 1535.8693 16.2673 0.4925
[39] adding gradient loss with α = 0.1, β = 0.9 and η = 1.0 832.9295 18.9247 0.9087 1566.8592 16.1805 0.4775
[39] adding gradient loss with α = 0.5, β = 0.5 and η = 1.0 862.9393 18.7710 0.9117 1635.2378 15.9950 0.4931
[39] adding gradient loss with α = 0.1, β = 0.9 and η = 0.5 794.3374 19.1308 0.9130 1472.6770 16.4438 0.5041
[39] adding gradient loss with α = 0.5, β = 0.5 and η = 0.5 876.9104 18.7013 0.9063 1587.2998 16.1242 0.4818
Our proposed loss with α = 0.1, β = 0.9 and η = 1.0 855.3476 18.8094 0.9158 631.0078 20.1305 0.8169
Our proposed loss with α = 0.5, β = 0.5 and η = 1.0 785.2562 19.1807 0.9196 743.8718 19.4158 0.8030
Our proposed loss with α = 0.1, β = 0.9 and η = 0.5 862.4890 18.7733 0.9135 622.9391 20.1863 0.8005
Our proposed loss with α = 0.5, β = 0.5 and η = 0.5 833.9951 18.9192 0.9146 703.8026 19.6563 0.8000

Table 2. Quantitative inpainting results for the three squares mask including an abla-
tion study of our contributions and a complete comparison with [39]. The best results
for each dataset are marked in bold and the best results for each method are underlined.
Table retrieved from [34].

CelebA dataset SVHN dataset

Method MSE PSNR SSIM MSE PSNR SSIM

[39] 622.1092 20.1921 0.9087 1531.4601 16.2797 0.4791
[39] adding gradient loss with α = 0.1, β = 0.9 and η = 1.0 584.3051 20.4644 0.9067 1413.7107 16.6272 0.4875
[39] adding gradient loss with α = 0.5, β = 0.5 and η = 1.0 600.9579 20.3424 0.9080 1427.5251 16.5850 0.4889
[39] adding gradient loss with α = 0.1, β = 0.9 and η = 0.5 580.8126 20.4904 0.9115 1446.3560 16.5281 0.5120
[39] adding gradient loss with α = 0.5, β = 0.5 and η = 0.5 563.4620 20.6222 0.9103 1329.8546 16.8928 0.4974
Our proposed loss with α = 0.1, β = 0.9 and η = 1.0 424.7942 21.8490 0.9281 168.9121 25.8542 0.8960
Our proposed loss with α = 0.5, β = 0.5 and η = 1.0 380.4035 22.3284 0.9314 221.7906 24.6714 0.9018
Our proposed loss with α = 0.1, β = 0.9 and η = 0.5 321.3023 23.0617 0.9341 154.5582 26.2399 0.8969
Our proposed loss with α = 0.5, β = 0.5 and η = 0.5 411.8664 21.9832 0.9292 171.7974 25.7806 0.8939
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In the first case, considering the real images from the database as the ground
truth reference, the most used evaluation metrics are the Peak Signal-to-Noise
Ratio (PSNR) and the Mean Square Error (MSE). Notice, that both MSE and
PSNR, will choose as best results the ones with pixel values closer to the ground
truth.

In the second case, in order to evaluate perceived quality, the Structural Sim-
ilarity index (SSIM) [36] is used to measure the similarity between two images.
It is considered to be correlated with the quality perception of the human visual
system.

Given these metrics the obtained results are compared with the one proposed
by [39] as it is the method more similar to ours. Tables 1 and 2 show the numerical
performance of our method and [39]. To perform an ablation study of all our
contributions and a complete comparison with [39], Tables 1 and 2 not only show
the results obtained by their original algorithm and our proposed algorithm, but
also the results obtained by adding our new gradient-based term Lg(z|y,M) to
their original inpainting loss. We present the results varying the trade-off effect
between the different loss terms (weights α, β, η).

By looking at the numerical results it can be seen that the proposed algorithm
always performs better than the semantic inpainting method by [39]. For the case
of the CelebA dataset, the average MSE obtained by [39] is equal to 872.8672
and 622.1092, respectively, compared to our results that are equal to 785.2562
and 321.3023, respectively. It is highly reflected in the results obtained using
the SVHN dataset, where the original version of [39] obtains an MSE equal to
1535.8693 and 1531.4601, using the central and three squares mask respectively,
and our method 622.9391 and 154.5582. On the one side, the proposed WGAN
structure is able to create a more realistic latent space and, on the other side,
the proposed loss takes into account essential information in order to recover the
missing areas.

Regarding the accuracy results obtained with the SSIM measure, can be seen
that the results obtained by the proposed method always have a better perceived
quality than the ones obtained by [39]. In some cases, the values are close to the
double, for example, in the case where the training dataset is small, namely,
SVHN.

To conclude, the proposed method is more stable in smaller datasets such in
the case of SVHN. Also, by decreasing the number of samples in the dataset does
not mean to reduce the quality of the inpainted images in the proposed method.
Contrary with what is happening in the case of [39]. Finally, in the cases where
we add the proposed loss to the algorithm [39], in most of the cases the MSE,
PSNR and SSIM improves. This fact clarifies the big importance of the gradient
loss in order to perform semantic inpainting.

4.3 Conditional Face Completion

In this section, we evaluate our algorithm in the CelebA dataset [24] that consists
on 202,599 face images, which are aligned and cropped to have pixel size equal
to 64× 64.
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Some qualitative and quantitative results are shown in Figure 12. Our algo-
rithm outputs a face hallucination of one of the images y1 displayed in the first
row, having as a reference the portion displayed in the second column of the im-
age y2 of the first column. More often than not, the results look natural and the
combination of the target image together with its reference is plausible. As can
be seen, our algorithm is robust in combining images with different skin tone,
keeping the overall color of the target image. The last row shows results of our
baseline semantic completion method showing that it can perceptually halluci-
nate a plausible completion without any reference image. In order to quantify the
quality of our results, we have computed the Structural Similarity Index (SSIM)
that is correlated with the quality perception of the human visual system. Notice
that the SSIM is computed with respect to the target image y1 although ours
results are a combination of two images. Even so, the resulting SSIM is high in
all the cases (above 0.85) which translates to a high perceived quality.

5 Conclusions

This paper proposes a semantic inpainting method based on an adversarial strat-
egy. The method performs in two phases. First, the data latent manifold is
learned by training a proposed improved version of the WGAN. Then, we pro-
pose a conditional objective loss. This loss is able to properly infer the missing
content having into account the structure and pixel value of the data present
on the image. Moreover, it takes also into account the perceptual realism of
the reconstructed image. Additionally, a new loss is presented able to perform
personalized face completion based on semantic image inpainting. By iteratively
minimizing this new loss we are able to generate an image similar to a target
image together with meaningful characteristics of a reference one. The presented
experiments show the capabilities of the proposed method that is able to infer
more realistic content for incomplete images than classical methods.
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Original Masked Ours SIMDGM Masked Ours SIMDGM

Fig. 8. Inpainting results on the CelebA dataset: Qualitative comparison with the
method [39] (fourth and seventh columns, referenced as SIMDGM), using the two
masks shown in the second and fifth columns, is also displayed.
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Original Masked Ours SIMDGM Masked Ours SIMDGM

Fig. 9. Inpainting results on the SVHN dataset: Qualitative comparison with the
method [39] (fourth and seventh columns, referenced as SIMDGM), using the two
masks shown in the second and fifth columns, is also displayed.
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Masked Ours Masked Ours Masked Ours

Fig. 10. Inpainting results on the CelebA dataset using the proposed architecture able
to create images with higher resolution.
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Original Masked Ours SIMDGM Masked Ours SIMDGM

Fig. 11. Some failure cases in CelebA and SVHN dataset.
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y1 y1 y1 y1 y1

y2 My2 0.9473 0.9562 0.9500 0.9659 0.9394

y2 My2 0.9673 0.9558 0.9631 0.9593 0.9622

y2 My2 0.9424 0.9688 0.9726 0.9670 0.9710

y2 My2 0.8768 0.8926 0.9171 0.9232 0.8894

M 0.9471 0.9085 0.9430 0.9365 0.9293

Fig. 12. Face halucination results obtained either using a reference image (from second
to fourth rows) or no reference (last row). First row: image y1 to change or complete,
respectively. First column: reference image. Second column: inpainting mask together
with the reference region (last row does not have any reference image). The correspond-
ing SSIM is showed under each image.


