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Abstract

Computerized Tomography Angiography (CTA) based follow-up of Abdom-
inal Aortic Aneurysms (AAA) treated with Endovascular Aneurysm Repair
(EVAR) is essential to evaluate the progress of the patient and detect compli-
cations. In this context, accurate quantification of post-operative thrombus
volume is required. However, a proper evaluation is hindered by the lack
of automatic, robust and reproducible thrombus segmentation algorithms.
We propose a new fully automatic approach based on Deep Convolutional
Neural Networks (DCNN) for robust and reproducible thrombus region of in-
terest detection and subsequent fine thrombus segmentation. The DetecNet
detection network is adapted to perform region of interest extraction from a
complete CTA and a new segmentation network architecture, based on Fully
Convolutional Networks and a Holistically-Nested Edge Detection Network,
is presented. These networks are trained, validated and tested in 13 post-
operative CTA volumes of different patients using a 4-fold cross-validation
approach to provide more robustness to the results. Our pipeline achieves
a Dice score of more than 82% for post-operative thrombus segmentation
and provides a mean relative volume difference between ground truth and
automatic segmentation that lays within the experienced human observer
variance without the need of human intervention in most common cases.
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1. Introduction

An Abdominal Aortic Aneurysm (AAA) is a focal dilation of the aorta
that exceeds its normal diameter by more than 50%. If not treated, it tends to
grow and may rupture, with a high mortality rate (Pearce et al., 2008). In the
last decade, the treatment of aortic aneurysm has shifted from open surgery
to a minimally invasive alternative, known as Endovascular Aneurysm Re-
pair (EVAR) (Moll et al., 2011). This technique consists of the transfemoral
insertion and deployment of a stent graft using a catheter. The prosthesis ex-
cludes the damaged aneurysm wall from blood circulation, which generates
a thrombus that shrinks after the intervention in favorable cases. Despite
lower rates of perioperative mortality and morbidity, studies show that two-
year mortality rates are comparable to open surgery due to the appearance
of EVAR complications known as endoleaks (Stather et al., 2013). These
complications translate into a recurrent blood flow towards the excluded
thrombus, which continues growing and needs reintervention to prevent rup-
ture. Thus, close follow-up after EVAR is required at least yearly, for which
Computed Tomography Angiography (CTA) is the preferred imaging modal-
ity (Walker et al., 2010). However, this is hindered by the lack of automatic
thrombus segmentation algorithms that allow precise measurement of throm-
bus maximum diameter, volume and other shape parameters that allow for
assessment of its evolution.

Traditionally, thrombus segmentation has been addressed with intensity-
based semi-automatic algorithms (level-sets, active shape models, graph cuts)
combined with shape priors. Purely intensity-based techniques fail to cor-
rectly detect the non-contrasted thrombus boundaries, since there are adja-
cent structures that have similar intensity values into which the segmentation
tends to overflow. With the insertion of a shape constraint this leakage can
be further controlled. However, most of the proposed algorithms, as detailed
in Sec. 2 require user interaction and/or prior lumen segmentation along with
centerline extraction. Furthermore, their performance highly depends on the
multiple parameter tuning, affecting the robustness and the applicability in
clinical practice. We aim at exploring a new approach based on artificial
intelligence that could be easily translated into clinical routine, solving some
of the automation, parameter tuning, robustness, reproducibility and user
interaction issues.
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Deep Convolutional Neural Networks (DCNN) have gained attention in
the scientific community for solving multiple computer vision tasks, including
object recognition, classification and segmentation, surpassing the previous
state-of-the-art performance in many different problems. Most importantly,
DCNN methods have proven to be highly robust to varying image appear-
ance, which is our motivation to apply them to fully automatic detection and
segmentation of aortic thrombus in CTA volumes.

Our goal is to propose a new fully automatic approach to region of interest
detection and subsequent thrombus segmentation using DCNNs. First, a 2D
detection network is adapted and applied to localize the thrombus region from
the complete CTA dataset. Second, we propose a new 2D DCNN architecture
for the fine segmentation of the thrombus in a previously extracted region of
interest. The output of the network is a probability map, so a 3D k-means
based post-processing algorithm is applied to obtain the binary segmentation
mask, ensuring 3D coherence and increasing accuracy while preserving low
computational cost. To the best of our knowledge, this is the first study that
applies deep learning to detect and segment post-operative AAA thrombi
from the whole CTA volume in a fully automatic manner in a large number of
images. The outline of the paper is as follows: Sec. 2 reviews the state of the
art of thrombus segmentation approaches and DCNN for medical imaging.
Sec. 3 describes our proposed method for thrombus region detection and
segmentation, as well as the data employed during our experiments. Results
are presented in Sec. 4. Finally, a discussion is provided in Sec. 5.

2. State-of-the-art

2.1. Thrombus segmentation

Segmentation of the AAA thrombus is of paramount importance for diag-
nosis, risk assessment and determination of treatment options (Moxon et al.,
2010). Segmentation of the thrombus in CTA images is challenging due to:

• Similarity between the intensity values of the thrombus and some ad-
jacent tissues, causing mis-segmentation due to fuzzy borders of the
thrombus

• The thrombotic surface is locally obscured in some cases since it is a
non-contrasted tissue
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• In the post-operative scenario artifacts due to the stent-graft cover
some of the thrombus region

• The geometric structure of the thrombus is irregular, which prevents
the thrombus from being approximated by a simple geometrical model

• Lack of ground truth databases

Figure 1: Segmentation training image samples depicting original images and some of the
challenges when segmenting the thrombus.

These characteristics, which are shown in Figure 1, hinder the perfor-
mance of automatic thrombus segmentation approaches that are robust enough
for routine follow-up. Purely intensity-based approaches fail to distinguish
the thrombus from adjacent structures and thus, traditionally proposed ap-
proximations combine intensity information with shape or appearance con-
straints. This is the case of the approximations proposed in (Duquette et al.,
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2012; Egger et al., 2011; Freiman et al., 2010; Lee et al., 2010), where the
authors modify the traditional 3D graph-cut energy minimization function
by adding a shape model to reduce the overflow into adjacent structures.
The method proposed in (Freiman et al., 2010) starts from a prior segmen-
tation of the lumen surface and consequent centerline extraction, followed by
fully-automatic delimitation of the thrombus contour that yields a maximum
volume overlap of 87.1% obtained for 8 CTA datasets. In (Egger et al., 2011),
prior extraction of the centerline is also required, as well as some manual ini-
tialization. A quantification of the volume difference between the ground
truth and the obtained segmentation is not provided. The approximations
proposed in (Duquette et al., 2012) and (Lee et al., 2010) also rely on manual
user initialization and posterior editing. A similar approximation but based
in the 2D level-set equation is presented in (Zohios et al., 2012), where sev-
eral criteria are proposed to stop the evolution of the level-set curve to avoid
leakage and with a strong assumption on the presence of calcifications. The
method works in 2D and requires user-provided control points for the initial-
ization. In (Demirci et al., 2009), a hybrid deformable model is presented.
The energy function to be minimized integrates local as well as global image
information and combines it with additional shape constraints. Using cu-
bic B-Spline surfaces as deformation models and distance functions, existing
gaps in the boundary gradient are overcome and segmentation leakage into
adjacent objects is prevented. The method yields good mean volume overlap
measures, 93.16%, but requires previous lumen segmentation, manual selec-
tion of some thrombus voxels and dataset-dependent parameter setup, which
reduces the robustness and the reproducibility required in a real clinical set-
ting. Radial model based approximations that assume an almost circular
shape of the thrombus has also been presented in (Maćıa et al.).

Machine learning-based approaches have also been proposed in (Maiora
and Graña, 2012; Maiora et al., 2014), where thrombus segmentation is
performed with active learning and supervised Random Forest (RF) clas-
sifiers. The methods are semi-automatic and no a priori geometric models
are needed. In (Maiora and Graña, 2012) the segmentation problem is ad-
dressed as a slice-by-slice multiclass classification of pixel samples. First,
active learning techniques are used to select optimal feature sets, evaluating
the information gain of a variety of intensity based features, to train a RF
classifier and perform voxel-based segmentation, which takes about 22 min-
utes in total. User interaction is needed during active learning, such that at
some iterations previously misclassified data samples are added to the train-
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ing set and morphological operations are required to refine the segmentation.
In (Maiora et al., 2014) new features for the RF classifier are included. These
features are maximum, minimum, median and Gaussian weighted average of
the 2D neighborhoods of the voxel of increasing radius. In both cases, clas-
sification accuracy is evaluated, but no comparison with a 3D ground truth
segmentation is reported. Recently, in (Hong and Sheikh, 2016) a novel and
automatic approach to pre-operative AAA region detection and segmentation
is described, based on Deep Belief Networks (DBN). The detection is done
in 2D, patch-wise, with patches coming from a unique dataset. Two DBN
are proposed: one detects large aneurysm patches; the other, detects small
aneurysm patches, bones, organs and air. For the segmentation, another
DBN is trained with 40 image patches containing aneurysm. A comparison
with the ground truth is not provided.

From this literature review, we have determined to move towards an arti-
ficial intelligence-based segmentation approach. Hence, we propose utilizing
a DCNN for CTA region of interest detection and define a novel DCNN
architecture for thrombus segmentation. We also provide a complete and re-
producible 3D quantitative evaluation process to compare the automatically
obtained segmentations with ground truth data. In relation with previously
presented approaches, our method is fully automatic and requires no param-
eter tuning or prior shape models.

2.2. Deep Convolutional Neural Networks for semantic segmentation

In the past few years, Deep Convolutional Neural Networks (DCNN) have
revolutionized the research in computer vision, since they have shown the
ability to efficiently solve complex classification, segmentation, and object
detection tasks. Many studies employing DCNN not only in computer vision
but also in the medical imaging field have been presented, for different imag-
ing modalities and anatomical structures, as well as network architectures.

Medical image segmentation poses some inherent challenges:

• Different modalities have uncorrelated appearances

• Data dimensionality is frequently higher than in 2D computer vision

• There is little training data due to ethical concerns, data accessibil-
ity, privacy and security issues and lack of time from professionals for
quality image annotation
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Thus, early approaches translated the 3D medical image segmentation into a
2D patch-wise image classification approach (Cireşan et al., 2012; Prasoon
et al., 2013), getting several thousands of training samples from just a few
datasets. In other approaches (Roth et al., 2014) 3D data is represented
as 2.5D slices, where axial, sagittal and coronal planes are stored as layers
of a RGB image and the training is done with multiscale image patches.
However, according to related publications, these approximations only con-
sider local context, are prone to failure and suffer from memory and time
efficiency issues. More recent approaches combine 2D network predictions
with voting approaches (Milletari et al., 2016) or traditional level-sets (Cha
et al., 2016). Spatial consistency is enforced at a second stage through post-
processing computation. The natural evolution of these approximations is
to train a network with the whole 2D slices. This was proposed by (Ron-
neberger et al., 2015), which defined the U-Net architecture that works with
few training images and uses data augmentation strategies to compensate for
the reduced amount of data and to achieve rotation or translation invariant
predictions. Fully 3D CNNs come with an increased number of parameters
and significant memory and computational requirements due to 3D convolu-
tions. In addition, the number of available medical images is always limited
and training in 2D provides the ability to utilize pretrained networks and fine-
tuning. We decided to leverage the advantages of 2D training and design an
architecture inspired by Fully Convolutional Networks (FCN) (Long et al.,
2015) and the Holistically-nested Edge Detection (HED) network proposed
in (Xie and Tu, 2015).

2.3. Deep Convolutional Neural Networks for object detection

In addition to segmentation, DCNN-based detection in medical imaging is
also being investigated, to localize tumors, detect certain organs or structures
and delimit regions of interest from complete images. Most medical detec-
tion systems based on deep learning attempt to reuse classifiers to perform
the detection. These models train a classifier for a specific class or a group
of classes and evaluate them at different locations and scales in the image.
In (Smistad and Løvstakken, 2016), in order to detect vessels in ultrasound
images, some candidate regions are generated and a neural network model
identifies real vessels and discards false positives from those regions. Some
other methods employ a sliding window based system to run the classifier
through the image. This was proposed in (Xu et al., 2016), a breast cancer
nuclei detection system that applies a sliding window operation to each test-
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ing image and feeds a classifier with those outputs to separate them as nuclear
or non-nuclear. A system of these characteristics requires a quite exhaustive
training and testing and has a main drawback: the final detection is based on
patch classification, which lacks contextual information. Although no refer-
ences to medical image detection systems trained with the whole image have
been found, some computer vision approaches already proved its suitability
(Bar et al., 2015; Shin et al., 2016). Recent computer vision approaches for
general object detection treat the challenge as a single regression problem.
In (Redmon et al., 2015) a neural structure that receives an input image and
directly outputs bounding box coordinates and class probabilities for those
boxes is proposed. The model first overlays input images with regular grids
to detect if certain objects are present in those positions and then a network
completes the task. In the same fashion, a network called DetectNet is pre-
sented in (Barker and Tao, 2016). This architecture has important benefits
such as optimizing the detection directly, in a one-step procedure, with no
extra parameter tuning apart from the network itself. Besides, processing
images once the model is trained is straightforward, without any exhaustive
pipeline of candidate proposals or multiple processes. Because of its advan-
tages we have selected this neural network to accomplish thrombus region
of interest detection, translating a computer vision approach to the medi-
cal domain. This region of interest delimitation offers great benefits for the
segmentation task, as it constrains the CTA region to be processed during
segmentation, considerably decreasing time and memory consumption. As
far as we know, no Deep Learning based abdominal aortic thrombus detection
system has been proposed in the literature.

3. Materials and methods

Hereby, we propose a fully automatic pipeline for post-operative throm-
bus segmentation, which relies on a Deep Convolutional Neural Network
(DCNN) to detect the thrombus from the whole CTA dataset followed by
another DCNN for its segmentation. Deep learning approaches require a
large amount of data for a good generalization and to overcome overfitting
problems, but since annotated medical image data is always limited, training
and testing a network directly in 3D becomes complicated. Besides, training
in 2D provides advantages regarding higher speed, lower memory consump-
tion and the ability to utilize pretrained nets and to fine-tune them. Thus,
we have decided to leverage these advantages and train our networks with
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2D slices, treating every CTA slice independently during training, validation
and testing.

We have created our models using Nvidia Corporation’s Deep Learning
GPU Training System (DIGITS) based on Caffe (Jia et al., 2014). Both
training and testing are done on a 2 Xeon E5620 2,4GHz, 12GB processor
equipped with a Titan X graphic card donated by NVIDIA Corporation,
under Linux Ubuntu 14.04 LTS 64 bits operating system.

Our method consists of two steps:

1. Thrombus detection within a whole CTA volume

2. Fine thrombus segmentation from a localized Region Of Interest (ROI)

The detection step consists in a DCNN network that provides 2D ROI-
candidates containing the thrombus, which are then processed to get a con-
tinuous 3D region and to include some contextual information. We assume
that this contextual information is necessary to obtain an accurate posterior
segmentation, since relative location of the thrombus with respect to other
anatomical structures may be valuable. This region of interest extraction
step is essential to subsequently achieve better segmentation results, since
it significantly reduces the amount of background pixels. This allows the
segmentation network to have a more balanced distribution of thrombus and
background pixels, improving its generalization and precision. Additionally,
by reducing the size and quantity of 2D slices introduced to the segmentation
network, a more computationally efficient segmentation model is obtained.

Regarding the segmentation phase, our proposed DCNN outputs 2D prob-
ability maps that are then processed, ensuring consistency between consec-
utive slices, to obtain the final 3D binary segmentation. To overcome the
limitations of a 2D approximation and to obtain a coherent and accurate 3D
binary segmentation mask, a simple and automatic 3D K-means based post-
processing step is applied to the output probability maps. Figure 2 depicts
a scheme of the proposed pipeline.

3.1. Post-operative abdominal aortic aneurysm datasets

The imaging data for this study consists of 13 post-operative contrast-
enhanced CTA datasets from different patients. All these patients present
an infrarenal aneurysm with varying evolution along time: favorable cases
where the thrombus shrinks, unfavorable cases with an expanding aneurysm
and a visible leak, and unfavorable endotension cases with no visible leak.
As patient was excluded, the variability in the data is relatively large in
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Figure 2: Proposed method for thrombus segmentation.

terms of thrombus size and shape or noise, as shown in Figure 1. For the
CTA examination, the patient is always in supine position with the image
acquisition starting around the diaphragm and expanding to the iliac crest.
The datasets have been obtained with scanners from different manufacturers
and models: Toshiba Aquilion, GE Lightspeed RT16, GE optima 264 CT660
and GE Lightspeed VCT. They have varying spatial resolution, ranging from
0.72-0.97 in x and y direction, and 0.625-0.8 in z direction. These datasets
are employed differently for the two parts of the presented pipeline, i.e the
segmentation and the detection.

For the segmentation task, manually delineated ground truth masks done
by an expert vascular surgeon are available. A region of interest (ROI) is
computed for each mask, which is expanded to simulate the output of the
detection step that also includes contextual information. Finally, the 2D
axial slices from that region of interest are extracted. For the training and
validation of the segmentation, we have decided to directly use the images
extracted from the ground truth ROIs instead of the output of the detection,
to leverage all the available data and do not propagate possible detection er-
rors (missing slices where the thrombus appears) to the segmentation. Thus,
the networks are mostly trained and validated on slices where the thrombus
is present, with only few slices where the thrombus is absent. Note that due
to the need of contextual information, the number of pixels corresponding
to the thrombus is much smaller than the number of pixels corresponding to
background. For testing, slices extracted from the output of the detection
network have been used to evaluate the complete pipeline.

For the detection task, all 2D axial slices of the complete CTA volumes
have been extracted and the ground truths have been generated as 2D rect-
angular bounding boxes around the expert-outlined segmentations. In those
slices where the thrombus is not visible (around 55% of them), no bounding
box is provided. The determination of the initial and final slices delimiting
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the thrombus is a complex task. From a clinical point of view, theoretically,
the presence of a thrombus can be assumed when the aortic wall expands
more than 5 mm. In practice, this is done approximately by visual inspec-
tion, therefore inter and intra-observer variability exists. To take this into
account, we have recorded the initial and final slices where the thrombus
appears in the ground truth and the slice range selected by two more experts
for comparison purposes.

3.2. 4-fold cross-validation

Being the number of the available annotated datasets limited, a 4-fold
cross-validation approach is employed to provide more robustness to our re-
sults. Each network is trained 4 times using, every time, a different (non-
overlapping) set of datasets resulting in 4 different trained models or network
instances. Then, each instance is tested against the remaining datasets that
were excluded from training in each fold. Hence, all the 13 datasets are used
for training, validating and testing the networks.

Table 1 and Table 2 summarize the number of 2D slices employed for each
of the 4 instances of the segmentation and detection networks, respectively.

Fold Training images Validation images Testing images
M0 1519 168 501
M1 1508 167 513
M2 1498 166 524
M3 1538 170 480

Table 1: Training, validation and testing data for the 4 segmentation network instances.

Fold Training images Validation images Testing images
M0 3323 359 1398
M1 3924 436 1044
M2 2815 386 1305
M3 3663 407 1182

Table 2: Training, validation and testing data for the 4 detection network instances.
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3.3. Thrombus region of interest detection
Thrombus detection is a difficult task because of its varying size, shape

and orientation. Traditionally, detection of objects with these characteris-
tics has been addressed by manually engineered low-level feature extractors.
However, these methods rely on handcrafted designs that do not learn from
the data itself and are vulnerable to erroneous assumptions and lack of gen-
eralization. Deep learning methods overcome these problems due to their
ability to learn more complex representations and data-driven model opti-
mization, achieving an outstanding performance. Thus, the thrombus region
detector proposed in this section is based on a trainable DCNN. The goal of
this model is to detect the presence or absence of the thrombus in every 2D
slice of a CTA volume and to determine a bounding box around it, then gen-
erating a continuous 3D region of interest appropriate for the segmentation.

As explained in Sec. 2, we have selected the DetectNet (Barker and Tao,
2016) neural network architecture for the thrombus detection task due to
its interesting characteristics in terms of efficiency and whole image context
consideration. DetectNet simultaneously accomplishes object classification
and bounding box estimation via regression. Unlike other region proposal
or sliding window based methods, this architecture enables the model to
analyze the entire image considering contextual information. Given an input
image, the network can predict bounding boxes around the target object, i.e.
the thrombus, with no need of extra processing. The network architecture
consists of three modules: data insertion, core network and loss functions. A
simplified scheme of the DetectNet architecture is shown in Figure 3.

Initially the input image is resized to 512x512 pixels and is divided into
regular squared grids with constant size, in our case set to 16x16 pixels,
which is the minimum size of the expected detected region. The purpose
of each grid is to learn the probability of the thrombus being present in
that cell. Each grid is labeled with a coverage value of 1 if it contains the
thrombus, including also its bounding box coordinates. After that, a fully
convolutional network performs feature extraction, as well as object bounding
box corner prediction per grid square. This sub-network structure is based
on the well-known GoogleNet (Szegedy et al., 2014) architecture, with the
modifications needed to convert it into fully convolutional. These adaptations
mainly involve discarding the fully connected and classification layers and
adding convolutional layers instead, as explained in detail in (Long et al.,
2015). The outputs of the network are the predicted bounding box corners
and the coverage values of the grid squares (1 if a thrombus is present in a
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Figure 3: Thrombus detection training network scheme.

certain cell and 0 if not). Before feeding the loss functions with these values,
a clustering is done. The detections are filtered based on grouping rectangles
with similar dimensions and locations. During training, two loss functions
are considered to form the final loss function. The first term of the loss
function computes the error of the object bounding box corners, that is, the
mean absolute difference between true and predicted corners of the bounding
boxes. The second term, measures the thrombus coverage error, computed
as the sum of squares of the differences between true and predicted coverage
of all cells in each training image. Both terms are linearly combined in the
following minimization loss:

F (c,P) = f(c) + f(P) =
1

2n

n∑
i=1

[|cgi − c
p
i |2 + [|P g

1i − P
p
1i|+ |P

g
2i − P

p
2i|]]

where n corresponds to the number of grid cells in each training image
and cgi and cpi to the ground truth and predicted cell coverage values, respec-
tively. P g

i1 and P g
i2 denote the ground truth bounding box opposite corners,

represented by their 2D x and y coordinates, and P p
i1 and P p

i2 the predicted
points with respect to each cell.

We have trained each detection network instance with a batch size of 10
images and ADAM optimization. We used an initial learning rate of 1e-06
and exponential learning rate decay with a gamma of 0.99. The original
network proposed data augmentation inside its architecture, but we did not
apply this as the augmentation did not show to improve the thrombus de-
tection performance. All parameters were trained from scratch.
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3.3.1. 3D region of interest reconstruction

The thrombus is a continuous structure, and thus, its presence must be
predicted in contiguous slices. From the output 2D bounding box candidates
provided by the network, the 3D region of interest is reconstructed using a
sliding window policy. From all the 2D candidates, we set the beginning of
the ROI when a group of 10 contiguous slice candidates are found. The region
of interest then expands until the first slice among a group of contiguous 10
slices where no bounding box candidate has been proposed. In this way,
we obtain a contiguous set of slices where the thrombus presence has been
detected. If more than one 3D ROI is found due to detection errors, the
largest is kept, which always correspond to the thrombus, and the initial and
final slice of the thrombus can be determined. The minimum and maximum
x and y coordinates of the 3D region of interest are set to the corresponding
values among all the 2D bounding boxes of the continuous slices and are
then expanded to incorporate additional contextual information, leaving the
thrombus somehow centered in the extracted sample. The x coordinate is
expanded by around 110 mm per border to include the kidneys and the y
coordinate is expanded by around 80 mm to include the spine. Finally, we
rescale the size of the obtained 3D volume to 256x256x(number of slices of
the ROI) to lessen the amount of memory needed during the segmentation
step.

3.4. Thrombus segmentation

A proper thrombus segmentation approach needs to deal with the differ-
entiation of the thrombus from adjacent structures by fine edge detection and
requires that a coherent appearance of the thrombus is kept, meaning that
the thrombus contour is smooth and does not present sharp edges. The first
part of this section gives a brief overview of previous related segmentation
networks that have served us as ground work to build up our solution in order
to accomplish these two objectives. The second part explains our proposed
network for fine thrombus segmentation. We have applied cross validation in
all our segmentation experiments, meaning that each network architecture is
trained and tested 4 times, each of them with a different training and testing
data subset. Thus, we create four network models for each architecture and
average the results. This approximation provides more robustness to our
approximation.
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3.4.1. Related networks

Fully Convolutional Networks

In 2015, researchers from UC Berkeley firstly introduced Fully Convolu-
tional Networks (FCN) (Long et al., 2015) for semantic segmentation by
adapting classifiers for dense prediction. Semantic segmentation requires a
compromise between the global information that resolves a coarse representa-
tion of the object to be segmented, and local, fine information. They showed
that these networks exceed the state-of-the-art in semantic segmentation,
taking an input of arbitrary size and producing a correspondingly-sized out-
put prediction. They also introduced the skip architecture, which combines
semantic information from a deep, coarse layer with appearance information
from a shallow, fine layer to produce accurate and detailed segmentations.
A skip-net architecture centers on a primary stream and skips or side con-
nections are added to incorporate feature responses from different scales in
a shared output layer. FCN networks with less skip connections provide
more global information, while connecting more detailed feature maps with
the output coarser map improves local contextualization. They presented
three FCN adaptations with varying number of skip connections. Simplified
schemes of these networks are shown in Figure 4. The networks are composed
of convolution/deconvolution, pooling, crop and fuse layers. Convolutional
and pooling layers subsample the input image by a certain factor or stride
value, reducing the image dimension to keep filters small and computational
requirements reasonable, producing coarser outputs. To add together these
varying-sized coarse outputs and to obtain the predictions upsampling is
needed, which is done in the deconvolution layers. Upsampling with a fac-
tor f is convolution with a fractional input stride of 1/f. Finally, outputs
of different layers must be fused, which requires alignment by scaling and
cropping. Two layers are brought into scale agreement by upsampling the
lower-resolution layer and cropping removes any portion of the upsampled
layer which extends beyond the other layer. To guarantee that the network
output can be aligned to the input for any input size without cropping rel-
evant image information, they introduce a padding of 100 pixels in the first
convolutional layer.

Holistically-nested Edge Detection network

Also in 2015, researchers from the UC San Diego presented an end-to-end
edge detection system, an architecture inspired by FCNs, but with additional
deep supervision (Xie and Tu, 2015). The network, known as Holistically-
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Figure 4: Simplified scheme of FCN networks.

Figure 5: Simplified scheme of the original HED network.

nested Edge Detection (HED) comprises a single-stream deep network with
multiple side outputs. In comparison to FCN networks, they connect skip
connections to the last convolutional layer in each stage, instead of after the
pooling. This reduces the need of large deconvolution filters, increasing the
resolution of the output prediction. They also remove the 5th pooling layer,
reduce the input padding and apply a deconvolution to each side connection
separately before cropping and fusing all the skip connection outputs at once.
A simplified scheme of this network is shown in Figure 5.

3.4.2. Proposed architecture for thrombus segmentation

Based on the aforementioned networks, we propose a novel network archi-
tecture that detects edges but preserves the shape and appearance informa-
tion of the thrombus. Our hypothesis relies on the knowledge that previous
solely edge-based and intensity-based segmentation approaches fail to isolate
the thrombus, due to the presence of adjacent structures with similar inten-
sity, with no apparent edge separating it from the thrombus. The inclusion of
a shape and appearance prior notably improved the results in the thrombus
segmentation problem. We want to exploit this knowledge by proposing an
architecture that combines different relevant scales: low scale for fine edge
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and border detection; and more global appearance and localization infor-
mation, obtained with a macro scale, that ensures the smooth contour of
the thrombus, which is located above the vertebrae, around the lumen and
between both kidneys.

To compare the proposed network performance with the FCN and HED
networks, we have started by adapting and fine tuning the 3 FCN networks
with different skips connections described in Sec. 3.4.1. We have reduced
the initial padding from 100 pixels to 35, accordingly increasing the stride
in the last deconvolution layer: a smaller padding demands a bigger stride,
which reduces the resolution of the output segmentation. However, in our
case it is necessary since otherwise the number of thrombus pixels compared
to the background would be hugely imbalanced. We have renamed the net-
works as FCN14, FCN26 and FCN46, in relation to the new stride value of
the last deconvolution layer. FCN14 has no skip connection, while, FCN26
and FCN46 have 1 and 2 skip connections, respectively. As expected from
previous experiments related to the topic, the FCN14 and FCN26 networks
fail to understand the global shape and appearance of the thrombus, while
FCN46 is unable to differ the thrombus from adjacent, touching structures
but preserves the global shape of the object and yields better results. The
FCN14 and FCN26 networks try to locate fine edges, but the long stride
limits the scale of detail in the upsampled output.

Secondly, the original HED network has been fine tuned to minimize a
softmax loss. The goal is to get more precision when detecting edges than
with the FCN networks, to better differentiate the thrombus from adjacent
structures. The feature side maps in the HED net are extracted from the
very beginning of the network and from the output of the last convolutional
layer in each stage, instead of after the pooling, which reduces the need of
large deconvolutions and increases the resolution of the output prediction.
After training, the responses of the output side feature maps before concate-
nation revealed that, indeed, the shallower connections provide very rich edge
information while the final maps are more coarse and fuzzy (see Figure 6).
However, these first richer maps fail to detect the thrombus borders, while re-
sponding strongly to vertebrae, lumen and kidney borders that appear more
contrasted. On the other hand, the deepest map seems to correctly locate
the thrombus area and has the highest influence after concatenation, as ex-
pected from the performance of FCN46, which lead us to propose this new
architecture.

The rationale for our new network architecture definition relies on the as-
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Figure 6: Output side feature maps from original HED network and our proposed archi-
tecture, from shallower on the left to deepest and fusing of the maps on the right.

sumption that a combination between fine edge detection to distinguish the
thrombus from adjacent structures (HED contribution) and global appear-
ance and shape information (FCN46 contribution) is required for a correct
segmentation. Hence, we have modified the original HED network by:

• Removing the first two output side connections, since their response
is higher for other structures whose borders are more contrasted than
for the thrombus edges. Deeper coarse fuzzy maps produce global in-
formation that is very valuable for thrombus segmentation, as seen in
FCN46

• Removing the initial padding to improve resolution

• Specifying a crop offset of 1 pixel to avoid removing important image
areas and to have a resultant centered image, which was not considered
in the original HED network (see Figure 6)

• Element wise fusing instead of concatenation to keep strongest activa-
tions

Among these modifications, the removal of the side connections and the
substitution of the concatenation for the element wise fusing have the most
relevant impact in the improved performance of the network. Figure 6 shows
feature maps at different scales for both the original HED and our proposed
network, as well as the final fusing of the maps using concatenation and
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element-wise fusing, respectively, which clearly depicts the improvements ob-
tained with our adaptations. Figure 7 presents the simplified scheme of our
proposed network architecture. This network is optimized to produce very
accurate thrombus segmentation with low computational and memory re-
quirements. A comparison among the probability maps obtained with FCN,
HED and our network architecture for an example image can be observed in
Figure 8.

Figure 7: Simplified scheme of the proposed modified HED network for thrombus segmen-
tation.

Figure 8: Probability maps obtained with FCN, HED and our network architecture for a
sample image.

As previously explained, we have applied cross-validation, meaning that
each network architecture is trained and tested 4 times, each of them with
a different training and testing data subset. Thus, we create four network
instances for each architecture and average the results to provide more ro-
bustness to our approximation. The parameters employed for training the
networks are summarized in Table 3. The function to be minimized in all
the segmentation networks is the multinomial logistic loss for a one-of-many
classification task, passing predictions through a softmax to get a probability
distribution over classes:

L =
1

N

N∑
i=1

−log(
efyi∑
j e

fj
),

19



where fj denotes the j -th element (j ∈ [1, k], k being the number of
classes) of the vector of class scores f, and N is the number of training data.
In all the cases we use a step-wise learning rate decay, with gamma equal
to 0.1, and we train during 100 epochs. The FCN networks are fine-tuned
from weights of the original FCN networks; the HED and our network are
fine-tuned from the weights from the original HED. Data preprocessing and
augmentation are not used in any case.

Net Optimizer LR Momentum
Weight
decay

Batch
size

Batch
accumulation

FCN14 SGD 1e-3 0.9 1e-05 2 2
FCN26 SGD 1e-3 0.9 1e-05 2 2
FCN46 SGD 1e-3 0.9 1e-05 2 2
HED SGD 1e-3 0.9 1e-05 4 -
OUR SGD 1e-3 0.9 1e-05 4 -

Table 3: Training parameters for the segmentation networks, where SGD refers to the
Stochastic Gradient Descent optimization method and LR to the Learning Rate.

3D binary mask generation

The outputs provided by the networks are 2D probability maps, where
each intensity value is the probability of that pixel being thrombus or not.
Thus, an automatic binarization of these maps is included as the last step.
First, we reconstruct a 3D prediction map volume and apply a Gaussian
filter in the z-direction. Doing so, we pretend to avoid sudden appearance
and disappearance of anatomical structures and to ensure a continuity in
the z-direction of our segmentation, improving the limitations of the 2D
approximation. We set the sigma value to σ = 2 ∗ Spacingz. Then, K-
means clustering of the 3D probability map is applied, where the number of
clusters is fixed to 6, experimentally. The output clustered image is binarized,
by removing the class with the lowest probability of being thrombus. A
subsequent connected component analysis is used to keep the largest object,
i.e. the thrombus.

3.5. 3D quantitative evaluation

A comparison between the automatically obtained 3D binary segmen-
tation masks and the manually delimited volume is necessary to evaluate
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the segmentation quality. For that purpose, we compute total overlap, Jac-
card coefficient, Dice coefficient, false negative rate (FN) and false positive
rate (FP) between the automatically segmented volume (source, S) and the
ground truth (target, T), as proposed in (Tustison and Gee, 2009).

Total overlap for thrombus region (r) : | Sr ∩ Tr | / | Tr |
Jaccard coefficient for thrombus region (r) : 2 | Sr ∩ Tr | / | Sr ∩ Tr |
Dice coefficient for thrombus region (r) : 2 | Sr∩Tr | /(| Sr | + | Tr |)
False negative error for thrombus region (r) : | Tr/Sr | / | Tr |
False positive error for thrombus region (r) : | Sr/Tr | / | Sr |

4. Experiments and results

4.1. Thrombus region of interest detection

The proposed thrombus region of interest detector, based on the Detect-
Net architecture, aims at detecting the presence or absence of the thrombus
in every 2D slice of a CTA volume and to determine a 2D bounding box
around it, generating a region of interest appropriate for the upcoming seg-
mentation. Hence, there are 2 objectives: 1) detect the initial and final slices
(Zmin and Zmax) where the thrombus is visible from the whole 3D volume,
and 2) determine a rectangular region around the thrombus in each 2D slice.

The determination of the initial and final slice where the thrombus ap-
pears is a complex task. From a clinical point of view, theoretically, when
the aortic wall expands more than 5 mm, then the presence of thrombus can
be assumed. However, in practice, the delineation of the region of interest is
done approximately by visual inspection, therefore inter- and intra-observer
variability exists. To test the processed results of the network regarding the
presence or absence of the thrombus in each slice of the CTA volume, we
have compared the automatically selected slice range with the span selected
by 3 different experts. The inter-observer variability is noticeable, where the
manually indicated initial and final thrombus slices may differ depending on
the observer’s judgment. Hence, the inter observer variability (IOV) is mea-
sured for the initial and last slices of the thrombus, as mean and standard
deviation of the selections of the three observers. Our interest relies on select-
ing a reduced region from the whole CTA that includes the thrombus, even
if it includes also some adjacent slices. Hence, we concentrate on minimizing
the false negative rate (FNR), defined as the ratio between the undetected
thrombus slices and the total thrombus slices considering the mean of all
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the expert observers. The mean FNR for all the datasets and networks is
0.085±0.108. The results are summarized in Table 4. The largest false neg-
ative rates of M1 and M3 are due to datasets with special characteristics:
one of them is a very large thrombus comparing to the mean size, which
also affects the segmentation as will later be explained; in the other one, the
thrombus expands to the iliac arteries, which the observers have considered
as part of the infrarenal thrombus, but the network discards it since this is
not considered in the training.

IOV initial slice IOV final slice FNR automatic detection
M0 3.6667±1.5275 1±1 0.0087±0.0103
M1 13±12.49 1.6667±1.1547 0.0833±0.0744
M2 24±5.1961 6.3333±2.887 0.0523±0.0454
M3 5±2.6458 9.3333±7.0556 0.194±0.1683

Table 4: Inter observer variability (IOV) when selecting the initial and final thrombus slices
and false negative rate (FNR) computed as the ratio between the undetected thrombus
slices and the total thrombus slices considering the mean of all the expert observers for
each instance.

Regarding the 2D bounding boxes delimiting the thrombus in each slice,
the minimum and maximum x and y coordinates of all the bounding boxes
are selected. We then expand this region to include wider contextual infor-
mation, which is necessary for a good segmentation. Thus, we always obtain
a 3D region of interest that correctly delimits the thrombus in x and y in all
the cases, for which some visual examples are presented in Figure 9.

Figure 9: Examples of some detected bounding boxes in the three datasets.
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4.2. Thrombus segmentation
Hereby, we present results of our novel network architecture that detects

edges but preserves the global appearance of the thrombus, inspired both
by FCN and HED networks. For comparison purposes and to confirm that
our proposed architecture indeed improved the final segmentation accuracy,
effectively benefiting from both FCN and HED network properties, we have
fine-tuned and tested each of these networks and compared the results with
our approach. As explained in the methods section, each of the architectures
is trained and tested with a 4-fold cross-validation approach, generating 4
instances per network architecture and the mean of the quantification results
is computed.

First, we have fine-tuned the FCN14, FCN26 and FCN46 networks as
explained in Sec. 3.

We have then tested the four network instances of these three FCN archi-
tectures with the set generated from previously unseen images of the remain-
ing three patients not used for the training in each cross-validation instance.
After running the post-processing algorithm to get the 3D binary segmenta-
tion, the quantitative comparison with the binary ground truths delimited
by our clinical expert is accomplished. Results are shown in Table 6, as
mean and standard deviation of all testing datasets for the 4 cross-validation
instances. As expected, the FCN46 network yields better results, since it
preserves the smooth shape of the thrombus, although it fails to differ it
from some adjacent structures, hence over segmenting it.

Secondly, the HED network and our proposed architecture have been
fine-tuned and compared, to prove that the changes applied to the HED net,
inspired by FCN46, indeed notably improved the segmentation of the throm-
bus. Table 5 compares the FCN networks with the HED and our proposed
network in terms of training and validation loss, training and testing time,
learned parameters and memory. The provided values refer to the means of
all the instances of each network architecture. With our approach, the num-
ber of learned model parameters (i.e. weights and biases) are reduced, the
training and validation losses decrease notably and the training and testing
times are also inferior compared to the other networks.

After testing both HED and our network, the 3D binary segmentation
masks are generated. A qualitative evaluation of 3 example dataset segmen-
tations obtained with the proposed network is shown in Figure 10.

Figure 11 presents example results in 2D for two different datasets (one
per row), where the outline of the ground truth and the automatically ob-
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Net
Training

loss
Validation

loss
Learned

parameters
Memory

(MB)
Training

time
Testing

time

FCN14 0,017 0,024 134.409,791 512 3h52 26 image/s
FCN26 0,009 0,016 134.486,882 513 3h50 26 image/s
FCN46 0.013 0,011 134.702,069 513 4h01 27 image/s
HED 0,010 0,018 14.717,541 56 4h34 29 image/s
OUR 0,004 0,009 14.717,322 56 2h39 35 image/s

Table 5: Comparison between original HED training and modified HED training.

tained segmentation is superimposed onto the original image for all the net-
work architectures.

Total overlap, Jaccard coefficient, Dice coefficient, FN and FP are com-
puted to evaluate the results of the automatic DCNN-based segmentation
against the ground truth segmentations. This quantitative evaluation is sum-
marized in Table 6 as the mean values and standard deviations of the four
instances created for each network architecture. Testing results show an
increase in the Dice coefficient of about 13.9 % with our architecture, com-
paring to the HED network performance. The false positive rate is reduced
almost by half the value of the HED network and we also improve the false
negative rate by 7 %. We have observed that the segmentation quality for
one dataset is notably inferior to the mean in all the network architectures
since it is always sub-segmented. For our proposed architecture, the total
overlap for this dataset is 61.8 %, which is much lower than the mean. The
thrombus represents an endotension case (i.e. unfavorable AAA case where
there is no visible leak but the thrombus size increases) and its mean di-
ameter is larger than the diameter of the other datasets. However, utilizing
low-scale features for edge detection that would not rely on the size of the
thrombus but on the limits between thrombus and surroundings does not im-
prove the segmentation results. Our hypothesis is that an endotension case
could present a different texture content comparing to other thrombi, and
thus the network may be unable to generalize for this dataset, but should be
further investigated. This is promising since it could set ground for a hidden
endoleak detector in the future.
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Net
Total

overlap
Jaccard Dice FN FP

FCN14 0.64±0.15 0.37±0.10 0.53±0.11 0.36±0.15 0.51±0.16
FCN26 0.54±0.12 0.35±0.08 0.51±0.09 0.46±0.12 0.47±0.15
FCN46 0.75±0.16 0.44±0.12 0.60±0.11 0.25±0.16 0.47±0.15
HED 0.83±0.08 0.56±0.10 0.72±0.09 0.17±0.08 0.36±0.13
OUR 0.84±0.11 0.70±0.10 0.82±0.07 0.16±0.11 0.18±0.08

Table 6: Segmentation results for FCN, HED and our proposed network architecture. Pro-
vided values correspond to the mean of all cross-validation instances of each architecture.

Figure 10: 3D Qualitative results of the obtained segmentation for three example datasets.
Ground truth are represented in green, while automatic segmentations are display in yel-
low.

5. Discussion and future work

We have proposed a DCNN-based fully automatic segmentation of the
abdominal aortic thrombus. From a complete post-operative CTA dataset,
our method first detects the thrombus region within the whole volume. We
have translated the computer vision DetectNet architecture to the medical
imaging domain and, to the best of our knowledge, this is the first work in
which object detection in medical imaging is done from the whole 2D slice,
instead of patch-wise. Thrombus segmentation is then achieved from the
previously localized region, reducing the amount of memory and computation
time needed to obtain an accurate segmentation. We have validated the
segmentation by comparing the 3D automatic segmentation with a ground
truth delimited by a clinical expert and we have provided a quantitative
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Figure 11: 2D qualitative results obtained with the different networks, where thrombus
contours are outlined for two different datasets, each in one row.

evaluation of the results.
As presented in Sec. 2, previous approaches to thrombus segmentation

required additional input both in the form of lumen segmentation and cen-
terline extraction, and user interaction to control the segmentation, setup the
necessary parameters or edit the obtained segmentation. Thus, the methods
were not automatic and robust enough for their usage in the clinical prac-
tice, and much slower than our approach. In addition, some of the previous
methods relied on a certain thrombus shape prior to control the segmentation
process, which is difficult to model due to the inherent irregular structure of
the thrombus surface. Our method is fully automatic, does not require nei-
ther user interaction in any of the steps nor a priori knowledge of the shape
of the thrombus.
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The obtained results exceed thrombus state-of-the-art segmentation, be-
ing the mean total overlap and Dice score between the segmentation and
the ground truth around 84% and 82%, respectively. Training and testing
datasets are CTA volumes obtained with different scanner manufacturers
and models, all of them extracted from a real clinical environment. The
patient is always located in supine position and CTA starts around the di-
aphragm and expands to the iliac crest. The presence of stent metal artifacts
is limited and the noise is variable, but always low. The employed datasets
have also a varying spatial resolution, which confirms the robustness of the
method although a larger number of datasets, some of them rotated, should
be tested in the future. We have included a cross-validation approximation,
creating 4 network instances per architecture that are trained and tested
with a different data subset to improve robustness. Then, the 3D binary seg-
mentation is extracted from the slice-by-slice prediction maps with a naive
K-means processing approach. The ground truth for the datasets has been
delineated manually by our clinical expert. To evaluate the benefit of the
network in terms of time consumption, 3 datasets were segmented manually
slice by slice, which took our expert about three hours. With our approach, a
dataset segmentation can be obtained approximately in a minute, including
the binary mask segmentation step.

During our experiments, we have proved that combining features from
the edge detection neural network with network architectures that extract
more global appearance information notably improves the segmentation of
anatomical structures such as the thrombus. The proposed architecture com-
bines global characteristics as in FCN46 network, where there was no skip
connection, with the local and fine edge segmentation approach proposed by
the HED network. Connecting the output of the convolutional layers instead
of the pooling layer as proposed in HED improves the resolution of the seg-
mentation, since large deconvolutions are avoided. By removing the initial
skip connections in the HED network we have been able to better preserve
the thrombus shape while distinguishing between the thrombus and adja-
cent structures of similar intensity. The proposed architecture is faster than
both FCN and HED networks, requires less memory, less parameters and the
training, validation and testing accuracy are higher. We have trained and
tested the networks in 2D slice-by-slice, which reduces the need of a large
number of 3D datasets and provided us with the ability of utilizing pretrained
networks.

To evaluate the clinical applicability of the obtained segmentation results
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for disease progression and rupture risk assessment during follow up, we
have computed the relative volume difference between the segmentations ob-
tained with our proposed architecture and the corresponding ground truths.
Intra-observer and inter-observer variability for volume measurements from
semi-automatically segmented aneurysms can go up to 5% (Chaikof et al.,
2002; Parr et al., 2011; Van Prehn et al., 2008). From a clinical perspective,
our pipeline produces significant volume differences between the ground truth
and the automatic segmentation, being the mean volume difference of 11.6%.
Three out of 13 datasets show very large discrepancies between the volume
of the automatic segmentation and the ground truth’s volume: the first one
presents a very large thrombus compared to the others, as previously men-
tioned, and is notably subsegmented; another dataset has a thrombus that
expands to the iliac artery, and since the network was not trained sufficiently
for these cases that area is not correctly segmented, again showing a large
relative volume difference as compared to the ground truth; the last dataset
corresponds to the dataset with the smallest thrombus, for which a mini-
mal segmentation error has a larger effect in the quantified volume. If these
three datasets are removed, a mean volume difference of 4.11% is obtained,
which lays below the maximum variability of human observers. Due to the
large variability of the data employed in this work and considering that we
did not discard patients with outlying characteristics, we consider that the
results can be extrapolated to future cases, since we assume that by training
the networks with more datasets with these characteristics the mean relative
volume difference would lay within the experienced human observer variance
without the need of human intervention.

As compared to the literature, only two studies that evaluate the relative
volume difference have been found. In (Freiman et al., 2010) an automatic
thrombus segmentation approach, based on a previous lumen segmentation
and tested with 8 CTAs, achieved relative volume differences of 8% with
a mean volumetric overlap error of around 13%. Another study presented
in (Zohios et al., 2012) reports volume differences of 4% and a total over-
lap error of 6%, but segmenting the thrombus semi-automatically. Thus,
our results are comparable to the state of the art percentages but with a
fully-automatic segmentation approach that does not require any additional
input apart from the CTA itself and that is evaluated against more datasets
with different characteristics. In relation to the applicability of the proposed
pipeline for disease evolution assessment during follow-up, the results still
need to be refined. EVAR reporting standards (Chaikof et al., 2002) state
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that an increase in the aneurysm volume of 5% is considered clinically rele-
vant and a clinical failure after EVAR. With our approach, over-segmentation
and sub-segmentation occur equally, and thus, even if the calculated mean
relative volume difference lays within the expert’s inter-observer rate, it can-
not be directly translated to the clinical practice. For that purpose, the
network should always over-segment or sub-segment the thrombus, so that
following always the same pattern a comparison between two time points
would be feasible, but no study has been found in literature that deals with
this problem. In spite of that, we provide the clinician with a good initial
approximation that could be further refined manually in a notably inferior
time as doing it manually from the beginning, which is the major problem
for which volume based evolution assessment is still not performed in the
clinical practice.

Regarding future work, we aim at reducing the volume difference be-
tween ground truth and automatically segmented thrombus, by adapting
our method to that purpose and analyzing the volume quantification results
with more data. Additionally, a network trained not only with postopera-
tive datasets but also with preoperative data is being investigated. Besides,
multiclass segmentation for simultaneous lumen and thrombus extraction is
an interesting line of research. Lumen segmentation in the post-operative
scenario is challenging due to contrast inhomogeneity and appearance of ar-
tifacts due to the presence of the stent-graft. DCNN-based lumen segmen-
tation could solve some of the issues traditional intensity-based approaches
present.
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