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Abstract—We propose a new clustering technique called 

HeMI++. It uses cleansing and cloning operations that help to 

produce sensible clusters. HeMI++ learns necessary properties 

of a reasonable clustering solution for a dataset from a high-

quality initial population, without requiring any user input. It 

then disqualifies the chromosomes that do not satisfy the 

properties through its cleansing operation. In the cloning 

operation, HeMI++ replaces the chromosomes by high-quality 

chromosomes already found in the initial population.  We 

compare HeMI++ with six (6) existing techniques on twenty (20) 

publicly available datasets regarding the Tree Index. Our 

experimental results indicate a clear superiority of HeMI++ 

over existing methods. We also apply HeMI++ on a brain 

dataset and demonstrate its ability to produce sensible clusters. 

Keywords—data mining, clustering, genetic algorithms, 

artificial intelligence (AI) 

I. INTRODUCTION 

A. Clustering 

 Clustering is a well-known and an important technique 

that aims to group the similar records in one cluster and 

dissimilar records in different clusters [1-6]. Clustering has 

enhanced data analysis in a wide range of areas such as 

business [11], machine learning [12] social network analysis 

[13] and medical imaging [14]. 

K-means [5] is among the top ten most used clustering 

techniques [15] for its simplicity and a low complexity 

of 𝑂(𝑑𝑛) time where n is the size of the data set and d is the 

dimension. Although it is popular for its simplicity, it also 

has several well-known drawbacks. Fundamentally, K-

means is statistically biased (even on data from a mixture of 

multivariate normal distributions with equal variance and 

just one dimension, K-means converges to incorrect means). 

Another issue commonly attributed to K-means is its 

requirement of a user-defined number (𝑘) of clusters [6, 16]. 

In reality, it can be difficult for a user (data analyst) to 

estimate the suitable number of clusters in advance.  

Because K-means is essentially a hill-climber/gradient 

descent search method on a least square’s loss, K-means has 

a tendency to converge to poor local optima [10,16,17]. The 

random selection of the initial cluster centers in K-means is 

also considered to be a major drawback since it often results 

in a poor-quality final clustering solution [6,7]. Arthur and 

Vassilvitskii [6] proposed a clustering technique called K-

means++ that shows a theoretical competitive ratio if 

initialisation is cleverly used. However, experimental 

evaluations show that this variant does not alleviate K-means 

problems in practice [7]. 

 To overcome these limitations in recent years, many 

evolutionary algorithms such as stochastic search [18], 

simulated annealing [19] and genetic algorithms [2-4,7] for 

clustering have been proposed that achieve encouraging 

results.  

Genetic algorithms (GA) use randomised search and 

optimisation techniques emulating the concepts of natural 

activity of genes, individual selection, and the evolutionary 

process [2-4,7]. Typically, in GA for clustering, a 

chromosome is an encoding of a clustering solution, and a 

gene within a chromosome corresponds to a vector that 

encodes the centre of a cluster.  

However, there has some limitations on the existing GA-

based clustering techniques. Typically, in the initial 

population, the number of genes of a chromosome are 

generated randomly. The genes are also selected randomly 

from a dataset instead of careful consideration [3,4]. 

Carefully genes selection increases the possibility of getting 

high-quality chromosome in the initial population (recall the 

theoretical result of K-means++). Having high-quality 

chromosomes in the initial population improves speed as it 

typically reduces the algorithm’s number of iterations [2]. 

Rahman and Islam [2] presented a GA-based clustering 

technique known as GenClust that produces high-quality 

chromosomes in the initial population. However, users must 

provide a set of radius values for the chromosomes in the 

initial population. It can be difficult for a user to provide a 

suitable set of radius values.  

Our previous technique, HeMI [7] produces high-quality 

chromosomes in the initial population without requiring any 

user-defined parameter and produces good-quality clustering 

results. We recently proposed a genetic algorithm-based 

clustering technique called GenClust++ [20] where we took 

a slightly similar approach for the initial population of HeMI. 

In the initial population, GenClust++ uses K-means [5] or K-

means++ [16] multiple times with different values for the 

number k of clusters. That is, each value in {2, 3, …. 10} is 

used as the number (k) of clusters for K-means or K-
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means++. Thus, at least nine different clustering solutions 

progress in GenClust++ to a first ranking and culling phase. 

The initial population is probabilistically elected under a 

regime where chromosomes with higher cluster quality have 

greater chance to survive.  

However, unlike GenClust++, HeMI does not select the 

initial chromosomes probabilistically, instead, HeMI selects 

only the best chromosomes based on their fitness values. 

Moreover, HeMI++ generates 50% of the initial population 

from a deterministic phase and 50% from a random phase. 

In the deterministic phase, HeMI picks the initial population 

from the pool of chromosomes obtained through K-means 

using the value of k ranging from 2 to 10. In many data sets, 

the true number of clusters is more than 10. To handle such 

situations, in the random phase HeMI generates the initial 

population randomly with the value of k ranging from 2 to 

√𝑛 (where 𝑛 is the number of records in a dataset). 

However, HeMI also has some limitations. Although it 

produces high-quality chromosomes in the initial population, 

it does not take full advantage of them since they are not used 

in any other genetic operations. Through our intelligent use 

of the high-quality initial population, the genetic operations 

could be made more effective. It also does not use any data-

driven approach to learn the necessary properties of sensible 

clusters. Sometimes it produces non-sensible clustering 

solutions. 

In our previous paper [8] we demonstrate that some 

recent clustering techniques such K-means [5], K-means ++ 

[6], AGCUK [3], GAGR [4], GenClust [2] and HeMI [7] 

produces non-sensible clusters. Sometimes, they obtain a 

huge number of clusters, and sometimes they derive only two 

clusters, where one cluster contains one record, and the other 

cluster contains all remaining records. Interestingly, these 

clustering solutions often attain high fitness values based on 

existing evaluation criteria. We in this paper propose a new 

clustering technique called HeMI++ that produces sensible 

clusters with high fitness values. 

B. Main contributions of this study 

In this paper we propose a new clustering technique 

called HeMI++. HeMI++ is inspired by our previous 

techniques called CSClust [8] and HeMI [7] however, 

significant innovations upon those methods are the 

following: 

Technical contributions: 

• The use of multiple streams:  

▪ CSClust did not use any multiple streams.  

▪ HeMI used multiple streams, but it did not 

learn the reasonable cluster property from a 

data set and did not apply such knowledge 

for producing reasonable clusters.  

▪ HeMI++ uses multiple streams; like HeMI 

and unlike CSClust. Unlike HeMI, it learns 

the reasonable clustering property from a 

data set and applies that to produce 

reasonable clustering solutions.   

• Learning reasonable properties: 

▪ HeMI did not learn the reasonable 

clustering property and apply that. 

▪ CSClust learnt some reasonable property by 

applying DB-Index [26] on the initial 

population. This approach was problematic 

since the selection was biased by the 

inductive principle under of DB-Index. 

▪ HeMI++ learns properties of a reasonable 

clustering solution through a new approach 

(without using DB-Index), and then applies 

the knowledge in producing its clustering 

solutions (see Section 2.3.4). 

Experimental contributions: 

• Comparison: Techniques and Data sets 

▪ We compare HeMI++ with six other 

existing techniques on twenty (20) natural 

data sets.  

▪ CSClust was compared with five existing 

techniques on ten (10) data sets.  

• Complexity analysis: 

▪ We also analyze the complexity of HeMI++ 

and compare it with six other existing 

techniques, whereas in CSClust we did not 

present any complexity analysis. 

The rest of the paper is organized as follows: The 

proposed technique is described in Section II. In Section III, 

we discuss experimental results and Section IV provides the 

concluding remarks.   

II. OUR TECHNIQUE 

A. Main Components of HeMI++ 

We first mention the main steps of HeMI++ as follows 

and then explain each of them in detail.  

 

BEGIN 

 Step-1: Normalization 

DO: k=1to m /* m is the user defined number of streams */ 

      Step-2: Population Initialization 

END 

 Step-3: Selection of Sensible Properties 

DO: j=1to G /* G is the user defined number of intervals*/              

    DO: k=1to m /* m is the user defined number of streams */ 

DO: t=1to I /* I=10; I is the number of iterations */ 

    Step-4: Noise-Based Selection 

Step-5: Crossover Operation 

Step-6: Twin Removal 

Step-7: Three Steps Mutation Operation 

Step-8: Health Improvement Operation 

Step-9: Cleansing Operation 

Step-10: Cloning Operation 

Step-11: The Elitist Operation 

        END  

     END  

      Step-12: Neighbour Information Sharing 

END  

Step-13: Global Best Selection 

END 
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a. Component 1: Normalization 

HeMI++ first takes a data set 𝐷 as input and then 

normalizes each attribute of the data set 𝐷 in order to 

consider each attribute equally regardless of their domain 

size. This step is the same as HeMI [7]. 

 

b. Component 2: Multiple Stream 

HeMI++ uses the multiple stream approach of HeMI in 

order to take the advantage of using a big population through 

multiple streams where each stream contains relatively small 

number of chromosomes. It can process each stream 

separately in parallel in order to reduce the time complexity. 

It generates the chromosomes for each stream separately 

through the population initialization. Various components 

such as noise-based selection, crossover and mutation are 

applied on each stream separately. 

 

c. Component 3: Population Initialization 

HeMI++ generates the initial population of |𝑃| 
chromosomes, |𝑃|/2 from the deterministic phase and |𝑃|/2 

from the random phase. The value of  |𝑃|   in HeMI++ is set 

to 20. This component is same as HeMI [7]. 

 

d. Component 4: Selection of Sensible Properties 

HeMI++ selects |𝑃| top chromosomes from the generated 

initial chromosomes based on their fitness (DB value). Davis 

Bouldin Index [26] is biased towards low number of clusters 

and low number of records in a cluster [8]. Therefore, 

HeMI++ finds the necessary properties of a sensible 

clustering solution. The properties of the sensible clustering 

solution are then used in each generation in order to ensure 

that chromosomes in a population do not contradict the 

properties. 

In the initial population, HeMI++ produces 9×4=360 

chromosomes as it has 4 streams. Each stream generates 90 

chromosomes. HeMI++ finds the minimum number of 

records in a cluster for each of the 360 chromosomes. It then 

sorts these number in descending order and calculates the 

median of these numbers. The median value is then used as a 

property (of a sensible clustering solution) relating to the 

minimum number of records in a cluster. HeMI++ similarly 

finds the minimum and maximum number of clusters in a 

clustering solution, based on the 360 chromosomes. These 

values are then used in the cleansing operation in order to 

identify a sensible clustering solution. 

Note that CSClust [8] uses a similar component. 

However, there are some significant differences, First, 

CSClust does not use multiple streams and hence it finds the 

properties based on 90 chromosomes of its single stream. 

Second, in order to find the minimum number of records in a 

cluster CSClust identifies the best 20 chromosomes 

according to their DB Index values and then picks the 

minimum number of records in a cluster out of all clusters in 

these 20 chromosomes. Since the best 20 chromosomes are 

selected based on their DB Index values, CSClust also suffers 

from the drawbacks of DB Index in identifying the properties 

of a sensible clustering solution.  

 

e. Component 5: Noise Based Selection 

The chromosomes of two generations are compared in 

order to select the chromosomes for the consequent genetic 

operations. HeMI also uses this component.  

 

f. Component 6: Crossover Operation 

All chromosomes in a population participate in crossover 

pair by pair. The best chromosome (available in the current 

population) is selected as the 1st chromosome of the pair and 

the 2nd chromosome of the pair is selected probabilistically 

using the roulette wheel technique [6, 9]. The probability of 

a chromosome 𝑃𝑗  is computed as  𝑇𝑗  = (𝑓𝑗/ ∑ 𝑓𝑖
|P|
𝑖=1 ). Here, 𝑓𝑗 

is the fitness of the chromosome 𝑃𝑗 and |𝑃| is the size of the 

current population 

There are many approaches for crossover such as single-

point, multi-point, arithmetic and path-based crossover [2, 4, 

6, 20]. However, many existing techniques [2, 6, 7] use a 

single-point crossover, and it is commonly used in genetic 

algorithms. Moreover, Peng et al. [21] suggest that a single-

point crossover performs better than a multi-point crossover. 

Therefore, HeMI++ uses a single-point crossover where each 

chromosome of a pair is randomly divided into two 

segments, where some genes of the chromosome fall in one 

segment and other genes fall in the other segment. A segment 

of the first chromosome is then swapped with a segment of 

the second chromosome. Thus, two offspring chromosomes 

are generated from two-parent chromosomes. 

 

g. Component 7: Twin Removal 

We use the twin removal approach [2] to change/remove 

the identical genes. If a chromosome has two identical genes 

and, if the length of the chromosome is more than two, then 

HeMI++ deletes one of the two identical genes. If the number 

of genes of a chromosome is two and both genes are identical, 

HeMI++ then randomly changes an attribute value of a gene 

to ensure that there are no identical genes.   

 

h. Component 8: Three Steps Mutation Operation 

The mutation operation of the proposed technique 

changes each chromosome using three operations: division, 

absorption and a random change This component is same as 

HeMI [7].  

 

i. Component 9: Health Improvement Operation 

This component aims to continuously improve the health 

of chromosomes within a population in order to ensure the 

presence of healthy (high-quality) chromosomes in each 

generation. This component is same as HeMI [7].  

 

j. Component 10: Cleansing Operation 
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The aim of this component is to identify the 

chromosomes in a population with sensible and non-sensible 

solutions. This component is same as CSClust [8]. 

 

k. Component 11: Cloning Operation 

The cloning operation replaces the sick chromosomes 

found in the cleansing operation. This component is same as 

CSClust [8]. 

 

l. Component 12: The Elitist Operation 

The elitist operation carries the best chromosome 

throughout the generations and pass it to the next generation 

in order to improve the quality of the population [2-4, 6, 20]. 

This component is same as HeMI [7].   

 

m. Component 13: Neighbor Information Sharing 

HeMI++ uses the neighbor information sharing approach 

of HeMI [7] in order to share/exchange the best chromosome 

among neighboring streams at a regular interval such as at 

every 10th iteration. This component is same as HeMI [7].   

 

n. Component 14: Global Best Selection  

HeMI++ uses this component in order to find the global 

best chromosome among multiple streams.  This component 

is the same as HeMI [7]. 

B. The HeMI++ Algorithm 

We now present the HeMI++ algorithm, whose main 

steps is shown in Section 2 (A). HeMI++ first takes a data set 

D as an input and normalizes all attributes separately. It then 

takes the user defined number of multiple streams as like 

HeMI. The default number of multiple streams in HeMI++ is 

set to 4.  

HeMI++ then produces initial chromosomes for each 

stream separately through the Population Initialization. It 

then applies the Selection of Sensible Properties same as 

CSClust in order to find the necessary properties of a sensible 

clustering solution. HeMI++ applies the noise-based 

selection operation same as HeMI. 

HeMI++ then sequentially applies the Crossover, Twin 

Removal, Mutation and Health Improvement operation. 

HeMI++ applies the cleansing and cloning operation in order 

to increase the chance that all chromosomes in a population 

do not contradict with the properties of a sensible solution.  

It then performs the Elitist operation to find the best 

chromosome. In order to take the advantage of multiple 

streams HeMI++ then applies the neighbor information 

sharing component same as HeMI at a regular interval. In this 

study, the default value of the interval is 10 iterations. At the 

end of all iterations, HeMI++ applies the Global Best 

Selection operation same as HMI in order to find the final 

clustering solution.   

III. EXPERIMENTAL RESULTS AND DISCUSSION 

A. The Data Sets and the Evaluation Criteria 

We empirically compare our proposed technique called 

HeMI++ with six existing techniques namely K-means [5], 

K-means ++ [6], AGCUK [3], GAGR [4], GenClust [2] and 

HeMI [7] on a brain data set (CHB-MIT data set) [24, 25]. 

HeMI++ also compared with these existing techniques on 20 

natural data sets that are available from the UCI machine 

learning repository [22]. HeMI++ is compared with these 

techniques because they are recent, and better than many 

other techniques as shown in the literature [2-4,7,8]. Detailed 

information about the data sets is presented in Table 1.  

 
TABLE 1: A brief description of the data sets 

 
Data set No. of Records  

Hepatitis (HT) 155 

Glass Identification (GI) 214 

Statlog Heart (STH) 270 

Vertebral Column (VC) 310 

Ecoli (EC) 336 

Leaf (LF) 340 

Liver Disorder (LD) 345 

Credit Approval (CA) 690 

Breast Cancer Wisconsin Original (WBC) 699 

Blood Transfusion (BT)  748 

Pima Indian Diabetes (PID) 768 

Statlog Vehicle Silhouettes (SV) 846 

Bank Note Authentication (BN) 1,372 

Contraceptive Method Choice (CMC) 1,473 

Yeast (YT) 1,484 

Image Segmentation (IS) 2,310 

Wine Quality (WQ) 4,898 

Page Blocks Classification (PBC) 5,473 

MAGIC Gamma Telescope (MGT) 19,020 

Chess (King-Rook vs. King) (CKRK) 28,056 

 

B. The Parameters used in the Experiments 

For the experimentation of AGCUK [3], GAGR [4] 

GenClust [2], HeMI [7] and HeMI++ the population size is 

set to be 20 and the number of iterations/generations is set to 

be 50. In order to ensure a fair comparison among the 

techniques we maintain this consistency.  

In the experiments, the number of iterations of K-means, 

K-means++, and the number of iterations of K-means in 

GenClust set to be 50.  The number of clusters 𝑘 in GAGR, 

K-means and K-means++ is generated randomly. The 

threshold value for K- means is define as 0.005. 

The  𝑟𝑚𝑎𝑥  and 𝑟𝑚𝑖𝑛  values in AGCUK and HeMI are set 

to 1 and 0 respectively. For the cluster evaluation technique 

Tree Index [9,10], we need to build a decision tree from a 

data set where records are labelled on the clustering result 

that is being evaluated. While building the decision tree we 

need to assign a minimum number of records for each leaf. 
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In this study we assign 1% of records of a data set, as long 

as it stays within the range between 2 to 15. If 1% of records 

is less than 2 then we assign 2, and if 1% of records is more 

than 15 then we assign 15. On each data set, we run HeMI++ 

20 times and We present the average clustering results of 

each technique. 

C. Brain Data Set Pre-processing 

We prepare the CHB-MIT Scalp EEG data set [2,25] 

which contains EEG recordings of 22 epileptic patients from 

different age groups.  

Most of the cases 23 channels were used, only in some 

cases 24 or 26 channel were used. We divide the data in 

epochs of 10 seconds for each channel. We then calculate the 

Maximum (Max), Minimum (Min), Mean, Standard 

deviation (Std), Kurtosis, Skewness, Entropy, Line length 

and Energy for each epoch. Therefore, from each channel of 

one-hour data we get 360 records containing nine attributes: 

Max, Min, Mean, Std, Kurtosis, Skewness, Entropy, Line 

Length and Energy. 

In this article, we prepare one-hour data of one patient. 

This data set has the recordings of 23 channels. Hence, from 

all 23 channels altogether, we get 360*23=8280 records. In 

this data set the patient experienced a seizure for around 40 

seconds (from the 2996th second to 3036th second). During 

this period, we get 5 records. These records are considered as 

seizure records and all other records are considered as non-

seizure records. Therefore, from the chb_01_03 data set 

altogether we get 23*5= 115 seizure records and 8165 non-

seizure records. 

D. Evaluation of  HeMI++ and other techniques on the 

MIT-chb01_03 data set 

In this section, we empirically compere HeMI++ with K-

means [5], K-means ++ [6], AGCUK [3], GAGR [4], 

GenClust [2] and HeMI [7] on a brain data set (MIT-

chb01_03) through visual analysis of clustering results. We 

also compare all the techniques based on Tree Index [9,10] 

in order to validate the correctness of Tree Index evaluation. 

In this section, we use three attributes (Max, Min and Std) of 

the data set in order to plot the records so that we can see the 

records and their orientations. Such plots also help us to see 

clustering results and their appropriateness. 

 
TABLE 2. Clustering results of HeMI++ and other techniques on (MIT-

chb01_03) based on Tree Index 
 

Clustering Techniques Tree Index (lower the better) 

HeMI++ 0.55 
HeMI ∞ 

GenClust 5.27 

GAGR 19.89 
AGCUK 18.19 
K-means 27.41 

K-means++ 31.01 

 

Fig.1 shows the clustering result of HeMI on the CHB-

MIT Scalp EEG (chb01-03) data set. HeMI generates two 

clusters but one cluster contains only one record and all other 

records belong to the other cluster. Clearly, this does not 

appear to be a sensible clustering. From Table 2 we can see 

that according to Tree Index HeMI receives a poor evaluation 

result which is ∞. Therefore, the evaluation made by Tree 

Index matches with the manual evaluation (the visual 

analysis of the plotted records). 

Fig.2 shows the clustering result of AGCUK where it 

generates two clusters: seizure and non-seizure. Mainly, the 

non-seizure records appear in Cluster 1 and a mixture of 

seizure and non-seizure records are found in Cluster 2. 

Cluster 1 has 2836 non-seizure records (dots in Fig.2) and 0 

seizure records (plus signs in Fig.2), while Cluster 2 has 5389 

non-seizure records (triangles in Fig.2) and 55 seizure 

records (circles in Fig.2). We can clearly see that while the 

clustering result is more sensible than the clustering result of 

HeMI (see Fig.1), it is still not a good clustering result.  

Fig.3, Fig.4, Fig.5 and Fig.6 show the clustering results 

of GAGR, GenClust, K-means and K-means++ where 

GAGR, GenClust, K-means and K-means++ produce 56, 

477, 28 and 13 clusters, respectively. Considering that the 

data set has only two types of records: Seizure and Non-

seizure these clustering results with so many clusters also do 

not seem appropriate. This is also identified by Tree Index 

evaluation technique as shown in Table 2. 

As we can see in Fig.7, HeMI++ produces a sensible 

clustering solution as it matches with the original orientation 

of records in the data set. It produces two clusters: Cluster 1 

and Cluster 2. Cluster 1 contains 8219 non-seizure records 

and 38 seizure records, while Cluster 2 contains 6 non-

seizure records and 17 seizure records. As a result, HeMI++ 

also achieves a good evaluation value based on Tree Index as 

shown in Table 2. This re-confirms that Tree Index produces 

better evaluation value for better clustering solutions.  

E. Experimental Results on All Techniques on 20 Real 

Life Data Sets based on Tree Index  

We now experimentally evaluate the performance of 

HeMI++ by comparing it with K-means, K-means++, 

GAGR, AGCUK, GenClust and HeMI on 20 other real-life 

data sets. For each data set, we run each technique 20 times. 

 

 
 

Fig.1. Clustering result of HeMI on the CHB-MIT Scalp EEG (chb01-

03) data set 
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Fig. 2. Clustering result of AGCUK on the CHB-MIT 
Scalp EEG (chb01-03) data set 

 
 

Fig. 3. Clustering result of GAGR on the CHB-
MIT Scalp EEG (chb01-03) data set 

 

 
 

Fig. 4. Clustering result of GenClust on the CHB-
MIT Scalp EEG (chb01-03) data set 

 

 
 

Fig. 5. Clustering result of K-means on the CHB-
MIT Scalp EEG (chb01-03) data set 

 

 
 

Fig. 6. Clustering result of K-means++ on the CHB-MIT 

Scalp EEG (chb01-03) data set  

 
 

Fig.7. Clustering result of our proposed technique, 

HeMI++ on the CHB-MIT Scalp EEG (chb01-03) data 

set 
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Fig.8 shows the total score of all techniques on 15 

numerical data sets based on Tree Index [9,10]. In this 

scoring system, the technique with the best clustering result 

gets 7 points and the technique with the worst result get 1 

point - for each data set. Fig.8 shows the total scores of a 

technique over all data sets. The bar graph shows that 

HeMI++ achieves higher score than all other techniques.  

 

 
 

Fig. 8. Scores of the techniques on 15 numerical data sets based on Tree 

Index 

TABLE 3. Clustering results of HeMI ++ and other techniques on 5 

categorical data sets based on Tree Index 

 

Data set  GenCslust HeMI HeMI++ 

HT 1.94 0.59 0.46 

STH 1.75 ∞ 1.38 

CA ∞ ∞ 1.57 

CMC 0.78 ∞ 2.51 

CKRK 60.39 2.23 1.39 

 

We compare HeMI++ with GenClust and HeMI on 5 

categorical data sets (data sets that have only categorical 

attributes or both the categorical and numerical attributes). 

For each data set we run each technique 20 times and present 

the average clustering result. Table 3 shows that HeMI++ 

achieves better results in 4 out of 5 data sets than GenClust. 

HeMI++ performs better than HeMI in 5 out of 5 categorical 

data set.  

 

F. Statistical Friedman Test 

We now carry out statistical Friedman test [23] in order 

to evaluate the superiority of the results (Silhouette 

Coefficient) obtained by HeMI++ over the results obtained 

by the existing techniques and our proposed technique HeMI. 

We compute the Silhouette Coefficient for each algorithm 

according to rank-ordering as it is used in the Friedman Test 

[23]. Among the 7 competing algorithms, the one providing 

the best Silhouette Coefficient is assigned a Rank of 1, the 

second best to the Silhouette Coefficient receives a Rank of 

2 and so on (hence, the lower the average rank the better 

result). The result of ties is resolved by assigning the average 

of the sequential Silhouette Coefficient ranks they would 

have received. The Silhouette Coefficient Rank of each 

competing algorithm for each data set is presented within 

parentheses. The bottom row of Table 4 presents (within 

parentheses) the average of Silhouette Coefficient Rank (in 

short, Rank) of each competing algorithm from all data sets 

considered. 

From Table 4, we can see that K-means provides the best 

Silhouette Coefficient for no data set (Rank: 4.26), K-

means++ for no data sets (Rank: 4.40), GAGR for no data 

sets (Rank: 4.60), AGCUK for no data sets (Rank: 4.20), 

GenClust for 2 data sets (Rank: 3.50), HeMI for no data sets 

(Rank: 5.90) whereas HeMI++ achieves the best Silhouette 

 

TABLE 4: Silhouette Coefficient rank of the techniques based on Friedman Test [23] 

 

Data set Tree Index (lower the better) 

 K-means K-means++ GAGR AGCUK GenClust HeMI HeMI++ 

GI 2.11 (4) 1.87 (3) 3.47 (6) 0.92 (2) 2.47 (5) ∞ (7) 0.31 (1) 

VC 4.94 (4) 4.11 (3) 5.37 (5) ∞ (6.5) 3.55 (2) ∞ (6.5) 1.53 (1) 

EC ∞ (5) ∞ (5) 6.12 (2) ∞ (5) ∞ (5) ∞ (5) 2.94 (1) 

LF 2.64 (3) 3.05 (4) 3.53 (5) 1.32 (2) 3.71 (6) ∞ (7) 0.95 (1) 

LD 6.31 (6) 4.85 (5) 7.52 (7) 1.21 (3) 4.28 (4) 0.46 (2) 0.24 (1) 

WBC 5.92 (5) 7.07 (6) 8.24 (7) 3.21 (3) 5.58 (4) 2.38 (2) 1.28 (1) 

BT 5.81 (4) 5.73 (3) 0.47 (2) ∞ (6) ∞ (6) ∞ (6) 0.27 (1) 

PID 13.40 (4) 14.19 (5) 6.20 (3) ∞ (6.5) 3.72 (1) ∞ (6.5) 6.19 (2) 

SV 5.18 (6) 3.25 (4) 4.46 (5) 1.2 (2) 3.05 (3) ∞ (7) 0.00 (1) 

BN 4.25 (4) 5.59 (6) 4.64 (5) 1.89 (2) 2.51 (3) ∞ (7) 0.77 (1) 

YT 13.78 (4) 12.98 (3) ∞ (6) ∞ (6) 4.87 (2) ∞ (6) 2.44 (1) 

IS 3.12 (4) 2.48 (3) 5.19 (5) 2.11 (2) ∞ (6.5) ∞ (6.5) 1.53 (1) 

WQ 32.64 (4) 47.09 (5) 15.37 (3) ∞ (6.5) 7.98 (1) ∞ (6.5) 13.26 (2) 

PBC 13.15 (4) 14.18 (5) 10.21 (3) ∞ (6.5) 4.77 (2) ∞ (6.5) 0.44 (1) 

MGT 62.06 (3) 128.61 (6) 100.09 (5) 72.92 (4) 30.67 (2) ∞ (7) 18.89 (1) 

Average rank (4.26) (4.40) (4.60) (4.20) (3.50) (5.90) (1.13) 
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Coefficient in 13 out of 15 data sets (Rank 1.13). We now 

conduct a statistical significance test [23] in order to assess 

the superiority of HeMI++ over the existing techniques The 

Friedman [23] test is a non-parametric test used to compare 

multiple algorithms on multiple data sets. For our instance of 

the Friedman test, the null hypothesis is that all algorithms 

are equivalent. If the null hypothesis is rejected, we can 

proceed with a post-hoc test such as the Bonferroni-Dunn test 

[23].  The Friedman statistics is distributed according to 𝑋𝐹
2 

with  (𝑘 − 1) degrees of freedom when 𝑘 (the number of 

competing algorithms) and 𝑁 (the number of data sets) are 

big enough (as a rule of a thumb, 𝑘 > 5  and 𝑁 > 10)  [62]. 

Iman and Davenport [64] demonstrated that Friedman’s 𝑋𝐹
2 

is undesirably conservative and derived a better statistic 𝐹𝐹 =
(𝑁−1)𝑋𝐹

2

(𝑘−1)−𝑋𝐹
2. With 7 algorithms and 15 data sets, the value of 

𝐹𝐹  is calculated to be11.64. With  =0.05 the critical value 

of 𝐹𝐹 is calculated to be 2.13. 

We can see that the critical value remains lower than the 

pair wise differences of ranks between the control clustering 

algorithm (HeMI++) and all other contending algorithms (K-

means vs HeMI++: 3.13, K-means++ vs HeMI++: 3.26, 

GAGR vs HeMI++: 3.46, AGCUK vs HeMI++: 3.06, 

GenClust vs HeMI++: 2.36 and HeMI vs HeMI++: 4.76) 

indicating that HeMI++ performs better (in terms of 

Silhouette Coefficient) than all other algorithms on 15 real-

life data sets.   

IV. CONCLUSION 

In this paper we propose a new clustering technique 

HeMI++ that first learns important properties of sensible 

clustering solutions and then applies the information in 

producing its clustering solutions. When we apply HeMI++ 

on a brain data set we find that the proposed clustering 

technique overcomes the existing problem and produces 

sensible clustering solutions. 

We empirically compared our proposed clustering 

technique (HeMI++) with six existing techniques on 20 

publicly available data sets in terms of our Tree Index 

evaluation technique. We find that HeMI++ achieves the best 

clustering solutions in 17 out of 20 data sets. Moreover, we 

graphically visualise the clustering results of HeMI++ on a 

brain data set and find the results to be more sensible than 

others 
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