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Background: Most respiratory viruses show pronounced seasonality, but for

SARS-CoV-2, this still needs to be documented.

Methods: We examined the disease progression of COVID-19 in 6,914 patients

admitted to hospitals in Europe and China. In addition, we evaluated progress of

disease symptoms in 37,187 individuals reporting symptoms into the COVID Symptom

Study application.
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Findings: Meta-analysis of themortality risk in seven European hospitals estimated odds

ratios per 1-day increase in the admission date to be 0.981 (0.973–0.988, p < 0.001)

and per increase in ambient temperature of 1◦C to be 0.854 (0.773–0.944, p = 0.007).

Statistically significant decreases of comparable magnitude in median hospital stay,

probability of transfer to the intensive care unit, and need for mechanical ventilation

were also observed in most, but not all hospitals. The analysis of individually reported

symptoms of 37,187 individuals in the UK also showed the decrease in symptom duration

and disease severity with time.

Interpretation: Severity of COVID-19 in Europe decreased significantly between March

and May and the seasonality of COVID-19 is the most likely explanation.

Keywords: COVID-19, seasonality, mortality, mucins, humidity

BACKGROUND

Over a million COVID-19-related deaths have been reported
until October 1, 2020, but a significant number of people (over
80% in some populations) infected with SARS-CoV-2 manage
to contain infection in their upper respiratory tract and, despite
being PCR positive for the viral RNA, do not develop any visible
symptoms (1). So far, very little attention has been given to the
effects of environmental conditions on the individual course of
the diseases.

The first study of the environmental effects on the COVID-19
infection rate in 30 Chinese provinces found significant negative
associations with temperature and relative humidity in Hubei
province with the decrease of cases by 36–57% for every 1◦C
and 11–22% for every 1% increase in relative humidity; these
associations were inconsistent in other provinces (2). Negative
effects on COVID-19 transmission with warmer temperatures
were also observed in Turkey (3), Mexico (4), Brazil (5), and
United States (6), while similar association with humidity was
reported in Australia, but with temperature having no effect
on the virus transmission (7). The study from Brazil observed
flattening of the temperature effect on the virus transmission
at 25.8◦C, thus suggesting that warmer weather will not cause
the transmission decline, which is in accordance with the
studies from Iran and Spain where they observed no changes in
transmission rates under different temperatures and humidity (8,
9). These studies are inconsistent and do not give clear evidence
as to whether there is an association between the temperature,
humidity, and virus transmission, and the global view seems to
give a clearer conclusion; all the three studies that conducted
analysis at the global level found an association between higher
humidity, warmer temperatures, and lower transmission rate
(10). However, climate-dependent epidemic modeling suggested
that the absence of population immunity is a much stronger
factor in viral transmission and that summer weather will not
substantially limit the spread of the COVID-19 pandemic (11).
This is consistent with high numbers of infected individuals in
tropical countries and the increase of cases in the south of the
United States in the second half of June 2020.

Recent studies report increasing numbers of SARS-Cov-2
positive asymptomatic individuals (1), but it is not clear whether

the apparent increase in people with mild or no symptoms
is due to the change in the extent of testing, or some other
characteristic of the SARS-CoV-2 virus. Aiming to evaluate
the association of humidity and ambient temperature with the
severity of the COVID-19 disease, we analyzed individual-
patient data for 6,914 patients with COVID-19 admitted to
hospitals in Bergamo, Italy; Barcelona, Spain; Coburg, Germany;
Helsinki, Finland; Milan, Italy; Nottingham, United Kingdom;
Warsaw, Poland; Zagreb, Croatia; and Zhejiang province, China
since the beginning of the pandemic and compared it to
environmental temperature and calculated indoor humidity.
Furthermore, we analyzed information about COVID-19 severity
from the COVID Symptom Study application that is collecting
information of 37,187 individuals in the UK.

METHODS

Studied Cohorts
We collected information about hospital admission, discharge
dates, admission to the intensive care unit (ICU), need for
mechanical ventilation, and type of discharge (alive or dead)
for 5,229 successive patients hospitalized for COVID-19 in
six European Hospitals and 13 hospitals in Zhejiang province,
China since the beginning of the pandemic (Table 1). We
included patients with confirmed diagnosis of COVID-19 at the
time of admission. We confirmed that patients had a positive
result on polymerase chain reaction testing of a nasopharyngeal
sample and/or a clinically/radiologically diagnosis of COVID-19.
Patients were not followed after discharge, but COVID-19 related
early readmissions were considered as part of the COVID-19
course. The study protocol conformed to the ethical guidelines
of the 1975 Declaration of Helsinki. In Zhejiang hospitals,
ASST Papa Giovanni XXIII Hospital in Bergamo, Hospital del
Mar in Barcelona and Helsinki University Hospital local ethics
committees approved this retrospective study of COVID-19
patient data. For REGIOMED Hospital in Coburg, the Ethics
Committee of the Bavarian state physician’s association approved
the study. In NottinghamUniversity Hospital’s trust, ASST GOM
Niguarda, Warsaw, and Zagreb, this information was released as
public statistical information.
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TABLE 1 | Basic information about included patients.

Cohort

name

Hospital name Total number

of patients

Included in

the study

Sex

(f/m)

Age

(median, range)

Barcelona Hospital del Mar 1,999 1,786 969/817 57 (17–101)

Bergamo ASST Papa Giovanni XXIII Hospital 2,249 995 265/730 70 (6–95)

Coburg REGIOMED 89 89 48/41 75 (18–98)

Helsinki 100 100 44/56 54.5 (16–84)

Milan Asst GOM Niguarda 713 685 242/443 63 (0–96)

Nottingham Nottingham University Hospitals 795 795 356/439 75 (0–102)

Warsaw Central Clinical Hospital of Ministry of the Interior and Administration 122 122 45/77 69 (19–96)

Zagreb Clinical Hospital Dubrava & University Hospital for Infectious Diseases 237 237 93/144 63 (22–99)

Zhejiang 610 608 297/311 49 (18–93)

COVID Symptom Study Application
The COVID Symptom Study app (12) developed by Zoe with
scientific input from researchers and clinicians at King’s College
London and Massachusetts General Hospital (https://covid.
joinzoe.com/) was launched in the UK onMarch 24, 2020 and, in
3 months, reached more than 3.9 million subscribers. It enables
capture of self-reported information related to COVID-19
infections, as reported previously (12). Importantly, participants
enrolled in ongoing epidemiologic studies, clinical cohorts, or
clinical trials can provide informed consent to link data collected
through the app in a HIPAA and GDPR-compliant manner with
extant study data they have previously provided or may provide
in the future. The Ethics for the app has been approved by King’s
College London Ethics Committee (REMAS ID 18210, review
reference LRS-19/20-18210) and all users provided consent for
non-commercial use. For this work, we included participants
from the United Kingdom who started reporting with a healthy
status and subsequently developed symptoms leading to suspect
COVID-19 following the disease score presented in Menni et al.
(12). In order to get an estimate of disease duration, the time for
disease end corresponded to either the last day of report before
stopping using the app, or the first healthy day when followed
by six consecutive days of healthy reporting. To avoid censoring,
only participants with a disease duration of <30 days and with
a disease onset occurring before May 17 were included in the
analysis (37,187 individuals). Severity score was calculated as a
weighted average of symptoms at disease peak using as weight the
normalized ratio in symptom frequency at disease peak between
people reporting hospital visit after disease onset and those that
did not.

Data Related to Seasonal Changes
Ambient temperature data were obtained from the Climate
Data Online [National Centers for Environmental Information
(NCEI) database]: https://www.ncdc.noaa.gov/cdo-web/.

Statistical Methods
The data collated from seven cohorts are summarized in Table 1.
Patients without information about outcome were excluded from
the analysis. Logistic regression was used to estimate the effect
of admission date and local ambient temperature on mortality

change. The following patient characteristics and hospitalization
episode co-variates were explored: Died/discharged outcome
was used as dependent variable and admission as independent
variable along with age (in years) and gender (female/male).
We then used the same approach for estimating the effect of
ambient temperature on need for admission to ICU and for
mechanical ventilation therapy. A linear model was then used
to estimate the effect of ambient temperature on the hospital
stay length (in days) as dependent variable and admission date
as independent variable along with age and gender. Prior to
the analysis, data transformation was undertaken with hospital
length of stay increased by 1 (due to zeros) and log10 transformed
(zero days in hospital stay correspond to hospitalization with a
length lower than 24 h). Linear regression using median duration
as dependent variable and 2-week period as independent variable
was fitted to assess change over time.

For each dependent variable, raw data were presented with
bar plots (death, ICU, and mechanical ventilation) or box-
and-whiskers plots (hospital length of stay) for patients in 2-
week groups. Fill of bars and boxes reflects the number of
patients admitted to the hospital in a particular 2-week group.
With groups of less than five patients, individual data points
were plotted.

Coefficients estimated in logistic regressions and linear
regression were combined using an inverse variance-
weighted meta-analysis methods where, given the
heterogeneity of cohorts, random effects models were used
(R package “metaphor”).

Results of the meta-analysis were presented as forest plots,
created using R package “ggplot2.” All statistical analyses were
performed in R programming software (version 3.6.3), with the
exception of logistic and linear regressions on Milano cohort
data, which are performed in Stata Statistical Software (version
12) and the COVID Symptom Study cohort for which linear
regression was performed using python statsmodels package
(version 0.11.1).

RESULTS

Aiming to evaluate the seasonal nature of COVID-19, we
evaluated disease course in 6,914 individuals from nine cohorts
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admitted to hospitals in Europe and China (Table 1). To avoid
sampling bias, all hospitalizations that resulted in either death or
medical discharge were included in the analysis. Actual numbers
of patients who died and patients who recovered (grouped in
2-week intervals) since the beginning of the epidemic until the
final follow-up date for reliable data capture reporting final
outcome was available are presented in Figure 1A for each of
the hospitals. Meta-analysis of the effect of admission date on the
mortality is presented in Figure 1B. The most significant change
was observed in Barcelona, where mortality odds decreased by
4.1% per day (p< 0.001). Weighted average decrease in mortality
odds across all studied hospitals was 1.9% per day (p < 0.001).
Our model included age as a co-variate, so this change is unlikely
to be accounted for by change in age of patients. To further
confirm that age was not underlying the observed changes, we
analyzed age of patients admitted to hospitals in different periods
and demonstrated that change in the age of patients was not
a factor that could explain the observed decrease in mortality
(Supplementary Figure 1).

Since there is no standard measure or classification of
COVID-19 severity used across all hospitals, to further
evaluate disease severity, we analyzed secondary outcomes.
We compared the duration of hospitalization, need for ICU
and separately mechanical ventilation. Strong and statistically
significant decrease in the duration of hospitalization was
observed in Barcelona, Coburg, Milano, Nottingham, and
Zagreb. In Helsinki, Warsaw, and Zhejiang, the change was
in the same direction but was not statistically significant.
The only outlier was Bergamo, where the change was in
the opposite direction, but the change was not statistically
significant (Supplementary Figure 2). In meta-analysis, the
decrease in lengths of hospitalization was statistically significant
(10b = 0.995; CI = 0.991–0.998; p = 0.007). The odds to
need of intensive care decreased in all hospitals in Europe and
was individually statistically significant in all hospitals beside
Bergamo, Helsinki, and Zagreb (Supplementary Figure 3).
Meta-analysis of European hospitals estimated that the odds to
need the intensive care decreased by 2.2% per day of change in
the admission date (OR = 0.978; CI = 0.962–0.993; p = 0.008)
and the odds to need mechanical ventilation decreased 2.1%
(OR = 0.979; CI = 0.964–0.994; p = 0.008) per day of change
in the admission date (Supplementary Figure 4).

While all hospitals in Europe were basically displaying the
same trend of decreasing COVID-19 severity with time, in
Zhejiang hospitals, there was either no change, or the changes
trended non-significantly in opposite direction to European
centers. The most notable difference between the COVID-19
pandemic in Europe and in China was that while the epidemic
was entirely during winter in China, it covered both winter and
spring periods in Europe. To evaluate whether weather was an
important factor, we correlated the observed changes with local
ambient temperature. Minimal and maximal local temperatures
for all hospitals are presented in Supplementary Figure 5.
To evaluate whether the change in temperature may have
been responsible for the observed changes in disease severity,
we modeled mortality with ambient temperature instead of
admission date. The results presented in Figure 2 suggest a strong

effect of ambient temperature on the mortality risk (OR = 0.854
per 1◦C; CI= 0.773–0.944; p= 0.007).

To further verify the change of COVID-19 with time, we
analyzed individual symptom data for 37,187 participants of the
COVID Symptom study app. Although there is also a sampling
bias in that study, it is different from bias in hospitalization, so
it was reassuring to observe a gradual decrease in duration of
symptoms and COVID-19 severity in April and May (Figure 3).
An assessment of the slope of duration as a function of
time (2 ISO week) showed a significant decrease in duration
(B = −0.7 p = 0.006). Regarding severity, while not overall
significant (−0.0014 p = 0.836), the trend toward a decrease was
stronger when considering the latest period (point 1 to the end
slope=−0.0112 p= 0.116).

DISCUSSION

By analyzing hospital records of 6,914 patients admitted to
eight European hospitals, we observed a strong and statistically
significant decrease in COVID-19 mortality and severity with
time. Possible change in the average age of patients in different
stages of the pandemic is the first obvious explanation for the
decreased severity, since age is the strongest predictor of COVID-
19 severity [with up to 100-fold difference in mortality risk (13)].
However, age was included in our model as a co-variate and
furthermore the average age of patients did not change with
time (Supplementary Figure 2), so we excluded this hypothesis.
An alternative explanation could be that there was change in
policies for admission and/or release of COVID-19 patients
during the evaluated period—possibly due to “overwhelming”
medical facilities. This might have been particularly relevant in
the situation of limited hospital capacity, when hospitalization
may have been preceded with a triage process to identify patients
who might benefit from hospitalization, admission to ICU or
mechanical ventilation. However, the only hospital in our cohort
that reached full capacity was Bergamo, while all others operated
well below the maximal capacity for either hospitalization, or
ICU, which suggests that changes in hospital admission policy
were not a major driver behind the observed change in COVID-
19 mortality and severity. This conclusion is further supported
by concurrent decrease in duration and severity of symptoms of
non-hospitalized individuals reporting symptoms in the COVID-
Symptom Study Application (Figure 3). Change in COVID-19
management, also, could have resulted in decreased severity.
However, all these changes were hospital-specific, and in the
analyzed period, the most effective improvement in therapy
was the introduction of dexamethasone, which was reported to
reduce mortality from 24.6 to 21.6% (14). As we are learning
more about COVID-19, patients are receiving better and better
treatment, but the progress so far was not too large, which is
particularly evident from the increased mortality in the second
wave in Australia [case fatality rate (CFR) was 0.5% in the first
wave (15) and 3.1% in the second wave (16)]. Therefore, it is
hard to imagine that minor modifications in patient management
could have significantly contributed to the observed decrease in
disease mortality and severity in Europe.
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FIGURE 1 | Mortality in people admitted in hospitals with COVID-19. (A) Hospitalization outcome (death/discharge) depending on the admission date (grouped in

2-week intervals) since the beginning of the pandemic. (B) Meta-analysis of the effects of admission date on mortality (presented as odds ratios per 1-day increase in

admission date). In Helsinki, there were only two deaths, and in Zhejiang hospitals, four deaths, so they were not included in the meta-analysis. OR, odds ratio; CI,

confidence interval.
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FIGURE 2 | Meta-analysis of the effects of temperature on mortality (presented as odds ratios per 1◦C increase in average daily temperature during hospitalization). In

Helsinki, there were only two deaths, and in Zhejiang hospitals, four deaths, so they were not included in the meta-analysis. OR, odds ratio; CI, confidence interval.

FIGURE 3 | Data from 37,187 individuals/suspected COVID positives (I+) recording symptoms in the COVID Symptom Study application in the United Kingdom

suggest that both severity (measured as weighted sum of symptoms accounting for difference at disease peak between those reporting hospital visit and those who

do not) and duration of disease symptoms slightly decrease in the United Kingdom (median values and interquartile ranges are shown). Imputed status defined as per

the application of the predictive model described by Menni et al. (12) was chosen over definite PCR diagnostic in order to avoid confounding factor of test access

policy changes.

After excluding these three causes for a Europe-wide decrease
in disease severity and mortality in the period from March
to June, the change in season surfaced as the most probable
explanation since in all studied locations ambient temperature
increased considerably in that period (Supplementary Figure 5).
Exchanging hospital admission date with local temperature
(Figure 2) showed that temperature strongly correlated with

decrease in COVID-19 mortality. Since reverse causation is not
possible, it is reasonable to conclude that COVID-19 as a disease
has a strong seasonal nature. Despite the fact that most human
coronaviruses are highly seasonal (17), the seasonal nature of
COVID-19 is frequently challenged with the fact that numerous
cases have been reported in tropical countries and that virus
evidently can also be efficiently transmitted in hot and humid
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climates. However, in all these countries, the disease mortality
and severity are very low (e.g., Singapore reported 26 deaths
and over 44,000 confirmed infections), which actually suggests
that there may be seasonal or climate-related differences in
severity of COVID-19. It is possible that the same is the case
for other respiratory viruses that show strong seasonality, but
asymptomatic people are generally not tested for the presence of
viral RNA in the nose; thus, viral transmission, outside of their
season, was not observed. The notable exception that confirms
this hypothesis was the 2009 swine flu pandemic in England when
numerous PCR tests were also performed in the summer. These
tests revealed infection in over 250,000 people in the summer
wave, but with much lower mortality than in the wither wave
(18). The large increase in the number of people with positive
SARS-CoV-2 PCR tests in Europe in late summer and early
autumn 2020 is not accompanied by the corresponding increase
in deaths. The increase in number of cases and change in the
age distribution of patients (19) have been suggested as possible
explanation for the missing deaths. However, in Australia, which
has reverse seasons, the situation was the opposite, and the
mortality was much higher in the second (winter) wave of the
pandemic. Despite increased testing and global increase in the
knowledge on how to treat patients, CFR in the second (winter)
wave was six times higher than in the first (summer) wave
[“winter” CFR was 3.1% (16) compared to “summer” CFR, which
was only 0.5% (15)].

It is very difficult to prove causality in an observational study,
particularly when many correlated factors are changed in the
same time, but the observed decrease in COVID-19 severity with
the end of winter fits very well with the known effects of outside
temperature on indoor humidity and consequential restoration
of mucosal barrier function, which is often impaired by dry air
during the heating season (20). Most respiratory viruses peak
in winter and fluctuation of temperature and humidity has been
proposed as the most potent drivers of seasonality, especially in
the context of the epidemic in the winter season (17). However,
the peak of infection and the severity of the disease are not
always fully aligned. For example, although infection rates of
rhinoviruses peak in spring and fall, the disease severity increases
in winter (21). Seasonal appearance of respiratory viruses is often
attributed to seasonal indoor crowding and effects of temperature
and humidity on stability of viral particles (22), with effect of low
air humidity on the mucosal barrier often neglected.

While often considered to be a physical barrier, mucus is
actually an active biological barrier that crosslinks viruses and
bacteria to mucins, a group of highly glycosylated proteins
that are secreted to our mucosal barriers where they self-
assemble into long polymers (23). Mucin glycans mimic cell
surface glycosylation and, by acting as a decoy for viral lectins,
trap viral particles, which are then transported out of airways
by mucociliary clearance (24). Furthermore, since all envelope
viruses are highly glycosylated, a number of lectins like trefoil
factors (TFF) are secreted to mucous where they crosslink viruses
by binding to glycans on both viruses and mucins (25). However,
this barrier is functional only if it is well hydrated to both
maintain its structural integrity and enable constant flow of

mucus that remove viruses and other pathogens from our airways
(24). If exposed to dry air, these barriers dry out and cannot
perform their protective functions (26).

Animal experiments demonstrated the importance of
humidity for both transfection of respiratory viruses and
disease severity (27–29), while population-level studies in the
United States indicated the importance of humidity for influenza
transmission (30). One of these studies demonstrated that
increasing relative humidity from 20 to 50% can significantly
decrease mortality from influenza infections (29). In another
study, humidification of air in obstructive sleep apnea patients
reduced nasal symptoms by 60% (31), which all suggest
that protective effects of humidity on mucosal barrier may
be a dominant molecular mechanism behind seasonality of
respiratory viruses.

A large part of human inter-individual differences are glycan-
based and glycan diversity represent one of the main defenses of
all higher organisms against pathogens (32). Glycans (which are
covalently attached to most proteins) are chemical structures that
are being inherited as complex traits, which enables diversity and
significant inter-individual differences (33). SARS-CoV-2 spike
glycoprotein is heavily glycosylated (34), and it was reported to
bind to glycosaminoglycans (35) and sialylated glycans (36). ABO
blood antigens are also glycans and are probably the best known
example of glycan diversity; interestingly, people with blood type
A and, thus, having one N-acetylgalactosamine more than type
O are more susceptible to COVID-19 (37). All these suggest
that, like most other viruses, SARS-CoV-2 is also dependent on
glycans for transmission, which further support the importance
of mucins and functional mucosal barrier in COVID-19.

Mucociliary dysfunction and respiratory barrier impairment
promotes both initial infection and expansion of viruses within
the airways of an infected individual (29). Dry air inhalation
significantly decreases nasal mucociliary transition time (NMTT)
in heathy individuals (38), affecting the duration of viral exposure
on nasal mucosa. Nasal epithelial cells are the main portal for the
initial infection and transmission of SARS-CoV-2 (39). Patients
who developed clinically relevant infection after experimental
transnasal viral challenge (Rhinovirus or Infl. B) had reduced
epithelial barrier function (increased transepithelial resistance,
reduced number of ciliated cells, and increased NMTT compared
to those who were not infected or had a mild form) (40).
However, experimental viral infection in vitro resulted only
in decreased number of ciliated cells, without affecting tight
junction protein expression (41). This controversy between
in vivo and in vitro experiments suggests the importance of
immune response in the control of epithelial barrier function
(42). Recent studies on the interaction between climate changes
and respiratory barrier dysfunction indicated not only higher
incidence of viral infection but also higher vulnerability of
nasal mucosa through increased incidence of nosebleed in the
emergency departments in the conditions of low temperature
and low humidity (43). A recently published study that exposed
volunteers to respiratory syncytial virus (RSV), one of the
pathogens responsible for the common cold, demonstrated that
pre-existing inflammation in the respiratory mucosa was a risk
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factor for infection (44), which further supports the importance
of mucociliary dysfunction and respiratory barrier impairment
for infection with respiratory viruses.

LIMITATIONS

Potential sampling bias is the main limitation of this study.
By focusing on individual progression of the disease in already
hospitalized patients, we excluded effects of the unknown
number of true infections on national mortality rates, and we
still cannot exclude the possibility that some other unidentified
external factors (including confinement and social distancing,
improvement and compliance of prevention and environmental
hygiene protocols, and even decreased air pollution, which
could have progressively affected the severity of patients arriving
to the hospital) were affecting composition of hospitalized
patient cohorts and contributing to the decreased COVID-19
severity and mortality. Therefore, it is important that tracking
of individual symptoms in 37,187 UK patients are showing the
same trend, since these are individuals voluntarily reporting
symptoms and potential sampling bias that is independent
from bias in hospitalization. The choice to include imputed
positives was mostly motivated by the restriction in testing
access that were observed over the first wave before being
relaxed in May and June. Accounting only for PCR-tested
positive reporting to the app would have unduly biased the
results toward higher severity in the early days. We adopted
instead the model developed by Menni et al. (12) that achieved
a reasonable performance in prediction of positive cases
(ROC-AUC 76%).

CONCLUSIONS

Our data suggest that, in addition to affecting viral transmission,
environmental factors also play an important role in already
infected patients. Severity of COVID-19 decreased with the
onset of spring, which paints a grim picture for the incoming
winter and suggests that both disease severity and mortality may
increase significantly. Since many hospitals have very dry air in
winter, providing humidified air to patients in early stages of the
disease may be beneficial. Considering the evident detrimental
effect of dry air on our mucosal barrier and its role as the first
line of defense against infection (45), in the situation of the
rapidly progressing COVID-19 pandemic, it would be essential to
actively promote universal humidification of dry air in all public
and private heated spaces as well as active nasal hygiene and
hydration (46). Humidity should also be monitored in cooled
buildings with limited access to outside air, since air-conditioning
is also an effective dehumidification and can result in very
dry air.
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