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Synchrony-induced modes of oscillation of a neural field model
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We investigate the modes of oscillation of heterogeneous ring networks of quadratic integrate-and-fire (QIF)
neurons with nonlocal, space-dependent coupling. Perturbations of the equilibrium state with a particular wave
number produce transient standing waves with a specific temporal frequency, analogously to those in a tense
string. In the neuronal network, the equilibrium corresponds to a spatially homogeneous, asynchronous state.
Perturbations of this state excite the network’s oscillatory modes, which reflect the interplay of episodes of
synchronous spiking with the excitatory-inhibitory spatial interactions. In the thermodynamic limit, an exact
low-dimensional neural field model describing the macroscopic dynamics of the network is derived. This allows
us to obtain formulas for the Turing eigenvalues of the spatially homogeneous state and hence to obtain its stability
boundary. We find that the frequency of each Turing mode depends on the corresponding Fourier coefficient of
the synaptic pattern of connectivity. The decay rate instead is identical for all oscillation modes as a consequence
of the heterogeneity-induced desynchronization of the neurons. Finally, we numerically compute the spectrum
of spatially inhomogeneous solutions branching from the Turing bifurcation, showing that similar oscillatory
modes operate in neural bump states and are maintained away from onset.
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I. INTRODUCTION

Since the pioneering work of Wilson-Cowan [1], Amari
[2,3], and Nunez [4], continuum descriptions of neuronal
activity have become a powerful modeling tool in neuroscience
[5–10]. Given that the number of neurons in a small region
of cortex is very large, these descriptions consider neurons
to be distributed along a continuous spatial variable and the
macroscopic state of the network to be described by a single,
space-dependent, firing rate variable. The resulting neural
field model (NFM) generally has the form of a continuous
first-order integrodifferential equation, greatly facilitating the
computational and mathematical analysis of the dynamics of
large neuronal networks.

NFMs do not generally represent proper mathematical re-
ductions of the mean activity of a network of spiking neurons.
Nevertheless, NFMs have proven to be remarkably accurate in
qualitatively capturing the main types of dynamical states seen
in networks of large numbers of asynchronous spiking neurons.
For example, it is well known that, in local networks of
spiking neurons, differences between excitatory and inhibitory
neurons can lead to oscillations [11–13]. The generation of
these oscillations does not depend on the spatial character
of the network and hence can be observed in nonspatially
dependent firing rate models [12]. When the pattern of synaptic
connectivity depends on the distance between neurons, NFMs
show that these differences between excitation and inhibition
can lead to the emergence of oscillations and waves [3,14].
Similar patterns can also be found in NFMs with spatially
dependent delays—modeling the effect of the finite velocity
propagation of action potentials [1,15]—as a great deal of
theoretical work indicates, see e.g., Refs. [16–23].

In some cases the spatiotemporal dynamics of NFMs has
been directly compared to that observed in analogous networks
of spiking neurons [24–26]. In this work it was found that

non-space-dependent delays predict the existence of many
of the spatiotemporal patterns observed in asynchronous
networks of spiking neurons with nonlocal, space-dependent
interactions. The success of NFMs in describing these patterns
depends crucially on the spiking activity being highly asyn-
chronous. In fact, it is well known that neural field descriptions
fail to describe states characterized by a high degree of spike
synchronization, see, e.g., Ref. [27].

Here we report a spatiotemporal dynamical feature of
heterogeneous networks of spiking neurons with nonlocal
interactions that, to the best of our knowledge, have been
so far unexplored. We show that ring networks of spiking
neurons display a number of discrete modes of oscillation,
resembling those of a tense string. These modes are exclusively
due to transient episodes of synchronous spiking and not
due to the different time scales between excitation and
inhibition or to the presence of any propagation or synaptic
delay.

Traditional NFMs do not describe these synchrony-induced
oscillations. Therefore, to investigate and characterize them,
we apply a recent method to derive the firing rate equations
of a globally coupled heterogeneous population of quadratic
integrate-and-fire (QIF) neurons [28]. This method, based
on the so-called Ott-Antonsen theory [29–31], leads to an
exact macroscopic description of the network in terms of
two macroscopic variables: the mean firing rate and the mean
membrane potential. The resulting mean-field model exactly
describes any state of the system, including synchronous states.
Here we extend the local firing rate model in Ref. [28] to
include nonlocal, instantaneous interactions. The resulting
neural field model for heterogeneous QIF neurons (QIF-
NFM) clearly displays the synchrony-induced oscillatory
modes observed in simulations of spiking neurons. We then
thoroughly investigate the QIF-NFM by means of both a linear
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FIG. 1. Schematic representation of the ring network and cou-
pling architecture under study. Panel (a) shows N excitatory (red
triangles) and N inhibitory (blue circles) neurons arranged on a ring.
The location of neurons is parameterized by the angular variable φj =
2πj

N
− π , j = 1, . . . ,N . Red (solid) and blue (dashed) lines indicate

synaptic connections between neuron pairs (φj ,φk). An example of
the excitatory and inhibitory space-dependent connectivity kernels
Eqs. (1) are shown in panel (b) where the abscissa represents the
distance |φk − φj | between neurons j and k. Panel (c) represents
an effective model in which pairs of excitatory/inhibitory neurons
located at a certain location φk are modeled as single neurons. The
effective pattern of synaptic connectivity is obtained subtracting the
inhibitory pattern from the excitatory one, as show in panel (d).

and nonlinear stability analysis of the spatially homogeneous
state. The analysis reveals the presence of an infinite number
of oscillation modes, linked to the Fourier components of
the spatial pattern of synaptic connections. The analysis also
shows that all modes decay to the unpatterned state with the
same rate, which depends on the degree of heterogeneity in the
network. Finally, we investigate the spectrum of the spatially
inhomogeneous solutions of the QIF-NFM and find similar
oscillatory modes also linked to transient episodes of spike
synchronization.

II. SYNCHRONY-INDUCED MODES OF OSCILLATION IN
NETWORKS OF QIF NEURONS

Figure 1(a) shows a schematic representation of the spiking
neuron network under investigation. The model consists of
N excitatory (red) and N inhibitory (blue) neurons evenly
distributed in a ring and characterized by the spatial discrete
variables φj ∈ [−π,π ) with φj = 2πj

N
− π, j = 1, . . . ,N , as

shown in Fig. 1(a). Any neuron in the network interacts with all
the other neurons via the distance-dependent coupling function
J

e,i
jk = J e,i(|φj − φk|), where indices e,i denote excitatory and

inhibitory connections, respectively. The synaptic projections
of the j th excitatory and inhibitory neurons (located at at φj )
to other two nearby neurons are also schematically represented
in Fig. 1(a).

The ring architecture of the network allows one to express
the excitatory and inhibitory connectivity patterns in Fourier

series as

J e,i(φ) = J
e,i
0 + 2

∞∑
K=1

J
e,i
K cos(Kφ). (1)

Figure 1(b) shows a particular synaptic connectivity pattern
in which excitatory neurons form strong, short-range connec-
tions, whereas inhibitory projections are weaker and wider.
The state of the excitatory (e) and inhibitory (i) neurons
is determined by the (dimensionless) membrane potentials
{ve,i

j }j=1,...,N , which are modeled using the QIF model [32,33]

τ
dv

e,i
j

dt
= (

v
e,i
j

)2 + I
e,i
j , (+ resetting rule), (2)

where τ is the cell’s membrane time constant and vr and
vp correspond to the reset and peak potentials of the QIF
neurons, respectively—in numerical simulations we consider
τ = 20 ms. The QIF neuron has two possible dynamical
regimes depending on the (dimensionless) input current I

e,i
j .

If I
e,i
j < 0, then the neuron is in the excitable regime, while

for I
e,i
j > 0 the neuron is in the oscillatory regime. In

the excitable regime, an initial condition v
e,i
j (0) <

√
−I

e,i
j ,

asymptotically approaches the resting potential −
√

−I
e,i
j .

On the other hand, initial conditions above the excitability
threshold, ve,i

j (0) >
√

−I
e,i
j , lead to an ubounded growth of the

membrane potential. Specifically, if v
e,i
j (0) �

√
I

e,i
j , then the

membrane potential reaches infinity approximately after a time
τ/v

e,i
j (0). In practice, to avoid this divergence, we consider

the following resetting rule: When the neuron’s membrane
potential v

e,i
j reaches a certain peak value vp � 1, the neuron

is reset to a the new value vr = −vp after a refractory period
2τ/vp. On the other hand, if I

e,i
j > 0, then the neuron is in the

oscillatory regime and needs to be reset periodically. If vp � 1,
then the frequency of the oscillatory neurons is approximately
fj = √

Ij /(τπ ). Finally, the current I
e,i
j is defined as

I
e,i
j = η

e,i
j + τSe

j (t) + τSi
j (t) + P

e,i
j (t). (3)

Here η
e,i
j is a constant external current, which varies from

neuron to neuron. The terms P e,i(t) are time-varying common
inputs, and S

e,i
j (t) are the mean excitatory (positive) and

inhibitory (negative) synaptic activities representing all the
weighted inputs received by neuron j due to spiking activity
in the network:

S
e,i
j (t) = ±

N∑
k=1

J
e,i
jk

2πN

∑
l\t lk<t

1

τs

∫ t

t−τs

dt ′δe,i
(
t ′ − t lk

)
, (4)

where τs represents the synaptic processing time and t lk is
the time of the lth spike of the excitatory/inhibitory kth
neuron. Positive and negative signs correspond Se

j and to Si
j ,

respectively.
We performed numerical simulations of the QIF model

Eqs. (2) and (3) for a network of heterogeneous neurons,
see Fig. 2, and Appendix D for details of the numerical
simulations. In all cases, the system is initially at a spatially
homogeneous state (SHS). At time t = 50 ms, a brief (10 ms)
and small current pulse P e

j is applied either to all excitatory
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FIG. 2. Transient episodes of spike synchrony in heterogeneous
ring networks of N = 2.5 × 105 excitatory and N = 2.5 × 105

inhibitory QIF neurons, Eqs. (2) and (3), as a result of spatially
inhomogeneous perturbations applied at time t = 0.05. In panels (a)
and (b) only excitatory neurons are perturbed. In panels (c) and (d)
all neurons are perturbed. In panels (a) and (c) the perturbation has
wave number K = 1; in panels (b) and (d) the perturbation has wave
number K = 3. Other parameters are � = 1, τ = 20 ms, and η̄ = 5.
All Fourier components of the connectivity Eq. (1) are J

e,i
K = 0,

except J e
0 = 23, J e

1 = 10, J e
2 = 7.5, J e

3 = −2.5, J i
0 = 23.

neurons [Figs. 2(a) and 2(b)] or to both excitatory and in-
hibitory neurons. The left and right panels show perturbations
of the first spatial modes, respectively—see Appendix D for
the specific form of the perturbations. Note that, after the
perturbation, the system decays to the homogeneous state
showing oscillations, which resemble standing waves. Note
that the frequency of these oscillations is different for each
mode, while the decay rate is similar in the two cases. We also
performed simulations of networks of QIF neurons (i) with
quenched Gaussian heterogeneity (ii) subject to independent
Gaussian noise processes and found similar results (not
shown). To the best of our knowledge, these oscillations have
not yet been investigated in the literature.

III. NEURAL FIELD MODEL FOR QUADRATIC
INTEGRATE AND FIRE NEURONS

In the following, we aim to investigate the nature and origin
of the spatiotemporal patterns shown in Fig. 2. To analyze
them, we derive the NFM corresponding to the thermodynamic
(N → ∞) and continuum limits of the network of QIF neurons
[Eqs. (2) and (3)]. In addition we also take the limit vp → ∞,
so that the QIF model (2) is equivalent to the so-called
theta-neuron model [32,33]. This leads to an exact neural field
model for a network of QIF neurons (QIF-NFM) The detailed
derivation is performed in Appendix A and closely follows
that of Ref. [28]. The reduction in dimensionality is achieved
considering that the currents ηe,i—which, after performing the
thermodynamic limit, become continuous random variables—
are distributed according to a Lorentzian distribution of
half-width � and centered at η̄,

g(ηe,i) = �

π

1

(ηe,i − η̄)2 + �2
. (5)

The QIF-NFM is

τ
∂Re,i

∂t
= �

πτ
+ 2Re,iV e,i , (6a)

τ
∂V e,i

∂t
= (V e,i)2 + η̄ − (πτRe,i)2 + τS(φ) + P e,i(φ,t).

(6b)

and exactly describes the time evolution of the mean firing rate
Re,i(φ) and the population’s mean membrane potential V e,i(φ)
of the excitatory and inhibitory populations at any location φ of
the ring—to facilitate the notation we have avoided explicitly
writing the dependence of these variables on φ. In the limit
of instantaneous synapses, τs → 0 in Eqs. (4), the excitatory
and inhibitory contributions of the mean field S(φ) = Se(φ) +
Si(φ) reduce to Se,i(φ) = ± 1

2π

∫ π

−π
J e,i(φ − φ′)Re,i(φ′)dφ′.

A. Effective QIF-NFM

The analysis of the QIF-NFM Eq. (6) is greatly simplified
considering that excitatory and inhibitory neurons have iden-
tical single-cell properties. This scenario is schematically rep-
resented in Figs. 1(c) and 1(d). If we set P e(φ,t) = P i(φ,t) =
P (φ,t), and restrict our attention to solutions of Eqs. (6) satis-
fying Re(φ,t) = Ri(φ,t) ≡ R(φ,t) and V e(φ,t) = V i(φ,t) ≡
V (φ,t), then we obtain an effective QIF-NFM in variables R

and V ,

τ
∂R

∂t
= �

πτ
+ 2RV, (7a)

τ
∂V

∂t
= V 2 + η̄ − (πτR)2 + τS(φ) + P (φ,t). (7b)

In this case, the mean field reduces to

S(φ) = 1

2π

π∫
−π

[
J0 + 2

∞∑
K=1

JK cos(K(φ′ − φ))

]
R(φ′)dφ′,

(8)

with the new Fourier coefficients JK , which are related to those
in Eq. (1) as JK = J e

K − J i
K , with K = 0,1, . . . , see Fig. 1(d).

Solutions to Eq. (6) need not satisfy the condition Re = Ri

and V e = V i , but the reduced system Eq. (7) captures the
mechanism behind the oscillatory behavior observed in the
model. Note that, in Figs. 2(a) and 2(b), we perturbed the SHS
of the system [Eqs. (2) and (3)] using a current pulse to all the
excitatory neurons. The resulting dynamics is only captured
by the full system [Eqs. (6)] and not by the effective neural
field [Eqs. (7)]. However, we next show that the existence of
the spatial oscillatory modes observed in Fig. 2 is exclusively
linked to the dynamics in the reduced manifold defined by
Eqs. (7) and (8).

B. SHS and their stability: Synchrony-induced
modes of oscillation

In the following we investigate the stability of the stationary
SHS of the QIF-NFM against spatial perturbations. The
detailed linear stability analysis of both the complete model
[Eqs. (6)] and the reduced one [Eqs. (7)] are provided in
Appendix B.
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In absence of external inputs, P (φ,t) = 0, the steady
states of Eqs. (7)—and also of Eqs. (6)—satisfy V∗(φ) =
−�/[2πτR∗(φ)], and

R∗(φ) = 	[η̄ + τS∗(φ)], (9)

with 	(x) =
√

x + √
x2 + �2/(

√
2πτ ). In Eq. (9), the term

S∗(φ) is the mean field [Eq. (8)] evaluated at R∗(φ). For
SHS, the mean field [Eq. (8)] becomes spatially independent,
S∗(φ) = S∗ = J0R∗, and Eq. (9) becomes a quartic equation
for the variable R∗. To further simplify the analysis, hereafter
we consider parameter ranges where Eq. (9) has a single
positive root. Accordingly, we consider a balanced kernel,
J0 = 0 so that Eq. (9) has S∗ = 0 and explicitly determines
the value of the fixed point R∗.

The steady states of the SHS of Eq. (7) coincide with those
of a single population of neurons [28]. However, the stability
of the SHS of the QIF-NFM to inhomogeneous perturbations
depends on the spatial character of the connectivity kernel
Eq. (1). The linear stability analysis of the SHS gives a
countably infinite set of eigenvalues associated to the stability
of perturbations with wave number K[34],

λK± = − �

πτ 2R∗
± 2πR∗

√
JK

2π2τR∗
− 1, (K = 0,1,2 . . . ).

(10)

This equation is the main result of this work, and explains
the synchronization patterns shown in Fig. 2. Note that the
eigenvalues Eq. (10) may be real or complex, indicating
nonoscillatory or oscillatory dynamics of the evolution of
perturbations of wave number K , respectively. In particular,
perturbations of any given spatial mode K are oscillatory if
the condition JK < 2π2τR∗ is fulfilled. Notably, all complex
eigenvalues have the same decay rate to the SHS, since
Re(λK±) = −�/(πτ 2R∗) for all of them. Specifically, the
decay rate is proportional to the degree of quenched het-
erogeneity �. This reflects the fact that the decay in the
oscillations is in fact a desynchronization mechanism due to
the distribution of inputs that the cells receive.

Substituting Eq. (9) with J0 = 0 into Eq. (10), it is
straightforward to find the boundary

J o
K =

√
2π

√
η̄ +

√
η̄2 + �2, (11)

separating the parameter space into regions where standing
waves of wave number K are, or are not, observed. This
boundary is depicted with a dotted line in the phase diagram
Fig. 3, together with a schematic representation of the location
of the eigenvalues λK± in the complex plane (red crosses, see
also Fig. 5(a).

A given oscillatory mode K has an associated frequency
νK = 1/(2π )|Im(λK±)|, which differs from one another de-
pending on the corresponding Fourier coefficients JK of the
patterns of synaptic connectivity Eq. (1). Therefore, spatial
perturbations of wave number K produce standing waves of
neural activity of frequency νK . Locally excitatory coupling
JK > 0 slows down these oscillations and eventually sup-
presses them, whereas locally inhibitory coefficients JK < 0
are able to generate arbitrarily fast oscillations (in particular,
note that all modes with JK = 0 are oscillatory with frequency

(a) (b)

(c)

FIG. 3. (a) Phase diagram of Eqs. (7) (with J0 = 0) showing
the regions of stability of the SHS, determined by the eigenval-
ues Eq. (10). Spatial perturbations of wave number K > 0 show
oscillatory and nonoscillatory decay to the spatially homogeneous
state in the light-shaded and dark-shaded regions of the diagram,
respectively. The eigenvalues λK± associated with the Kth mode are
schematically represented in the complex plane (red crosses) for the
three qualitatively different regions of the phase diagram. Right panels
show the response of the Eqs. (7) with J1 = 10, J2 = 7.5, J3 = −2.5,
and JK = 0 (K 
= 1,2,3), η̄ = 4.5, � = 1, and τ = 20 ms, to a
perturbation of the (b) K = 1 and (c) K = 3 spatial modes. Both
perturbations produce standing waves with frequency and decay rate
described by Eqs. (10). In the white region, limited by the curve
Eq. (11), these perturbations grow and lead to a bump state (BS) with
K bumps (see Fig. 4).

ν = R∗, which coincides with the mean firing rate of the
uncoupled neurons).

Indeed, in Fig. 2(d), a perturbation of wave number
K = 3 produced standing waves, since J3 was negative. The
frequency of these oscillations was fast compared to that of
Fig. 2(c), where the exited mode was the first one K = 1 and
given that the J1 was positive. However, note that in both
cases the decay to the SHS is similar, as predicted by the
eigenvalues Eq. (10). This indicates that the desynchronization
process occurs faster when the diversity � of neurons is
increased, and this process does not depend on the oscillation
mode being excited. Finally, in Figs. 3(b) and 3(c) we show
numerical simulations of the QIF-NFM [Eq. (7)] using the
same parameters as those of Figs. 2 (c) and 2(d), and the
agreement is good.

C. Turing bifurcation and nonlinear stability of the SHS

As JK is increased, the frequency νK of a given oscillatory
mode decreases and eventually it ceases to oscillate. Further
increases in JK may destabilize the homogeneous state, via a
pattern-forming (Turing) bifurcation. This instability leads to
states with spatially modulated firing rate, sometimes referred
to as the bump states (BS). Substituting the fixed point (9)
in Eq. (10), and imposing the condition of marginal stability
λK+ = 0, we find the stability boundaries corresponding to a
K-spatial mode,

J T
K = 2π

√
2η̄2 + 2�2

η̄ +
√

η̄2 + �2
. (12)
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FIG. 4. (a) Phase diagram of the QIF-NFM [Eqs. (7)] with
J2 = 7.5, J3 = −2.5, JK = 0, for K > 3, and � = 1. Solid line:
supercritical [red (gray)] and subcritical (black) Turing bifurca-
tion boundary Eq. (12)]. Dashed lines: saddle-node bifurcation of
bumps (numerical). (b) Diagram—obtained using a weakly nonlinear
analysis—showing the regions where the Turing bifurcation is
supercritical or subcritical for J1 = 10, J3 = −2.5, and JK = 0.
(c) Bifurcation diagram (rescaled) ‖R∗‖2 = (2π )−1

∫ π

−π
|R∗(φ)|2dφ

vs. η̄, for J1 = 10. Solid/dashed black lines: stable/unstable SHS.
Solid/dashed blue (light gray) lines: stable/unstable bump states (BS).

The Turing bifurcation boundary, Eq. (12), corresponds to the
solid line in Figs. 3(a) and 4(a). Additionally, in Appendix C,
we conducted a weakly nonlinear analysis and derived the
small-amplitude equation [Eq. (C20)] corresponding to the
bump solution bifurcating from the SHS. The amplitude
equations determine if the Turing bifurcation is supercritical
or if it is subcritical and bistability between SHS and bump
states is expected to occur. The results of this analysis are
summarized in Fig. 4(b).

In addition, we performed numerical simulations of the
QIF-NFM (7) and indeed found coexistence of SHS and bump
states in the blue-shaded regions limited by solid and dashed
curves in Fig. 4(a). These lines meet at two codimension-
2 points (where the Turing bifurcation line changes color)
that agree with the results of the weakly nonlinear analysis.
Moreover, we computed numerically a bifurcation diagram of
the NFM, using the spectral method developed in Ref. [35] and
available with Ref. [36]. The results, presented in Fig. 4(c)
confirm that the unstable BS bifurcates subcritically for the
SHS. The unstable BS then meets a stable BS– - solid blue
(light gray) line—at a fold bifurcation.

D. Synchrony-induced transient oscillations in bump states

To investigate whether the synchrony-induced oscillatory
modes are also present in the stationary BS, we computed
their spectrum. The gray points in Fig. 5(a) show the spectrum
of the unstable Bump near the subcritical Turing bifurcation of
wavelength K = 1. Additionally, the red crosses in Fig. 5(a)
are the eigenvalues of the SHS state Eq. (10). The profile of the
unstable bump is only very weakly modulated, see Fig. 5(c),
and hence the spectrum of the BS is very close to that of the
SHS, given by the eigenvalues λK . All these eigenvalues are
complex, except two real eigenvalues, which correspond to
the K = 1 mode. One of these eigenvalues is negative and the

FIG. 5. Spectrum [(a) and (b)] and firing rate profiles [(d) and (c)]
of an unstable [(a) and (c)] and stable [(b) and (d)] bump states of the
QIF-NFM [Eqs. (7)]. In panels (a) and (b) the eigenvalues Eq. (10)
are superimposed with red crosses. Panel (e) shows a numerical
simulation of the BS of panel (d). At t = 0.05 s, a perturbation of wave
number K = 6 is applied. Parameters are J0 = 0, J1 = 10, J2 = 7.5,
J3 = −2.5, JK = 0 for K > 3, � = 1, τ = 20 ms. Panels (a) and (c):
η̄ = 2.2120; panels (b), (d), and (e): η̄ = 2.1828.

other is very close to zero and positive, indicating that the SHS
is unstable.

Additionally, it is important to note that in Fig. 5 we have
taken JK = 0 for all K except for K = 1,2,3, and hence
there is an infinite number of eigenvalues (λ0 and λ4,5,...) that
are all complex and identical. In Fig. 5(a), the eigenvalues of
the unstable BS seem to form a continuous band precisely
around these infinitely degenerated eigenvalues and their
complex conjugates. These continuous bands grow in size as
one moves away from the Turing bifurcation, as it can be seen
in the spectrum of the stable bump depicted in Fig. 5(b)—here
red crosses also correspond to the eigenvalues of the SHS
state Eq. (10). These results show that all the complex
eigenvalues linked to the oscillatory modes of the SHS remain
complex, suggesting that, in general, similar synchronization-
induced oscillations may be present in stationary, spatially
inhomogeneous neural patterns.

Finally, to illustrate this, in Fig. 5(e) we performed a
numerical simulation of the QIF-NFM Eqs. (7) and perturbed
the BS shown in Fig. 5(d) with a spatially inhomogeneous
perturbation corresponding to the mode (K = 6). The per-
turbation decays to the BS showing a pattern that resembles
that of Fig. 2. However, here the regions of the ring with the
maximum values of R∗—around φ = 0, in Figs. 2(d) and 2(e)–
-oscillate at high frequencies and these oscillations slow down
as φ → ±π . The spectrum of the stable BS Fig. 5(b) also
indicates that the decay of the fast oscillations (located at the
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central part of the bump, φ = 0) is slow compared to that of
the slow oscillations.

IV. CONCLUSIONS

We have reported the existence of a class of oscillatory
modes in spatially distributed networks of heterogeneous spik-
ing neurons. These modes of oscillation reflect the transient
episodes of spike synchronization among the neurons and are
not captured by traditional NFMs.

To investigate these oscillation modes we derived a novel
NFM for QIF neurons [Eqs. (6)]. Alternately, and invoking the
Ott-Antonsen theory for populations of pulse-coupled theta
neurons [37,38], Laing recently derived a NFM [39] that is
equivalent to the effective QIF-NFM [Eqs. (7)]. In Laing’s
work—like in other recent related papers on pulse-coupled
oscillators [40–45]—the resulting low-dimensional descrip-
tion is in terms of the complex Kuramoto order parameter. In
contrast, the mean-field description adopted here (in terms of
mean firing rates and membrane potentials) greatly simplifies
the analysis, allowing us to analytically investigate the linear
and nonlinear stability of the spatially homogeneous states of
the QIF-NFM.

This analysis reveals two important features: (i) The
frequency of each oscillation mode only depends on the
corresponding Fourier coefficient of the synaptic pattern of
connectivity, and (ii) the decay rate is exactly the same for
all modes and is due to a desynchronization mechanism
which depends on the degree of quenched heterogeneity.
We also numerically investigated networks of identical QIF
neurons subject to noise and found similar results (not shown).
In this case, the desynchronization reflects an underlying
phase diffusion proportional to the noise strength. Finally,
we investigated the existence and stability of bump states,
which bifurcate from the spatially homogeneous states via
Turing bifurcations. The spectrum of such bump states has
a continuous part off the real axis, indicating that similar
synchronization-induced oscillatory modes also operate in
neural bump states.

Interesting directions of further study are the analysis of
the QIF-NFM [Eq. (6)] considering different membrane time
constants τ (or different main currents η̄) for excitatory and
inhibitory neurons. As proved recently [46], NFMs with time-
scale separation display a rich variety of robust spatiotemporal
patterns, which may also be supported by our model. Also,
recent work has been done to extend the local firing rate
equations derived in Ref. [28] to include fixed synaptic delays
[47] and synaptic kinetics [48,49]—see also Refs. [43,44].
This work shows that time delays due to synaptic processing
generally lead to the emergence of self-sustained oscillations
due to collective synchronization. Extending the QIF-NFM
[Eq. (6)] to account for the synaptic time delays caused by
synaptic processing may lead to spatiotemporal phenomena
not previously observed in traditional NFMs.
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APPENDIX A: DERIVATION OF THE QIF
NEURAL FIELD MODEL (QIF-NFM)

Our derivation closely follows that of Ref. [28], but it
needs to be extended to include the spatial dimension. Similar
extensions from a single population of phase oscillators to a
one-dimensional, spatially distributed network with nonlocal
coupling have been done in Refs. [39,50–56].

Considering the thermodynamic limit N → ∞, we can
drop the indexes in Eqs. (2) and (3) and define the density func-
tion ρe,i(ve,i |ηe,i ,t,φ) such that ρe,i(ve,i |ηe,i ,t,φ)dve,idηe,idφ

describes the fraction of neurons located between φ and
φ + dφ, with membrane potentials between ve,i and ve,i +
dve,i and parameters between ηe,i and ηe,i + dηe,i at time
t . Accordingly, parameter ηe,i becomes now a continuous
random variable with probability density function g(ηe,i). For
the sake of simplicity, we assume identical distributions for
both excitatory and inhibitory populations g(ηe,i) = g(η). The
total voltage density at location φ and time t is given by∫ ∞
−∞ ρe,i(ve,i |η,t,φ)g(η)dη.

Conservation of the number of neurons at each φ value is
described by the continuity equation

∂tρ
e,i = −∂v[((ve,i)2 + η + τS(φ,t) + P e,i(φ,t))ρe,i],

where we have explicitly included the velocity given by
Eqs. (2) and (3) and S(φ,t) = Se(φ,t) + Si(φ,t) represents
the total synaptic activity. Next we invoke the Ott-Antonsen
theory [29] by means of the Lorentzian ansatz (LA) [28],

ρe,i(ve,i |η,t,φ) = 1

π

xe,i(φ,η,t)

[ve,i − ye,i(φ,η,t)]2 + xe,i(φ,η,t)2
,

(A1)

which solves the continuity equation. The width xe,i(φ,η,t)
of the LA is related to the firing rate Re,i of the neural
populations. Indeed, for each η value at time t , Re,i(φ,η,t)
can be evaluated noting that neurons fire at a rate given
by the probability flux at infinity: Re,i(φ,η,t) = ρe,i(ve,i →
∞|η,t,φ)v̇e,i(ve,i → ∞|η,t,φ). The limit ve,i → ∞ on the
right-hand side of this equation can be evaluated within the
LA and gives xe,i(φ,η,t) = πτRe,i(φ,η,t). The total firing
rate at a particular location φ of the ring is then

Re,i(φ,t) = 1

τπ

∫ ∞

−∞
xe,i(φ,η,t)g(η)dη. (A2)

Additionally, the quantity ye,i(η,t) is, for each value of
η, the mean of the membrane potential ye,i(φ,η,t) =
P.V.

∫ ∞
−∞ ρe,i(ve,i |η,t,φ)ve,i dve,i . Therefore, this variable is

related to the mean membrane potential of the neuronal

052407-6



SYNCHRONY-INDUCED MODES OF OSCILLATION OF A . . . PHYSICAL REVIEW E 96, 052407 (2017)

population at φ by

V e,i(φ,t) =
∫ ∞

−∞
ye,i(φ,η,t)g(η)dη. (A3)

Substituting the LA (A1) into the continuity equation, we find
that, for each value of η, the variables xe,i(φ) and ye,i(φ) must
obey two coupled equations which can be written in complex
form as

τ∂tw
e,i(φ,η,t)= i[η+τS(φ,t) − (we,i)2(φ,η,t) + P e,i(φ,t)],

(A4)

where we,i(φ,η,t) ≡ xe,i(φ,η,t) + iye,i(φ,η,t). If η are dis-
tributed according to a Lorentzian distribution Eq. (5), the
integrals in (A2) and (A3) can then be evaluated closing the
integral contour in the complex η plane and using the Cauchy
residue theorem. Then the firing rate and mean membrane
potential depend only on the value of we,i at the pole of
g(η) in the lower half η plane: πτRe,i(φ,t) + iV e,i(φ,t) =
we,i(φ,η̄ − i�,t), and, as a result, (A4) must be evaluated only
at η = η̄ − i� to obtain the neural field equations [Eq. (6)]
[57].

These equations can be nondimensionalized by rescaling
variables and time as (note the difference between v

e,i
j , the

membrane potential of a single neuron j , and the mean
membrane potential ve,i):

Re,i =
√

�

τ
re,i ,V e,i =

√
�ve,i ,t = τ√

�
t̃, (A5)

and parameters as

J
e,i
K =

√
�j

e,i
K ,η̄ = �η̃,P e,i(φ,t) = �P̃ e,i(φ,t̃). (A6)

The resulting dimensionless NFM is then

ṙ e,i = 1

π
+ 2ve,ire,i , (A7a)

v̇e,i = (ve,i)2 + η̃ − π2(re,i)2 + s(φ,t̃) + P̃ e,i(φ,t̃),

(A7b)

where the overdot represents partial derivation with respect the
nondimensional time t̃ and the mean field is

s(φ,t̃) = 1

π

∫ π

−π

[
je

0

2
+

∞∑
K=1

je
K cos(K(φ′ − φ))

]
re(φ′,t̃)dφ′

− 1

π

∫ π

−π

[
j i

0

2
+

∞∑
K=1

j i
K cos(K(φ′−φ))

]
ri(φ′,t̃)dφ′.

(A8)

Effective NFM model

Considering P̃ e,i(φ,t̃) = P̃ (φ,t̃) in Eqs. (A7), the system

ṙ = 1

π
+ 2vr, (A9a)

v̇ = v2 + η̃ − π2r2 + s(φ,t̃) + P̃ (φ,t̃), (A9b)

with the mean field

s(φ,t) = 1

π

∫ π

−π

[
j0

2
+

∞∑
K=1

jK cos(K(φ′ − φ))

]
r(φ′,t)dφ′

(A10)

and

jK = je
K − j i

K

has identical symmetric solutions as the original Eqs. (A7),
i.e.,

re(t) = ri(t) = r(t), ve(t) = vi(t) = v(t).

APPENDIX B: LINEAR STABILITY ANALYSIS OF THE
SPATIALLY HOMOGENEOUS STATE

1. Linear stability of effective QIF-NFM Eq. (7)

The homogeneous steady state is given by the solution of
Eq. (9) when R∗(φ) = R∗. This is equivalent to S∗(φ) = S∗ =
J0R∗ that in dimensionless form is

π2r4
∗ − j0r

3
∗ − η̃r2

∗ − 1

4π2
= 0. (B1)

This equation is greatly simplified assuming j0 = 0 and gives

r∗ = 1

π
√

2

√
η̃ +

√
η̃2 + 1. (B2)

The stability of homogeneous steady-state solutions can be an-
alyzed studying the evolution of the small (even) perturbations
(ε � 1) of the SHS

r(φ,t) = r∗ + ε

∞∑
K=0

aK (t) cos(Kφ), (B3a)

v(φ,t) = v∗ + ε

∞∑
K=0

bK (t) cos(Kφ). (B3b)

Substituting (B3) into the mean field (A10), we obtain a
perturbed mean field around s∗(φ)

s(φ,t) = s∗(φ) + ε

∞∑
K=0

jKaK (t) cos(Kφ). (B4)

Linearizing Eqs. (A9) around the fixed point (r∗,v∗), gives
∞∑

K=0

μKaK cos(Kφ) = 2
∞∑

K=0

[r∗(φ)bK + v∗(φ)aK ] cos(Kφ),

∞∑
K=0

μKbK cos(Kφ) =
∞∑

K=0

[2v∗(φ)bK+(jK − 2π2r∗(φ))aK ]

× cos(Kφ), (B5)

where we have used the ansatz aK (t) = aKeμKt and bK (t) =
bKeμKt , where μK represents the dimensionless eigenvalue of
the Kth mode. For SHS states, (r∗(φ),v∗(φ)) = (r∗,v∗), the
modes in Eqs. (B5) decouple and, for a given mode K , we find
the linear system

μK

(
aK

bK

)
= L∗

(
aK

bK

)
(B6)
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with

L∗ =
(

2v∗ 2r∗
jK − 2π2r∗ 2v∗

)
. (B7)

Equation (B6) has a general solution:(
aK (t̃)

bK (t̃)

)
= A+u+eμK+ t̃ + A−u−eμK− t̃ , (B8)

where A± are arbitrary constants. The eigenvalues μK± are
given by

μK± = − 1

πr∗
± 2πr∗

√
jK

2π2r∗
− 1, (B9)

with eigenvectors

u± =
( ±1√

jK

2r∗
− π2

)
. (B10)

In terms of the dimensional variables and parameters (A5)
and (A6), the eigenvalues (B9) are λkt = μkt̃ , and thus λk =√

�μk/τ , which gives the eigenvalues Eq. (10) in the main
text.

2. Linear stability of the full QIF-NFM

For the full QIF-NFM [Eq. (6)], the perturbation around the
SHS state has the form

re,i(φ,t) = r∗ + ε

∞∑
K=0

a
e,i
K (t) cos(Kφ),

ve,i(φ,t) = v∗ + ε

∞∑
K=0

b
e,i
K (t) cos(Kφ).

In this case, the linear stability of the SHS state with respect
to perturbations of the K-spatial mode is determined by the
characteristic equation

λK

⎛
⎜⎜⎜⎝

ae
K

be
K

ai
K

bi
K

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

2v∗ 2r∗ 0 0

je
K − 2π2r∗ 2v∗ −j i

K 0

0 0 2v∗ 2r∗
je
K 0 −j i

K − 2π2r∗ 2v∗

⎞
⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝

ae
K

be
K

ai
K

bi
K

⎞
⎟⎟⎟⎠. (B11)

For each K mode, the linearized system has a general solution,⎛
⎜⎜⎜⎝

ae
K (t̃)

be
K (t̃)

ai
K (t̃)

bi
K (t̃)

⎞
⎟⎟⎟⎠ = A+uK+eμK+ t̃ + A−uK−eμK− t̃

+B+uK⊥eμ⊥ t̃ + B−ūK⊥eμ̄⊥ t̃ , (B12)

where A± and B± are arbitrary constants. The eigenvectors

uK± =

⎛
⎜⎜⎜⎜⎜⎝

±1√
je
K−j i

K

2r∗
− π2

±1√
je
K−j i

K

2r∗
− π2

⎞
⎟⎟⎟⎟⎟⎠ (B13)

have eigenvalues

μK± = − 1

πr∗
± 2πr∗

√
je
K − j i

K

2π2r∗
− 1. (B14)

These eigenvalues coincide with those of the reduced system
(B9) and are associated with the standing waves shown in
Fig. 2. Additionally, the eigenvector

uK⊥ =

⎛
⎜⎜⎜⎝

ij i
K

πj i
K

ij e
K

πje
K

⎞
⎟⎟⎟⎠, (B15)

and its complex conjugate ūK⊥, with associated eigenvalue

μ⊥ = − 1

πr∗
+ i2πr∗. (B16)

and its complex conjugate μ̄⊥, correspond to modes of oscilla-
tion of the uncoupled system. Indeed, note that the eigenvalues
(B16) are independent of the connectivity and correspond
to oscillatory modes which are already present in a single
population of uncoupled neurons—note that eigenvalues (B14)
reduce to (B16) for all the modes with jK = je

K − j i
K = 0.

APPENDIX C: SMALL-AMPLITUDE EQUATION NEAR
THE SPATIALLY HOMOGENEOUS STATE

1. Critical eigenvectors

Right at the bifurcation, the only undamped mode is the
critical one given by u+ in (B15) that reduces to the critical
eigenmode:

uc =
(

r∗
−v∗

)
. (C1)

At criticality, the critical eigenmode of L∗ satisfies

L∗cuc = 0,

where L∗c corresponds to the operator (B7) evaluated at jK =
jKc. The left critical eigenvector of the operator L∗c is then
defined as

u†
cL∗c = 0,

which gives

u†
c = π

(−v∗
r∗

)T

, (C2)

where the constant has been taken to normalize the eigenvec-
tors, so that they satisfy u†

cuc = 1.
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2. Amplitude equation

Except for initial transients, the amplitude of the bifurcating
solution at criticality is expected to contain only the component
u+c. In the following we derive a small-amplitude equation
for the bump solutions using multiple-scale analysis, see, e.g.,
Ref. [58]. First, let the solution of Eqs. (A9) be written as the
perturbation expansion(

r(φ,t̃)

v(φ,t̃)

)
=

(
r∗
v∗

)
+ ε

(
rε(φ,t̃,T̃ )

vε(φ,t̃,T̃ )

)
+ ε2

(
rεε(φ,t̃,T̃ )

vεε(φ,t̃,T̃ )

)
+ . . .

(C3)

where (r∗,v∗) is the state SHS given by the solutions of (B1)
and ε � 0 is a small parameter, which measures the distance
from the Turing bifurcation. In addition, we define a long
time scale, T̃ = ε2 t̃ , that is considered to be independent of
t̃ . Accordingly, the differential operator in Eqs. (A9) may be
replaced by

∂t̃ → ∂t̃ + ε2∂T̃ .

Since the asymptotic expansion is going to be performed in
the vicinity of a stationary bifurcation, we set ∂t̃ = 0 so that
the only temporal variations occur with the slow time scale T̃ .

Additionally, in our analysis we use the parameter j1 as the
bifurcation parameter, and we write it as

j1 = jT
1 + ε2δj1, (C4)

where jT
1 is the critical value of j1 at which the Turing bifurca-

tion occurs, given by Eq. (11), with K = 1. Accordingly, the
(nondimensionalized) connectivity footprint (1) is

j (φ) = jc(φ) + 2ε2δj1 cos φ, (C5)

with

jc(φ) = j0 + 2jT
1 cos φ + 2

∞∑
K=2

jK cos(Kφ), (C6)

where jK < jKc for K 
= 1. To simplify the notation, we
hereafter omit to explicitly write the dependence of rε,εε,...

and vε,εε,... on the variables t̃ , T , and φ. Substituting (C3) and
(C5) into the mean field (A10):

s(φ) = 1

2π

∫ π

−π

(r∗ + εrε + ε2rεε + . . . )jc(φ − φ′)dφ′

+ ε2 1

π

∫ π

−π

(r∗+εrε+ε2rεε+ . . . )δj1 cos(φ − φ′)dφ′

≡ 〈r∗+εrε+ε2rεε+ . . . 〉c+2ε2〈r∗+εrε+ε2rεε+ . . . 〉,
(C7)

= r∗j0+ε〈rε〉c+ε2〈rεε〉c+ε3(〈rεεε〉c+2〈rε〉) + . . . .

(C8)

Plugging expansions (C3) and (C5) into the NFM Eqs. (A9),
we obtain

ε2∂T̃ (εrε + ε2rεε + . . . )

= ε(2v∗rε + 2r∗vε) + ε2(2v∗rεε + 2rεvε + 2r∗vεε)

+ ε3(2vεrεε + 2rεvεε) + . . .

ε2∂T̃ (εvε + ε2vεε + . . . )

= ε(2v∗vε − 2π2r∗rε + 〈rε〉c) + ε2(v2
ε − π2r2

ε + 2v∗vεε

− 2π2r∗rεε + 〈rεε〉c
)

+ ε3(2vεvεε − 2π2rεrεε + 〈rεεε〉c + 2〈rε〉) + . . . .

These equations can be written in a more compact form as

−(Lc + ε2Lεε)

[
ε

(
rε

vε

)
+ ε2

(
rεε

vεε

)
+ ...

]

= ε2Nεε + ε3Nεεε + . . . , (C9)

defining the linear and nonlinear operators

Lc =
(

2v∗ 2r∗
〈·〉c − 2π2r∗ 2v∗

)
,

Lεε =
(−∂T̃ 0

2〈·〉 −∂T̃

)
,

Nεε =
(

2rεvε

v2
ε − π2r2

ε

)
,

Nεεε =
(

2rεvεε + 2rεεvε

2vεvεε − 2π2rεrεε

)
,

Next we collect terms by order in ε. At first order we recover
the linear problem (B6) at the Turing bifurcation:(

2v∗ 2r∗
jT

1 − 2π2r∗ 2v∗

)(
rε

vε

)
=

(
0

0

)
.

Recalling that jT
1 is given by Eq. (C4), we find the neutral

solution: (
rε

vε

)
= Auc cos φ, (C10)

where A is the small amplitude with slow time dependence that
we aim to determine and uc is the critical eigenmode given by
Eq. (C1). Substituting the solution (C10) into the nonlinear
forcing terms Nεε we find

Nεε = A2

2

(
π−1

v2∗ − π2r2∗

)
[1 + cos(2φ)],

which implies that, at second order, the solution must neces-
sarily contain homogeneous and second spatial components(

rεε

vεε

)
=

(
rεε0

vεε0

)
+

(
rεε2

vεε2

)
cos(2φ).

Equating the homogeneous, second-order terms of Eq. (C9),
we find

−
(

2v∗ 2r∗
j0 − 2π2r∗ 2v∗

)(
rεε0

vεε0

)
= A2

2

(
π−1

v2∗ − π2r2∗

)
,

and left-multiplying this equation by L−1
c and using Eq. (12),

we find(
rεε0

vεε0

)
= A2

4r∗
(
jT

1 − j0
)(

2v∗ −2r∗
2π2r∗ − j0 2v∗

)(
π−1

v2∗ − π2r2∗

)
,
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which gives the coefficients

rεε0 = 3v2
∗ − π2r2

∗
2
(
jT

1 − j0
) A2, (C11)

vεε0 = 2πv4
∗ − v∗j0 − 3π/2

2
(
jT

1 − j0
) A2. (C12)

Proceeding similarly, we find the coefficients corresponding
to the second spatial Fourier modes:

rεε2 = 3v2
∗ − π2r2

∗
2
(
jT

1 − j2
) A2, (C13)

vεε2 = 2πv4
∗ − v∗j2 − 3π/2

2
(
jT

1 − j2
) A2. (C14)

Collecting the third-order terms of equation (C9), we obtain
the identity

−Lc

(
rεεε

vεεε

)
− Lεε

(
rε

vε

)
= Nεεε, (C15)

To obtain the desired amplitude equation, we shall left-
multiply Eq. (C15) by the left null-eigenvector (C2) and project
it into the first spatial Fourier mode. The first term on the
right-hand side of Eq. (C15) vanishes since u†

cLc = 0. The
second term is

Lεε

(
rε

vε

)
=

( −r∗∂T̃ A

v∗∂T̃ A + δj1r∗A

)
cos φ.

Finally, the nonlinear forcing term at the left-hand side of
Eq. (C15) is

Nεεε = −A cos φ

(
v∗(2rεε0 + rεε2) − r∗(2vεε0 + vεε2)

π2r∗(2rεε0 + rεε2) + v∗(2vεε0 + vεε2)

)

−A cos(3φ)

(
v∗rεε2 − r∗vεε2

π2r∗rεε2 + v∗vεε2

)
.

Thus, the solvability condition gives

u†
c

(
r∗∂T̃ A

−v∗∂T̃ A − δj1r∗A

)

= −Au†
c

(
v∗(2rεε0 + rεε2) − r∗(2vεε0 + vεε2)

π2r∗(2rεε0 + rεε2) + v∗(2vεε0 + vεε2)

)
.

(C16)

Substituting the coefficients (C11), (C12), (C13), and (C14)
into Eq. (C16) gives the desired amplitude equation

∂T̃ A = πr2
∗δj1A + ãA3, (C17)

where the parameter ã is

ã = π

(
5v4

∗ + π4r4
∗ − 5

2

)(
1

jT
1 − j0

+ 1/2

jT
1 − j2

)

− v∗

(
j0

jT
1 − j0

+ j2/2

jT
1 − j2

)
. (C18)

Equating Eq. (C18) to zero gives the critical boundary jc
2

separating subcritical and supercritical Turing bifurcations:

jc
2 = 3jT

1 − j0

2
+ 6

(
jT

1 − j0
)2

π2r3
∗

5 + 4π2r3∗
(
3j0 − jT

1 − 10π2r∗ + 4π6r5∗
) .

(C19)

FIG. 6. Algorithm used for the Euler integration of the QIF
neuron Eq. (2).

In dimensional form, Eqs. (C17), (C18), and (C19) are,
respectively:

τ∂T A = π
τ 2R2

∗
�

δJ1A + aA3, (C20)

a =
[
π

(
5�3

16π4τ 4R4∗
+π4τ 4R4

∗
�

−5�

2

)(
1

J T
1 −J0

+ 1/2

J T
1 − J2

)

+ �

2πτR∗

(
J0

J T
1 − J0

+ J2/2

J T
1 − J2

)]
, (C21)

and

J c
2 = 3J T

1 − J0

2

+ 6
(
J T

1 − J0
)2

π2τ 3R3
∗

5�2+4π2τ 3R3∗
(
3J0−J T

1 −10π2τR∗+ 4π6τ 5R5∗
�2

) .

(C22)

APPENDIX D: NUMERICAL SIMULATIONS

1. Numerical simulation of the QIF model

In numerical simulations, we used the Euler scheme with
time step dt = 10−3. Additionally, we considered the peak and
reset values vp = −vr = 100. The algorithm used to simulate
the QIF neuron (2) is shown in Fig. 6.

2. Numerical simulation of the ring network

To numerically implement the ring network of QIF neu-
rons we divided the ring into m = 100 intervals located at
φl = 2πl/m − π , where l = 1, . . . ,m. At each location φl ,
we considered n = 2.5 × 103 excitatory and n = 2.5 × 103

inhibitory neurons (i.e., the ring consisted of a total of
2N = 2m n = 5 × 105 QIF neurons).

The neurons in each location φl receive Lorentzian-
distributed currents, which have been generated using the
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formula

ηi = η̄ + � tan

[
π

2

2i − n − 1

n + 1

]
, i = 1, . . . ,n. (D1)

On the other hand, perturbations (applied at time t0) are
modeled using the function

P e,i(φ,t) = A(e(t−t0)/τr − 1) · cos(K · φ), (D2)

where A is the amplitude, K is the wave number, and τr is
the rising time constant of the perturbation. In Figs. 2, 3, and
5 we used t0 = 0.05 s, A = 0.3, and τr = 4 × 10−3 s. The
perturbations had a duration of 0.01 s.

Finally, the instantaneous firing rates in Fig. 2 are obtained
binning time and counting the spikes of neurons in each
interval φl within a sliding time window of size δt = 0.01 s.
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