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Highlights 33 

 Large longitudinal study evaluating multiple urban exposures  34 

 Air pollution, green spaces and built environment were associated with small 35 

changes in early life BMI trajectories 36 

 Associations were strongest during the first two month of life. 37 

 Important to take into account multiple exposures in urban settings. 38 
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Abstract 61 

Urban environments are characterized by multiple exposures that may influence body 62 
mass index (BMI) growth in early life. Previous studies are few, with inconsistent 63 

results and no evaluation of simultaneous exposures. Thus, this study aimed to assess 64 
the associations between exposure to air pollution, green spaces and built environment 65 

characteristics, and BMI growth trajectories from 0 to 5 years. This longitudinal study 66 
used data from an electronic primary care health record database in Catalonia (Spain), 67 

including 79,992 children born between 01/01/2011 and 31/12/2012 in urban areas and 68 
followed until 5 years of age. Height and weight were measured frequently during 69 

childhood and BMI (kg/m2) was calculated. Urban exposures were estimated at census 70 
tract level and included: air pollution (nitrogen dioxide (NO2), particulate matter <10μm 71 

(PM10) and <2.5μm (PM2.5)), green spaces (Normalized Difference Vegetation Index 72 
(NDVI) and % green space) and built environment (population density, street 73 

connectivity, land use mix, walkability index). Individual BMI trajectories were 74 
estimated using linear spline multilevel models with several knot points. In single 75 

exposure models, NO2, PM10, PM2.5, and population density were associated with small 76 
increases in BMI growth (e.g. β per IQR PM10 increase=0.023 kg/m2, 95%CI: 0.013, 77 

0.033), and NDVI, % of green spaces and land use mix with small reductions in BMI 78 
growth (e.g. β per IQR % green spaces increase=-0.015 kg/m2, 95%CI: -0.026, -0.005). 79 

These associations were strongest during the first two months of life. In multiple 80 
exposure models, most associations were attenuated, with only those for PM10 and land 81 

use mix remaining statistically significant. This large longitudinal study suggests that 82 
early life exposure to air pollution, green space and built environment characteristics 83 

may be associated with small changes in BMI growth trajectories during the first years 84 

of life, and that it is important to account for multiple exposures in urban settings 85 

 86 
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1. Introduction  98 

Childhood obesity is a major public health concern because of the high prevalence 99 

levels world-wide ((NCD-RisC), 2017) and because it is associated with serious health 100 

consequences in later life including cardiovascular, musculoskeletal and endocrine 101 

diseases (Han et al., 2010). Childhood obesity is a multi-factorial disease in which 102 

different risk factors play a role at the individual (genetic and non-genetic), family, 103 

neighbourhood and community level (Franco et al., 2010). It is increasingly recognized 104 

that environmental exposures in urban areas such as air pollution, green spaces, and 105 

built environment could have an effect on infant and childhood growth and obesity (An 106 

et al., 2018; Galvez et al., 2010; James et al., 2015), and that such effects may start very 107 

early in life, during pre and early postnatal periods (Cameron, 2012). 108 

Prenatal exposures to air pollution and lack of green spaces have been associated with 109 

fetal growth restriction and lower birth weight (Agay-Shay et al., 2014; Gascon et al., 110 

2016; Li et al., 2017; Markevych et al., 2014; Nieuwenhuijsen et al., 2019; Vrijheid et 111 

al., 2016), which are known risk factors for altered growth trajectories during early life 112 

(Zheng et al., 2016)). However, little is known about the effect of these prenatal 113 

exposures on early postnatal growth. Previous studies on the relationship between 114 

prenatal exposure to air pollution and postnatal growth have reported inconsistent 115 

results (Fleisch et al., 2019, 2015; Fossati et al., 2020; Kim et al., 2018; Rundle et al., 116 

2019), and, to our knowledge, no previous studies have evaluated the association 117 

between prenatal exposures to green spaces and built environment with early postnatal 118 

growth. Studies on postnatal exposure in children have studied these exposures mainly 119 

at older ages in childhood (6-11 years);  these studies have observed inconsistent 120 

associations with BMI, growth or obesity for air pollution (An et al., 2018; de Bont et 121 

al., 2019; Dong et al., 2015; Fioravanti et al., 2018; Jerrett et al., 2014; McConnell et 122 

al., 2015), green spaces (James et al., 2015), and built environment characteristics 123 

(Dunton et al., 2009; Feng et al., 2010). Understanding the determinants of postnatal 124 

growth in the first years of life is important since early growth is known to have an 125 

important influence on the development of childhood and later adulthood obesity 126 

(Monteiro and Victora, 2005; Zheng et al., 2018).  127 

With a few recent exceptions (Bloemsma et al., 2019a, 2019b; Klompmaker et al., 2019, 128 

2018; Nieuwenhuijsen et al., 2018), studies on urban exposures and health outcomes 129 

have evaluated these exposures individually, thus not accounting for possible 130 

confounding or mediating effects of the spatially correlated urban exposures. In this 131 

regard, it would be of interest, for example, to account for mutual confounding between 132 

air pollution and noise in urban areas because of their common source, traffic 133 

(Nieuwenhuijsen 2016), or to consider whether air pollution and noise lie on a causal 134 

pathway between green space and growth. No previous studies have assessed the effect 135 

of multiple urban exposures on BMI growth trajectories during the first critical years of 136 

life.  137 
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In this study, we aimed to evaluate associations between early life urban air pollution, 138 

green spaces and built environment exposures measured at birth and individual body 139 

mass index growth trajectories during the first 5 years of life, using single and multiple 140 

exposure approaches. 141 

2. Materials and Methods 142 

2.1. Data Source 143 

This study used prospectively collected data from the Information System for Research 144 

in Primary Care (SIDIAP; www.sidiap.com) in Catalonia, Spain (Bolíbar et al., 2012) 145 

(Figure S1). SIDIAP contains data from anonymized healthcare records of nearly 6 146 

million people from over 287 primary care centres in Catalonia. It holds longitudinal 147 

data from 2006 onwards on anthropometric measurements, disease diagnoses, 148 

medication, laboratory tests, demographic and lifestyle information. The SIDIAP 149 

population represents around 80% of the Catalan population and is highly representative 150 

of the entire Catalan region in terms of geographic, age, and sex distributions (García-151 

Gil et al., 2011). 152 

2.2. Study design and study population 153 

This longitudinal study included 79,992 children born between 1st January 2011 and 31st 154 

December 2012, living in urban areas of Catalonia and with at least one height and 155 

weight measurement recorded at the same visit during the first year of life. Urban areas 156 

were considered areas with more than 10,000 habitants and a population density higher 157 

than 150 habitants/km2 (Figure S2). Children were followed up until they reached 5 158 

years of age, transferred-out of SIDIAP, death, or until the end of the study period (31st 159 

December 2016). This study was approved by the Clinical Research Ethic Committee of 160 

the IDIAPJGol (code: P16/179). 161 

2.3. Body mass index (BMI) assessment 162 

Height (nearest 0.1 cm) and weight (nearest 100g) were routinely measured following 163 

the same protocol by paediatricians and paediatric nurses in primary care centres as part 164 

of the “childhood with health” program (Generalitat de Catalunya, 2008). The program 165 

recommends measuring height and weight after birth at 30 days, 2 months, 6 months, 166 

between 12-15 months, 2 years, and between 3 and 4 years. Height and weight were 167 

used to calculate body mass index (BMI) (kg/m2). BMI z-scores were calculated (WHO 168 

Multicentre growth reference study group, 2006). Biologically implausible values of 169 

height, weight and BMI (values with z-scores <-5 or >+5) were identified using cut-170 

points proposed by WHO and removed (WHO (World Health Organization), 1995). A 171 

conditional growth percentile model was applied to children with more than one 172 

measurement to remove implausible values in height and weight trajectories (values 173 

with <4 SD or >4 SD the expected conditional height or weight were removed) up to 174 

age 5 years (Yang and Hutcheon, 2016). 175 

2.4. Exposure assessment 176 
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Exposure assessment was conducted at census tract level. There were 5019 census tracts 177 

in Catalonia with a median size of 0.12 km2 and a median population density of 12,857 178 

(5th percentile = 13 persons/km2; 95th percentile = 71338 persons/km2). The exposure 179 

level of each child was set to the census track location of their baseline residence, which 180 

was defined as the first BMI measurement (for 96% of the dataset this was at birth). 181 

Data sources and time periods of the different exposure assessments are specified in 182 

table S1. 183 

 184 

2.4.1. Ambient air pollution  185 

We estimated 2009 annual census residential levels of nitrogen dioxides (NO2), nitrogen 186 

oxides (NOx), particulate matter <10 μm (PM10), between <10 μm and <2.5 μm 187 

(PMcoarse), <2.5 μm (PM2.5) and PM2.5 light absorption (PM2.5abs) using a land use 188 

regression (LUR) model developed within the ESCAPE framework for Catalonia; a 189 

detailed description can be found elsewhere (Beelen et al., 2013; Eeftens et al., 2012). 190 

The LUR model predicted 62-76% of the variation in pollutant levels in our study area 191 

during 2009. To estimate at census level, an artificial grid points data set with n random 192 

points was created within each census tract based on its area, thus increasing the density 193 

of points in smaller areas and reducing the number of points in larger areas. We ensured 194 

that at least 5 observations predicted within each census areas. Air pollution was then 195 

averaged by census area (Nieuwenhuijsen et al., 2018).  196 

2.4.2. Green space 197 

Two definitions of green spaces were estimated for each census tract. First, the 198 

Normalized Difference Vegetation Index (NDVI) was used to assess average greenness 199 

of each census tract. The NDVI was derived from the Landsat 8 at a spatial resolution of 200 

30 m. NDVI is an indicator of greenness based on the difference between visible red 201 

and near-infrared surface reflectance. NDVI values range from -1 to +1, with higher 202 

values indicating more greenness (Weier J and Herring D, 2000). Negative values 203 

correspond to water bodies and were set to zero. We obtained cloud-free images within 204 

the greenest season (April to July) during 2010–2014 and then we averaged them. 205 

Second, the percentage of green space was calculated as the area covered by of green 206 

space within a census tract derived from the land cover map of Catalonia from 2009 207 

(CREAF, 2009). On both exposures, we added a 300 meter buffer to the census tract 208 

estimates to account for surrounding greenness.   209 

2.4.3. Built environment characteristics 210 

Several built environment characteristics were estimated using different data sources for 211 

the years nearest to our study period (table S1). Population density and household 212 

density were calculated as the number of inhabitants and number of households, 213 

respectively, divided by the census area (km2). Street connectivity was defined as the 214 

number of intersections that are not dead-ends, divided by the census track area. Land 215 

use mix (Shannon's Evenness Index) was calculated to provide the proportional 216 

abundance of each type of land use in the census track plus a 300 meter buffer, using the 217 
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land cover map of Catalonia. Finally, we developed an indicator of walkability, adapted 218 

from  previous walkability indexes (Duncan et al., 2011; Frank et al., 2006), calculated 219 

as the mean of the deciles of population density, street connectivity, facility richness 220 

index, and land use mix in each census, giving a walkability score ranging from 0 to 1. 221 

2.5. Covariates 222 

From SIDIAP, we obtained individual level covariates, including sex, age and child 223 

nationality. Information on socioeconomic status (SES) was available through the 224 

deprivation MEDEA index at census track level (Domínguez-Berjón et al., 2008). The 225 

deprivation index is based on 5 indicators related to work (unemployment, manual and 226 

eventual workers) and education (insufficient education overall and in young people) 227 

obtained from the Spanish national census of 2001. This indicator was stratified in 228 

quintiles based on the whole region of Catalonia and not on our specific study 229 

population. The 1st and 5th quintiles were the least and most deprived areas, 230 

respectively. This indicator was only available for urban areas. Nationality was grouped 231 

in 5 categories: Spanish, African, North/Central/South American (98.4% were from 232 

Central and South America), Asian and European. Further, we identified all “movers”, 233 

i.e. children that changed residency at least once during follow-up. Additionally, for 234 

68% of the children in SIDIAP, mother and child were linked through the number of 235 

affiliation to the social security; a detailed description can be found elsewhere (Duarte-236 

Salles et al., 2018). With the mother-child linkage we were able to get information on 237 

maternal socioeconomic and lifestyle characteristics including smoking during 238 

pregnancy (yes/no) and pre-pregnancy maternal BMI (kg/m2). 239 

For around 52% of the study population we were able to calculate average census noise 240 

levels. These were calculated as the average sound pressure level over all days, 241 

evenings, and nights in the year 2012 (Lden) and obtained from the Strategic Noise Map 242 

of Catalonia (Generalitat de Catalunya, 2012). The map was developed with a set of 243 

standardised noise measurements, according to the Environmental Noise Directive 244 

2002/49/EC (European Commission, 2002). To estimate at census level, we overlaid the 245 

street-level noise maps with the census tracts and we averaged exposure after a noise 246 

length weight procedure (Nieuwenhuijsen et al., 2018). Noise exposure values were 247 

available for 70% of the areas with more than 100,000 persons and a population density 248 

more than 3,000 people/km2. 249 

2.6. Statistical analyses 250 

2.6.1. Building the statistical model 251 

We fitted a linear spline multilevel model that estimated childhood individual BMI 252 

growth trajectories from birth until the age of 5. We included all children with at least 253 

one BMI measurement under a missing at random assumption. We modelled BMI 254 

trajectories at two levels: a specific occasion-level (level 1) that captures the 255 

measurement error in the BMI values, and an individual-level (level 2) that captures 256 

each individual’s deviation from the average trajectory (Howe et al., 2016). 257 
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The non-linear relationship between BMI and age was modelled using a linear spline 258 

with several knot points. To visualize the possible knot points, we first fitted the best 259 

fitting-curve with a fractional polynomial and we identified the possible number and 260 

timing of the knot points selection. Then, we evaluated several models with different 261 

knot points location (from 2 to 5 knot points) around different time periods where a 262 

larger number of BMI measurements were available in our dataset (this was at 2 263 

months, 6 months, 12 months, 24 months and between 36 and 48 months). The best-264 

fitting linear spline model was selected by comparing the Akaike Information Criterion 265 

(AIC) and Bayesian Information Criterion (BIC) of different models and the percentage 266 

of predicted values within 5% of the observed values (Howe et al., 2016). The linear 267 

spline multilevel model we selected had knot points at 2, 6 and 24 months (Figure S3). 268 

Furthermore, to account for differences in BMI trajectories between boys and girls, sex 269 

was included as an interaction term with each spline period. Since the measurement 270 

error of height and weight vary over time, we also modelled the complex level 1 271 

variation. We did this by allowing the within-subject variation to change over time by 272 

adding three constant terms at level 1 for time periods 0-2 months, 2-6 months and 6-60 273 

months (n.b., we merged the last two spline periods to aid convergence). All analyses 274 

were conducted using the runMLwiN command in R (version 3.5.1.) that calls the 275 

MLwiN program  (Rabash et al., 2009; Zhang et al., 2016).  276 

2.6.2. Single exposure models 277 

The linear spline multilevel model was fitted to evaluate the single associations between 278 

each urban exposure on BMI growth. We added each urban exposure as a fixed effect 279 

and assumed the urban exposure had the same effect on BMI trajectories across all 280 

spline periods. The main model for each exposure was adjusted for sex (as an 281 

interaction term with each spline period), deprivation index and nationality. Levels of 282 

urban exposures were assigned at baseline and were kept constant for all spline models. 283 

In all the models we treated the exposure levels as continuous variables (interquartile 284 

[IQR] increase).  285 

2.6.3. Multiple exposure models 286 

We developed multiple exposure models in order to evaluate possible confounding or 287 

mediating effects of the spatially correlated urban exposures. We identified the potential 288 

pathways linking each urban exposure to BMI growth based on a DAG, and selected 289 

confounders for each urban exposure individually (Supplement Figure S4). Based on 290 

this DAG, we considered green spaces and built environment characteristics to be 291 

mutual confounders as they are part of the urban design. Further, green spaces and built 292 

environment characteristics can partly determine the levels of air pollution in a city and 293 

air pollution may thus be on the causal pathway from these exposures to BMI growth. 294 

Therefore, we added air pollution in the models for green space and built environment 295 

as possible mediator (to date, it is not possible to apply a causal mediation framework in 296 

the runMLwiN package), and evaluated if the effect estimates for green spaces and 297 

population density changed when we included air pollution in the model (Preacher and 298 
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Kelley, 2011)Finally, we adjusted the association between air pollution and BMI growth 299 

for green spaces and built environment as they are considered confounders (Supplement 300 

Figure S4).  301 

The indicators within each group of exposures (air pollution, green spaces and built 302 

environment) are highly correlated. Thus, we selected only one indicator for each 303 

exposure group for the multiple exposure models. For this, we used the indicator which 304 

was most strongly associated with BMI in the single-exposure models. We estimated 305 

variance inflation factors (VIFs) to estimate the multicollinearity between the 306 

exposures.  307 

2.6.4. Sensitivity analyses 308 

Sensitivity analyses were performed to assess the robustness of our results: a) we added 309 

an interaction term between the exposure and each spline term (exposure-spline 310 

interaction model). This exposure-spline interaction model allows the effect of the 311 

exposure on BMI to differ between each spline period, including the baseline at birth, 312 

and estimates the effect of exposure on BMI growth per year for each spline period. b) 313 

we evaluated potential effect modification by socio-economic status by stratifying our 314 

analysis by quintiles of the deprivation index; c) we stratified the analyses by movers 315 

(children that changed residency at least once during follow-up) and non-movers; d) we 316 

evaluated whether maternal smoking during pregnancy and pre-pregnancy maternal 317 

BMI were potential confounders using the  reduced mother-child linked dataset; e) we 318 

evaluated whether noise exposure was a confounder in the association between air 319 

pollution and BMI growth using the reduced dataset with available noise estimates. f) 320 

We excluded children who were born preterm (< 37 gestational week) and children born 321 

<2.500g regardless gestational age, as this children may affect BMI trajectories 322 

significantly. 323 

3. Results 324 

Study population 325 

In our study population (N=79,992), 49% of children were girls, 23% lived in the most 326 

deprived areas and 83% had Spanish nationality. Children were followed up for an 327 

average of 4.7 years and had a median of 11 BMI measurements during the follow-up 328 

(Table 1). During the 5-year follow-up period 18% changed their census residency at 329 

least once.  330 

Urban exposure distribution 331 

The percentage of the children living in census tracts with median annual levels of NO2, 332 

PM10 and PM2.5 above the WHO guidelines (<40, <20 and <10 µg/m3, respectively), 333 

was more than 75% for PM10 and PM2.5 and 50% for NO2 (Table 1). Children lived in 334 

census tracts with a median of 11.9% of green spaces and 19,299 people/km² of 335 

population density. Figure S5 shows the spearman correlation between the different 336 

urban exposures in the full dataset. The air pollutants were negatively correlated with 337 
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green spaces exposures and walkability (rs =-0.3 to -0.7), and positively correlated with 338 

the other built environment characteristics (rs = +0.2 to +0.6). Green spaces were 339 

positively correlated with walkability (rs = 0.7) and negatively correlated with the other 340 

built environment characteristics (rs = -0.3 to -0.6). Highly correlated urban exposures 341 

(rs > 0.9) were excluded from the analyses, including NOx and PMabs (correlated with 342 

NO2), PMcoarse (correlated with PM10), and household density (correlated with 343 

population density).  344 

Single exposure models 345 

In single exposure models we observed that NO2, PM10, PM2.5 and population density 346 

were associated with a small increase in BMI growth from birth until the age of 5 347 

(Figure 1 and Table S2). The average increase in BMI over these 5 years for each 21.3 348 

µg/m3 (IQR) increase in NO2 exposure was 0.018 kg/m2 [95%CI: 0.006, 0.030]. Effect 349 

estimates were of similar magnitude for the other air pollutants (PM10: β = 0.023, 350 

[95%CI: 0.013, 0.033]; PM2.5: β=0.007, [95%CI: 0.000, 0.013]) and population density 351 

(β=0.019, [95%CI: 0.007, 0.030]). In addition, we observed that NDVI, % of green 352 

spaces and land use mix were associated with a small reduction in BMI from birth until 353 

the age of 5 (NDVI: β = -0.011, [95%CI: -0.021, -0.002]; % green spaces: β = -0.015, 354 

[95%CI: -0.026, -0.005], land use mix: β = -0.027, [95%CI: -0.042, -0.012]). There was 355 

no association between street connectivity or walkability score and BMI growth. Crude 356 

models (not adjusting for deprivation index and nationality), gave very similar results 357 

for all exposures (Table S2).  358 

In sensitivity analyses, the exposure-spline interaction model, showed that associations 359 

were strongest in the 0-2 month period (spline 1) (Table 2). In the other periods, i.e. 2-6 360 

months (spline 2), 6-24 months (spline 3) and 24-60 months (spline 4), the associations 361 

between the exposure and BMI growth were weak and did not reach statistical 362 

significance. Further sensitivity analyses showed that effect estimates were largely 363 

similar across quintiles of the deprivation index for most exposures; NDVI, % green 364 

spaces and land use mix showed somewhat stronger association with reduced BMI 365 

growth in the first and fifth quintiles than in the other quintiles (Figure S6). When 366 

restricting the study population to movers the associations between the urban exposures 367 

and BMI growth remained similar as in the entire population (Table S3). Effect 368 

estimates for the associations between the urban exposures and BMI growth did not 369 

change substantially after adding maternal smoking during pregnancy and pre-370 

pregnancy BMI to the model in the reduced dataset with linked maternal data (Table 371 

S4). In the reduced population with noise data, the effect estimates of air pollution were 372 

not significant and they did not change after adjustment for noise (Table S5). Excluding 373 

children born premature or children born <2.500g regardless gestational age did not 374 

changed the effect estimates (Table S6). 375 

Multiple exposure models 376 

Urban exposures that were associated with BMI growth single exposure models were 377 

evaluated in the multiple exposures models (Figure 2 and Table S7). The effect 378 
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estimates of PM10 and land use mix remained similar after adjusting by other urban 379 

exposures (PM10 (β) = 0.020 [95% CI: 0.008, 0.033]; land use mix (β) = -0.023, 380 

[95%CI: -0.043, -0.003]). Effect estimates for NO2, PM2.5 , % green spaces, NDVI and 381 

population density were attenuated and no longer statistically significant after adjusting 382 

for other urban exposures (Figure 2 and Table S6). When we added air pollution as 383 

mediator to models for green spaces and built environment effect estimates attenuated. 384 

The VIF values ranged from 1.3 through 2.3 indicating no multicollinearity among the 385 

different urban exposures. 386 

4. Discussion 387 

In this large longitudinal study, we were able to assess for the first time the association 388 

between multiple early life urban exposures and spline-based BMI growth trajectories 389 

during the first 5 years of life. In single exposure models, we found that NO2, PM10, 390 

PM2.5, and population density were associated with increased BMI growth, whereas 391 

NDVI, % of green spaces and land use mix were associated with reduced BMI growth. 392 

The associations between the exposures and BMI growth appeared strongest during the 393 

first two months of life. In multiple exposure models, most associations were close to 394 

the null and no longer statistically significant after adjustment for potential confounding 395 

by other exposures or when air pollution was added as potential mediator; only those for 396 

PM10 and land use mix remained statistically significant. Overall effect estimates were 397 

small.  398 

Early life includes prenatal and early postnatal periods, representing windows of 399 

particular vulnerability to the influence of environmental exposures, because of the 400 

rapidly changing growth rates during these years and because environmental exposures 401 

may permanently change the structure, physiology and metabolism of the child’s body 402 

(Dietz, 1994; Gluckman and Hanson, 2004). We assigned exposures around the time of 403 

birth in order to represent both prenatal and early postnatal life exposures as it was not 404 

possible to separate these periods in our data. In any case, urban exposures for those 405 

who do not move would not be expected to change substantially during our study 406 

period, thus making it impossible to distinguish between periods. Our findings therefore 407 

suggest that exposure to air pollution, green spaces and built environment during these 408 

two periods may alter childhood BMI growth trajectories before the age of 5, especially 409 

during the first two month of life. We suggest that the stronger associations observed in 410 

the earliest part of the growth trajectories may be explained by an effect of exposure 411 

during pregnancy. Prenatal exposure to air pollution has quite consistently been 412 

associated with fetal growth restriction and lower birth weight (Li et al., 2017; Vrijheid 413 

et al., 2016), which are known risk factors for faster growth trajectories during the first 414 

months of life (Claris et al., 2010; Zheng et al., 2016). Further, several studies have 415 

documented an association between green space exposure during pregnancy, and faster 416 

fetal growth and higher birth weight (Agay-Shay et al., 2014; Markevych et al., 2014; 417 

Nieuwenhuijsen et al., 2019). Our findings suggests that effects on fetal growth and 418 

birth weight may continue after birth and resulting in faster BMI growth for air 419 

pollution and maybe population density, and slower BMI growth for green spaces and 420 
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land use mix. We note that for air pollutants, the stronger associations observed in the 421 

first 2 months after birth appear to be followed by reversal of the association between 422 

month 2 and 6, where we observe slower BMI growth with increased air pollution 423 

exposure. Further, in the first 2 months, we also observed that BMI growth increased 424 

with PM10 exposure but decreased slightly, and non-statistically significantly with PM2.5 425 

exposure despite the high correlation between these two pollutants (rs = 0.74). We don’t 426 

have a clear explanation for this result, but speculate that this could be related with the 427 

narrow range of PM2.5 (IQR of 1.5 µg/m3) obscuring any positive association. The 428 

effects of different air pollutants on very early postnatal growth trajectories require 429 

replication in future studies. 430 

Regarding air pollution, the few studies that assessed the role of prenatal air pollution 431 

exposure to postnatal BMI growth have inconsistent results (Fleisch et al., 2019, 2015; 432 

Fossati et al., 2020; Kim et al., 2018; Rundle et al., 2019). A prospective cohort in 433 

Massachusetts (US) evaluated BMI at birth (N=1838) and at 6 months (N=1030), they 434 

observed that prenatal exposure to air pollution was associated with reduced foetal 435 

growth and rapid weight gain (Fleisch et al., 2015). A cohort study in Boston (US) 436 

followed 1649 children from 10 weeks of gestation until 7.7 years of age and did not 437 

find an association between prenatal exposure to traffic pollution (PM2.5) and BMI 438 

growth trajectories (Fleisch et al., 2019). A small (N=535) New York cohort study 439 

reported no association between prenatal exposure to airborne polycyclic aromatic 440 

hydrocarbons and BMI z-score trajectories (Rundle et al., 2019). Finally, a study in 441 

Southern California (N=2.318) evaluated both prenatal and postnatal exposure on 442 

postnatal BMI growth. This study reported increased BMI growth between 6.5 and 9.5 443 

years of age with increased traffic related air pollution (NOx) during the first year of 444 

life, but did not find an association for prenatal exposure (Kim et al., 2018). However, 445 

they found prenatal and postnatal exposures to be highly correlated and were unable to 446 

conclude which exposure time period contributed more to BMI growth. Finally, a 447 

Spanish birth cohort of 1724 mother-child pairs found that higher exposure of air 448 

pollution in the first trimester of pregnancy was associated with increased risk of being 449 

in a trajectory with accelerated BMI gain between birth and four years (Fossati et al., 450 

2020). Overall, the effect estimates in these studies were small and of similar magnitude 451 

to those observed in our study (in the order of a few decimals of BMI increase per year 452 

per IQR increase in air pollution). Studies on air pollution exposures during mid-453 

childhood (4-11 years) have reported an increased BMI or risk of childhood obesity 454 

with increased levels of exposure (de Bont et al., 2019; Dong et al., 2015; Jerrett et al., 455 

2014; McConnell et al., 2015); null associations (Fioravanti et al., 2018; Frondelius et 456 

al., 2018) and lower obesity risks have also been reported (An et al., 2018). Our study 457 

suggests that associations between NO2 and PM2.5, but not PM10, and BMI growth may 458 

be partly explained by green spaces and built environment characteristics. This may be 459 

explained by the fact that NO2 and PM2.5 are more related to traffic in urban areas than 460 

PM10 (HEI (Health Effects Institute), 2010; Pérez et al., 2010), and thus could be more 461 

influenced by adjusting for other urban exposures related to traffic. At the same time, 462 

we should note that the high correlations between air pollution and built environment 463 
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characteristics (correlation coefficients up to 0.6 in our data) would always make it hard 464 

to separate air pollution effects from those of other urban exposures.  465 

The biological mechanisms underlying the effect of air pollution and BMI growth are 466 

starting to emerge. Some animal studies have observed that pre-natal exposure to air 467 

pollution affects fetal growth and reduced birth weight in mice (Blum et al., 2017; 468 

Weldy et al., 2014). Air pollution is suggested to alter fetal growth through oxidative 469 

stress, inflammation, alter placental growth and foster endocrine disruption, among 470 

others (Kannan et al., 2006). One mice study found that in utero exposure to diesel 471 

exhaust reduced low birth weight and increased body weight in adult mice (Weldy et al., 472 

2014). In addition, prenatal exposure to air pollution may also affect neuroinflammation 473 

on the brain stimulating appetite or anxiety inducing over-eating in adult mice (Bolton 474 

et al., 2012). Post-natal exposure of air pollution can affect basal metabolism known to 475 

increase obesity by inducing insulin resistance, visceral inflammation and adiposity, and 476 

hormone disruption in mice (Sun et al., 2009; Xu et al., 2010). The basal metabolism 477 

can be affected also through an inflammatory effect of air pollution on other tissues, 478 

including the cardio-respiratory system (Haberzettl et al., 2016; Wei et al., 2016). 479 

To our knowledge, ours is the first study to assess the association between early life 480 

exposure to urban green spaces and BMI growth during early childhood years; our 481 

results indicate that green space exposure may be associated with reduced BMI growth 482 

up to 5 years of age, and particularly in the first two months of life, although this 483 

association was attenuated when built environment characteristics (a confounder for this 484 

association) or air pollution (a potential mediator) were added to the models. Previous 485 

studies in older children (evaluating childhood exposure) were largely of cross-sectional 486 

design and showed mixed results (James et al., 2015). The attenuation of our green 487 

space association after adjustment for population density shows the importance of 488 

including wider urban environment characteristics as potential confounders in green 489 

space studies. The underlying mechanisms for the inverse association between green 490 

spaces and early BMI growth could be explained mainly through two different 491 

pathways. First, green spaces are a valuable source for physical activity for the mother 492 

and the child and therefore have the potential beneficial effect on the development of 493 

both the fetus and the young child (Dadvand et al., 2019; James et al., 2015). Second, 494 

the potential association between green spaces and BMI growth could be explained 495 

through a reduction of air pollution levels in greener areas during pregnancy and first 496 

year of life (Markevych et al., 2017). Supporting this, in our study we observed an 497 

attenuation of the effect of green spaces on BMI growth after adjusting for air pollution, 498 

indicating possible mediation. Each of these pathways requires further elucidation 499 

(James et al., 2015; Lee and Maheswaran, 2011; Markevych et al., 2017) 500 

Our study is one of the first studies to evaluate the influence of early life exposure of the 501 

urban built environment on post-natal BMI growth; our results indicate that population 502 

density maybe associated with increased BMI growth, whereas land use mix is 503 

associated with decreased BMI growth. However, only land use mix remained similar 504 

after adjusting for green spaces. To our knowledge, prenatal exposure to built 505 
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environment characteristics has not been studied in relation to postnatal growth. Only 506 

one previous study evaluated the associations between many urban exposures during 507 

pregnancy and birth weight (Nieuwenhuijsen et al., 2019). They did not report 508 

consistent associations between built environment characteristics (including building 509 

density, facility density, street connectivity and land use mix) and birth weight after 510 

adjusting for other urban exposures (Nieuwenhuijsen et al., 2019). Studies on postnatal 511 

exposure to the built environment and obesity during mid-childhood, adolescence or 512 

adulthood, have associated areas with lower population density with higher levels of 513 

childhood obesity, whereas greater land use mix and walkability of neighbourhoods 514 

have been  associated with lower levels of childhood obesity (Dunton et al., 2009; Feng 515 

et al., 2010). The effect of less populated areas on childhood obesity may be explained 516 

through reduced levels of physical activity in the US (Feng et al., 2010). Conversely, in 517 

our Spanish setting, increased population density was associated with increased BMI 518 

growth. In our setting, more populated areas represent higher traffic intensity which 519 

may be associated with perceived lack of safety among children and parents, and would 520 

reduce active commuting and increase childhood obesity (Huertas-Delgado et al., 2017). 521 

Another explanation is that more populated areas have higher levels of air pollution 522 

which could be associated with BMI growth. Supporting this, we observed an 523 

attenuation of the effect of built environment characteristics on BMI growth after 524 

adding air pollution to the models, indicating possible mediation. Our finding of 525 

reduced BMI growth with increasing land use mix is in line with previous studies (Feng 526 

et al., 2010). There is no clear consensus how land use mix affects body mass index 527 

(Nieuwenhuijsen, 2016). The main hypothesis is that increased land use mix decreases 528 

distances between home, work and amenities, thereby it reduces trips distances, 529 

increasing active modes of transport and levels of physical activity, thus affecting BMI 530 

(Feng et al., 2010). Land use mix is one of the built environment characteristics 531 

contributing to walkability; our results suggest that land use mix indeed has a beneficial 532 

effect on BMI growth and further detailed studies are needed to examine which 533 

environmental factors or individual behaviours might explain this.  534 

Major strengths of this study are its longitudinal design, its large sample size covering 535 

urban areas in the entire Catalan region (nearly 80.000 children), its assessment of 536 

multiple urban exposures, and its use of repeated BMI measurements over time. We 537 

developed BMI growth trajectories during early life based on multiple splines to 538 

characterise detailed growth patterns. Linear spline multilevel model are a 539 

simplification of growth trajectories and they assume linear growth. BMI has clearly a 540 

nonlinear growth between 0-5 years, but we minimized non-linearity by adding several 541 

knot points (at 2, 6 and 24 months). Further, linear models are more interpretable than 542 

non-linear models and the results can be compared across populations (Howe et al., 543 

2016; Tu et al., 2013). Our study applied single and multiple exposure models to look at 544 

each factor individually, accounting for other urban exposures as confounders or 545 

mediators. There are few previous studies that have included this type of assessment. 546 

Although new approaches have been proposed to study multiple urban exposures, 547 

including multipollutant models (Dominici et al., 2010), the exposome framework 548 
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(Agier et al., 2016) and joint effect models (Tanner et al., 2020), there is no clear 549 

consensus on the best methods to use. Future studies should consider these different 550 

approaches depending on their research aims. 551 

Our study also faced some limitations. Our exposure assessment was aggregated at 552 

census track level, reducing individual variability and accuracy. This may have 553 

introduced misclassification, especially for air pollution exposure as it tends to be more 554 

local and with higher variability. However, we expect that this misclassification to be 555 

non-differential as the exposures were estimated independently from health outcomes 556 

and potential confounders, systematic error would be unlikely and would bias effect 557 

estimates towards the null (Nieuwenhuijsen, 2015)  For green spaces and built 558 

environment we expect to introduce more misclassification in larger census areas that 559 

are less populated. Further, our air pollution levels are estimated in 2009, before our 560 

study period (2011-2012), which could have led to misclassification. However, studies 561 

have found that the spatial variation of air pollution levels using the land use regression 562 

model remains stable over periods of 10 years (Eeftens et al., 2011). We cannot entirely 563 

rule out residual confounding as an explanation for our findings. First, we did not have 564 

information on individual behaviours related to obesity, particularly diet and physical 565 

activity. Also, although we adjusted for census deprivation index and child’s 566 

nationality, residual confounding by individual socioeconomic status cannot be ruled 567 

out. However, levels of our urban exposures varied little by quintiles of the deprivation 568 

index (data not shown) and our models adjusting and not adjusting for deprivation gave 569 

very similar results, indicating that deprivation had little confounding effect in our 570 

models. Furthermore, in our sensitivity analysis maternal smoking and BMI during 571 

pregnancy, two variables related to socioeconomic status, did not confound the 572 

observed associations. Lastly, we were only able to test the confounding effect of noise 573 

in a reduced dataset in which only PM10 showed an association with BMI growth.  574 

Finally, we highlight that although the small changes in BMI growth observed in this 575 

study may not be clinically important on an individual level, they may have an impact at 576 

the population level. We calculated that children exposed to the 90th percentile of NO2 577 

and NDVI had a predicted BMI at 5 years of 15.98 kg/m2 and 15.86 kg/m2, respectively, 578 

whereas children exposed to the 10th percentile the predicted BMI was 15.86 kg/m2 and 579 

15.93 kg/m2, respectively. Nowadays, 80% of the children in SIDIAP live in urban 580 

areas and have widespread exposure to the urban factors we included in our study; even 581 

small changes in BMI at these early ages may be important at a population level over 582 

the longer term. 583 

To conclude, this large longitudinal study suggests that early life urban exposure to 584 

increased levels of air pollution and population density may be associated with a small 585 

increase in BMI in very young children, whereas green spaces and land used may be 586 

associated with a small decrease BMI. Stronger associations were observed during the 587 

first two month of life. Future studies should take account of multiple urban exposures 588 

in urban settings.  589 
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Table 1: Child baseline characteristics and urban exposure distribution of the study 955 

population (N=79,992). 956 

 
Study population 

N=79,992 

Baseline characteristics  

Age at baseline, median years (p25; p75) 0.0 (0.0; 0.0) 

Girls, N % 38,940 (48.7%) 
Deprivation index (quintiles), N %  

    First (Least deprived) 13,539 (16.9%) 

    Second 15,314 (19.1%) 

    Third 16,012 (20.0%) 
    Fourth 16,778 (21.0%) 

    Fifth (Most deprived) 18,349 (22.9%) 

Nationality, N %  
    Spain 66,532 (83.2%) 

    Africa  7436 (9.3%)  

    America  1370 (1.7%)  

    Asia  2642 (3.3%)  
    Europe  2012 (2.5%)  

Years of follow-up, means (SD) 4.7 (0.6) 

Number of BMI measurements, median (p25; p75) 11 (9; 13) 
Moved during follow-up, N % 14,937 (18.7%) 

Mothers with information on smoking during pregnancy and 

maternal pre-pregnancy BMI, N % 

30,487 (38.1%) 

   Smoking during pregnancy, N % 9676 (31.7%) 

   Maternal pre-pregnancy BMI, mean kg/m2 (SD) 24.9 (4.8)   

Noise data available, N % 41,676 (52.1%) 

    Noise levels (dB(A)) , median (p25; p75) 63.3 (60.7;66.1) 
Gestational age, N %  

    Born at term 67,857 (84.8%) 

    Born preterm  5554 (6.9%)  
    Missing  1027 (8.2%)  

Birth weight, N %  

    Born ≥2500 g 71,400 (89.3%) 
    Born <2500 g  5657 (7.1%)  

    Missing  1027 (3.7%)  

Urban exposures distribution  

Air pollution:  
    NO2 (µg/m³), median (p25; p75) 43.4 (30.8; 52.1) 

    PM10 (µg/m³), median (p25; p75) 35.0 (31.9; 38.1) 

    PM2.5 (µg/m³), median (p25; p75) 14.9 (14.1; 15.5) 
Green spaces:  

    NDVI , median (IQR) 0.2 (0.2;0.3) 

    % green spaces , median (p25; p75) 11.9 (0.8; 34.0) 

Built environment:  
    Population density (people/km²), median (p25; p75) 19,299.8 (6515; 40533) 

    Street connectivity (intersections/km²), median (p25; p75) 182.5 (107.3; 275,4) 

    Land use mix, median (p25; p75) 0.3 (0.1; 0.5) 
    Walkability index, median (p25; p75)  0.6 (0.5, 0.7) 
p25 = 25th percentile, p75 = 75th percentile, NO2 = nitrogen dioxides, PM10 = particulate matter (PM) <10 μm, PM2.5 = 957 
PM <2.5 μm, Lden = annual average of day, evening and night noise levels, NDVI = normalized difference 958 
vegetation index. Values are mean (SD) for continuous normal distributed variables, median (interquartile range) for 959 
continuous non-normal distributed variables, and percentage for categorical variables 960 
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Table 2: Associations between urban air pollution, green spaces and built environment, and BMI growth for each period. 961 

Urban exposures 

BMI growth (N=79,992) 

 0-2 months  

(spline 1)
 

β
a
 (95% CI) 

2-6 months
 

(Spline 2) 

β
a
 (95% CI) 

6-24 months 

(Spline 3)
 

β
a
 (95% CI) 

24-60 months
 

(Spline 4) 

β
a
 (95% CI) 

Air pollution     

NO2 (per 21.3 µg/m3) 0.109 (0.021; 0.198) -0.059 (-0.099; -0.020) -0.002 (-0.011; 0.008) 0.022 (0.016; 0.029) 
PM10 (per 6.3 µg/m3) 0.096 (0.020; 0.172) -0.033 (-0.066; 0.001) -0.011 (-0.019; -0.003) 0.016 (0.010; 0.022) 
PM2.5 (per 1.5 µg/m3) -0.042 (-0.089; 0.004) -0.020 (-0.041; 0.001) 0.004 (-0.001; 0.009) 0.004 (0.000; 0.008) 
Green spaces     
NDVI (per 0.1 units) -0.191 (-0.263; -0.119) 0.002 (-0.029; 0.034) 0.012 (0.004; 0.019) -0.012 (-0.017; -0.006) 
% Green (per 33.2 % units) -0.177 (-0.255; -0.099) 0.020 (-0.015; 0.055) 0.001 (-0.007; 0.009) -0.007 (-0.013; -0.001) 
Built environment     

Population density (per 34018 people/km2) 0.341 (0.257; 0.424) -0.027 (-0.064; 0.010) -0.007 (-0.016; 0.002) 0.015 (0.008; 0.021) 
Street connectivity (per 168 intersection/km2) 0.105 (0.040; 0.169) -0.005 (-0.034; 0.024) -0.002 (-0.009; 0.004) 0.005 (0.000; 0.010) 
Land use mix (per 0.4 units) -0.236 (-0.347; -0.125) 0.001 (-0.049; 0.05) 0.003 (-0.009; 0.015) -0.011 (-0.019; -0.002) 
Walkability index (per 0.2 units) -0.052 (-0.142; 0.038) -0.005 (-0.046; 0.035) 0.001 (-0.008; 0.011) -0.005 (-0.012; 0.002) 
Note: NO2 = nitrogen dioxides, PM10 = particulate matter (PM) <10 μm, PM2.5 = PM <2.5 μm, NDVI = normalized difference vegetation index. Models were adjusted by sex, deprivation index 962 
and nationality.  963 
a beta values represent the BMI (kg/m2) growth rate change per year for each IQR increase in exposure. 964 
 965 

 966 

 967 
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Figure 1: Associations between urban air pollution, green spaces and built 969 

environment, and BMI growth during the first 5 years of life (beta values represents the 970 

average difference in BMI (kg/m2) for each IQR increase in exposure). This figure 971 

corresponds to supplement table S2. 972 

 973 

 974 

Models adjusted by sex, deprivation index and nationality. Associations are shown for an interquartile range increase 975 
in exposure. 976 
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Figure 2: Associations between urban air pollution, green spaces, and built 987 

environment, and BMI growth in multiple exposure models (beta values represents the 988 

average difference in BMI (kg/m2) for each IQR increase in exposure). This figure 989 

corresponds to supplement table S6. 990 

  991 

992 
All models were adjusted for age, sex, deprivation index and nationality. Associations are shown for an interquartile 993 
range increase in exposure. 994 

 995 


