
       Bachelor’s Degree in Bioinformatics (UPF-UPC-UB)  

      Final Grade Project  
  

Characterization of the full site frequency spectrum of GWAS 
risk alleles in psychiatric disorders  
 

Dmytro Pravdyvets  
 
Scientific directors:  Hafid Laayouni1, Oscal Lao Grueso2 

 
1Bioinformatics Studies, ESCI-UPF, Pg. Pujades 1, 08003 Barcelona, Spain, 2Population Genomics, Centre 
Nacional d'Anàlisi Genòmica (CNAG-CRG), Centre de Regulació Genòmica, Parc Científic de Barcelona - 

Torre I, Baldiri Reixac, 4, 08028 Barcelona  

 

Abstract   
  
Motivation:   
A Single Nucleotide Variant, (SNV) is a substitution of a nucleotide at a specific position in a genome that occurs due 
to a unique mutation that may have a phenotypic impact. Looking at this from an evolutionary perspective, the original 

allele is classified as the ancestral one and the substitution as the derived one. The assignation of each allele is based 
on other lineages, and in this study, it is based on the allele present in chimp. Moreover, in a population, each SNV can 
have a different proportion of ancestral and derived alleles, which can be quantified as its Derived Allele 
Frequency (DAF). By estimating DAFs over all the SNVs of a population we obtain the Site Frequency Spectrum 
distribution, also (SFS). It has been shown that the distribution is not random, and it is shaped by demographic and 
selective factors [3]. Therefore, given that the selective factors depend on the phenotypical effect, by analyzing the SFS 
of the SNVs that are associated to a phenotype we can obtain hints about the evolution of the studied phenotype. The 
main tool for this study are Genome-wide association studies, (GWAS), that give us information 

about SNVs frequencies associated to the selected complex phenotype [6]. In our study we analyzed the SFS pattern of 
different psychiatric disorders: Attention Deficit Hyperactivity Disorder (ADHD) [13], Autism Spectrum Disorder 
(ASD) [14], Bipolar Disorder (BIP)[15], Major Depressive Disorder (MDD) [18], Cannabis 
Addiction (CANNABIS) [19], Obsessive-Compulsive Disorder (OCD) [17] and Schizophrenia (SCZ) [16] using the 
data available at Psychiatric Genomics Consortium (PGC).  
 .   
Results:  
In this study we obtained and analyzed the SFS distribution of risk alleles (SFS-risk) of the selected phenotypes of 
interest. By using Multidimensional Scaling, also known as classical MDS or Coordinates Analysis, we looked for 
similar SFS-risk patterns. and we have seen that not all the disorders have the same SFS-risk pattern, and this indicates 
that the selective factors that were and are acting on these disorders are different.  More specifically ADHD, MDD and 
SCZ have an evidence of positive selection in the past, which may be due to the fact that the alleles related to those 
diseases may have been beneficial for the fitness of more ancient human populations, while how the environment and 
the society has evolved now, the mentioned traits are harmful. This statement does not seem to be true for other 
disorders, like BIP, where we did not observe the same pattern of the SFS-risk, meaning that this disorder evolved 

under different evolutive pressures.    
Supplementary material: Internship Project, GitHub repository https://github.com/DimaPravdyvets/FGP.git  
  

1. Introduction   
 

Early Anatomically Modern Humans, that are also considered first modern human populations, evolved in 

a specific African continent environment. Nevertheless, humans were able to spread all over the planet Earth, 
conquering a wide range of drastically different environments in a relatively short time. From a biological point of 
view, this has been possible because of two events [1]: incorporating genetic variants from archaic species by archaic 
introgression [2] and/or by incorporating genetic variants that increased the fitness of the carriers in the 
new environment. We know that many human traits are polygenic [8], which means that they are controlled by a high 
number of genetic variants in the genome (loci). Hundreds and sometimes thousands of loci may be controlling a 
specific trait, so incorporating variation at different positions may end up affecting the same phenotype. In this type of 
traits, under normal conditions, a stabilizing selection is controlling the genetic variation that is holding the population 

close to the optimal phenotype. Nevertheless, in case that there are changes in the optimal phenotype, the population 
can adapt to it through small changes in frequencies through the loci that are affecting the phenotype. There 

https://github.com/DimaPravdyvets/FGP.git


are several examples of selection acting on these traits, the easiest one to understand is height, where we can see a range 
of different heights across the population and not two groups of tall and short people only, other examples are skin 
color, eye color and other complex phenotypes.   

 
Until recently, it was very difficult to detect polygenic adaptation as the changes in the frequencies are very small and 

the classical methods for detecting selection are unable to detect them [4], [5].  A possible solution to this 
problem would be having functional information about the SNVs associated to the phenotype of interest and, based 
on that, perform different types of analyses. Genome-Wide Association Studies (GWAS) is an approach 
that can identify the variants associated to a specific trait while reporting the effect size and statistical significance of 
the association.  It is done by analyzing genetic variants in a large number of individuals where the 
complex phenotype of interest is known, and we have a set of cases and controls. The analysis is done by using 
genome-wide SNP arrays. By taking two groups, control and cases, it is expected to find variants at 
different frequencies in the two groups. The problem with commercial SNP arrays is that they identify regions with 

casual variants, therefore GWAS identify regions of common variants, showing regions of linkage disequilibrium that 
contain casual variants. The resulting data from the GWAS is imputed because genotype arrays in GWAS are based on 
tagging SNPs and do not genotype all of variants that are found. Hence, the genotype is inferred from a reference panel, 
for example 1000 Genome project. Then, for each marker a statistical test is applied to quantify the 
association between the phenotype and the genetic variant. The summary statistics of the GWAS analysis are 
interesting because they give a hint on the biological effect and the statistical relevance of such association, which 
is defined by its p-value.   

 
For this study we used GWAS summary statistics for psychiatric disorders. There are few reasons for that. First, it is 
known that genes that are expressed in the human brain has been submitted to selective pressures [34], [35]. Second, 

the available data for these disorders is of high quality, usually a high sample size for the GWAS analysis, no extreme 
beta values for the associated variants and a derived allele frequency (DAF) fitting the expected distribution, among 
other factors. The latest is quite important for the evolutionary analyses carried out in this study. Also, previous studies 
on some of the considered disorders suggest that these traits can be under selective pressures in the past [23], [24], 
[25]. Another reason for doing this type of analysis in this area is because the evolutionary model underlying the 
disorders is unclear, as it does not fit any of the known ones. This study is aimed to help to define the evolutionary 
patterns of different psychiatric traits, that can later be used with the information from other studies to understand the 
evolutionary models psychiatric disorders are following. It is known that they do not fit the classical model, where 
selection should remove genetic variation that reduces the fitness of an individual [32]. This may be caused by a set of 

factors, starting from other genes affecting the associated to the trait of interest variants, environmental factors 
and different forms of balancing selection like pleiotropic antagonism and sexual antagonism among others. Is worth 
considering that the common variation associated with psychiatric disorders was affected by processes related to local 
adaptation in European populations [28]. The most interesting relationships that were found are of geo-climate 
relationships with disorders like minimum winter temperature with schizophrenia, precipitation rate with major 
depression, among others. This information indicates that even on specific population level of European population, 
due to different local adaptations, the acting selective pressures may vary, which can be a subject for further analysis.   
The selected disorders for our study are: Attention Deficit Hyperactivity Disorder (ADHD), Autism Spectrum Disorder 

(ASD), Bipolar Disorder (BIP), Major Depressive Disorder (MDD), Cannabis Addiction, Obsessive-Compulsive 
Disorder (OCD) and Schizophrenia (SCZ). The GWAS summary statistics data was obtained from Psychiatric 
Genomics Consortium or PGC and were transformed previously in our lab to get the ancestral status of the variants 
(see Internship project).          

 
The objectives of this project are i) description of the SFS of risk alleles of the selected disorders from 
the available data, ii) Identification of evolutionary pattern of the risk allele of the analyzed phenotypes based on the 
SFS-risk and iii) Identification of clusters of similar phenotypes based on the similarity of the patterns present in the 
risk allele.   

 

2. Methods   
 
1. GWAS Databases  
 

GWAS data was obtained from PGC consortium (PGC webpage). The PGC consortium mainly gathers data from 
psychiatric GWAS studies published during the last 10 years. In this study we have focused on the psychiatric disorders 
described in Tab 1 after conducting a data screening. The subset of disorders we selected was based on 
different criteria. Firstly, we looked at the SFS pattern of the available disorders and discarded the ones with a pattern 
too extreme to be explained by demography or evolutionary processes. For example, anorexia only had Risk-Derived 

variants and Alcohol dependence only had variants at frequencies 0.0, 0.1, 0.2, 0.8 and 0.9, having no variants in 
between. Additionally, we were interested in studying disorders that are linked and related. After exploring the 
bibliography  [11], [12], we came to a conclusion that the subset of SCZ, MDD, ADHD, BIP, ASD and OCD is the one 
with highest linkage between them and CANNABIS was added to see if a different type of psychiatric disorder that 
previously has not been associated to other disorders will have a similar evolutionary pattern or not. The data used for 
the GWAS analysis of the datasets is of European ancestry, which adds homogeneity to our study.  

https://www.med.unc.edu/pgc/


The way to obtain information for a GWAS analysis is by using genome wide SNP arrays. By taking two groups, 
controls and cases we expect to observe different variants at different frequencies, normally the one that is associated 
to the trait of interest is going to be found at higher frequencies in the case group than in a control group. Once we have 

the frequencies, a statistical analysis is performed to indicate the likelihood of a variant being associated with 
a trait. The commercial SNP arrays do not generally identify causal variants, for that GWAS identify common variants, 
which show a region of linkage disequilibrium that contains the causal variant(s).  
  
The data we are working with has been imputed, because genotyping arrays in GWAS are based on tagging SNPs and 
do not genotype all existing variants. It is done by using known genotype from a reference panel, which in case of the 
data was 1000 Genome project reference panel. This approach boosts the coverage of genomic variation explained by 
the analysis, this lets a GWAS study report the effect of more SNVs than the ones covered by the original micro-

array. Another positive aspect is that this approach helps to narrow down the location of the causal variants in the 
linkage disequilibrium area. The reason to use this strategy is because sequencing the whole genome for each individual 
of the study can be too costly, so only a subset of genome is measured. In this study we are only working with SNVs, 
1 to 1 substitutions, not all the possible variations like deletion, insertion or copy number variants (CNV).  

 
2. Identification of the ancestral allele  
 

Most of GWAS studies report the risk in relation to the allele at low frequency (MAF) or the reference allele (RAF). 
To be able to determine possible pattern between the risk allele and the allele state (ancestral or derived), we first 
assigned the ancestral state of each SNV based on the allele present in chimp. Once the ancestral state was defined for 

the SNVs, the frequency of the alleles was calculated and always reported towards the derived allele. To compare 
different studies, the Odds Ratio were converted into Beta values by applying a log transformation.  In case the 
reported risk allele is not the same than the derived allele, we had to invert the association value, switch positions of 
the reference and derived allele and invert the frequency, so that the information we have is always referring to the 
derived allele. Besides that, for homogeneity, we transformed al the association values into Beta, changing Odds Ratio 
into log (Odds Ratio), which is equal to Beta and maintaining Beta in the datasets that already had it.    

 
3. Setting the threshold for the associated SNVs for each disorder  
  

Alleles reported as associated to a given psychiatric disease were defined using the associated p-value from the GWAS 
summary statistic. For this type of studies, the classical threshold for assuming that a SNV is truly associated is a p-

value being smaller than 10e-8. So, our first approach to identify and quantify Risk-Ancestral and Risk-Derived SNVs 
was done using that threshold.  Statistical power is function of sample size, allele frequency and effect size (defined 
as OR or beta) and p-values are highly affected by the size of the study.  Due to big differences in the sample sizes 
across the studies, we relaxed the threshold of statistical significance in some particular phenotypes, based on the 
sample size (see Tab 1) of the related study. For SCZ, MDD and CANNABIS the threshold was maintained at 10e-8, 
while for ADHD, ASD, BIP and OCD the threshold was lowered to 10e-6.   
  

Disorder  Case  Control  Total  
ADHD  20183  35191  55374  
ASD  18381  27969  46350   
BIP  29764  31358  61122  
CANNABIS  -  -  184765  
MDD  246363  561190  807553  
SCZ  36989  113075  150064  
OCD  2688  7037  9725  
 

Tab. 1. Sample size of the studies done for each disorder. This table represents the sample size each GWAS study that was done for the disorders 

had. It can be seen that OCD has less than 10000 individuals, which later implies problems with the data as we do not have enough statistical 

power. CANNABIS study did not describe the exact amount of cases and controls.   

 

4. DAF rounding  
 

To facilitate the analysis and data visualization in our study, the DAF values were rounded to 1 decimal, making a total 
of 10 DAF bins, starting at 0.0, and going by step of 0.1, up to 0.9. This change facilitates the representation of SFS-
risk distributions, interpreting their patterns using different methodologies. Besides that, by grouping SNVs of similar 

frequency into 1 group, we are making sure that the results are going to be more homogeneous and with less missing 
data which is better for the types of evolutionary analysis that are performed in this study.  

 
5.  Multidimensional Scaling   

  
Classical Multidimensional Scaling (MDS) [9] is a technique to reduce the dimensionality of the data from a distance 
matrix between objects. The map may be one, two, three and more dimensions. In our study we are using the Classical 
MDS, also known as Principal Coordinates Analysis (PCoA). MDS takes a similarity matrix between the 



objects computed using k features (i.e. coordinates), as an input, and outputs a coordinate matrix of uncorrelated 
variables sorted by their contribution in the distance matrix that minimizes the loss function called strain.  The strain 
function in classical MDS looks like this:  
                                

  
The main steps of the classical MDS are:  
  
1. Set up the matrix of squared proximities  
2. Apply the double centering: B= −1/2*J*P(2) *J using the matrix J=I−n−1*11′, where n is the number of objects.  
3. Extract the m largest positive eigenvalues λ1...λm of B and the corresponding m eigenvectors e1...em.  
4. An m-dimensional spatial configuration of the n objects is derived from the coordinate matrix X=Em Λ1/2, where Em is 
the matrix of m eigenvectors and Λm is the diagonal matrix of m eigenvalues of B, respectively.  
 
These new dimensions can be used to represent in a lower dimensional space the relationships of the different objects.  
 
We used two different approaches with MDS analysis in our study. The first one is based on a chi-squared computed 
distances computed with a two-way table of every possible combination of disorders per each DAF bin that has a 
number of Risk-Derived and Risk-Ancestral SNVs. This approach gives us 10 different matrices, that are then summed 
into one matrix that is used as the distance matrix. Tab 2 shows an example of the two-way table used to compute the 
squared chi for the values of 0.0 DAF bin, between ADHD and ASD.    
  

Disorder  Risk-Ancestral 0.0  Risk-Derived 0.0  
ADHD  85  102  
ASD  35  59  
 

Tab. 2. Example two-way table ADHD and ASD. An example table that was used in the computation of distances based on chi squared, same tables 

were done for each frequency bin and all the possible combination of disorders.    

 
In case of two-way tables that had 0 values in it, the resulting chi-squared did not have a value, so when obtaining the 
whole value by summing chi-squared of different bins, those NaN values were ignored.  

 
The second approach was done by using Euclidean distances from the ratios of Risk-Derived / Risk-Ancestral alleles 
per DAF bin computed from Tab 3. The computed distances were later used in the classical MDS to obtain the map.  

 

3.   Results and Discussion  
  
In this study we have analyzed the SFS of genetic variants associated to particular psychiatric disorders such 
as Attention Deficit Hyperactivity Disorder (ADHD), Autism Spectrum Disorder (ASD), Bipolar Disorder (BIP), 
Major Depressive Disorder (MDD), Cannabis Addiction, Obsessive-Compulsive Disorder (OCD) and Schizophrenia 
(SCZ). We have taken advantage of the summary statistics from GWAS made available at the PGC to generate the 
SFS using the evolutionary status (ancestral/derived) of the risk allele.  
  

1. SFS independently of the statistical association  
 

First, we computed the SFS independently of the statistical association. The shape of the DAF distributions we have in 
the datasets look like an exponential one, where we have a lot of SNVs at low frequencies and very few at high 
frequencies. This result is a classical theoretical prediction in population genetics [33]. From a time perspective, this 
result can be intuitively explained by the lifespan of a newly raised mutation. Due to forces like genetic drift 
and selective pressures such as negative selection, it is unlikely for a mutation to stay in a population for such a long 
time to reach a high frequency (right tail of the distribution), while de-novo mutations are a common event in human 
genomes (left tail of the distribution).  



  
 

Fig. 1. Attention deficit hyperactivity disorder total SNV count. This table represents the total amount of SNVs that are found per each frequency of 

the derived alleles in the population. We can see that there are a lot more SNVs for low DAF frequency, and very few for high frequency. The shape of 

DAF distribution looks like this because of different genetic forces acting on the SNVs, making it hard for them to get to high frequencies, while because 

of de-novo mutations and other events we get a lot of SNVs at low frequencies.  

 
2. Total number of associated SNVs after the filtering  
 

Once the thresholds of statistical association between the phenotype and the genetic variation were established, we used 
them to discard the non-significant SNVs. The subset of data we were left with was then separated based on the 
ancestral state of the SNV. Tab 3 shows the total counts of SNVs per different bins of DAF.   

 

Disorders  0.0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  Total  
ADHD  187  115  235  524  423  195  254  107  11  4  2055  
ASD  94  83  1822  124  94  118  204  19  16  1  2575  
BIP  308  836  610  535  681  409  162  102  197  8  3848  
CANNABIS  4  50  115  213  13  24  230  11  30  0  690  
MDD  157  562  783  478  992  708  268  311  117  7  4383  
SCZ  1374  1914  2099  1520  1309  832  839  722  215  25  10849  
OCD  11  2  26  22  23  10  4  7  0  0  105  
 

Tab. 3. Number of SNVs per DAF bin after the filtering. This table represent the number of SNVs each disorder has after filtering based on the p-

value associated to each SNV. BIP, OCD, ADHD and ASD had a p-value threshold of < 10e-6, while MDD, SCZ and CANNABIS were filtered using 

the classical threshold of <10e-8. The difference of the threshold is due to big differences in the sample sizes of the studies.  

 
We can see that SNVs reported as significant at high derived allele frequencies in the population are rare, or, in case of 
some disorders, absent. Besides that, we can see that frequencies between 0.3 and 0.7 are the ones that have the greatest 
number of variants in general. This is something that we expect to observe, considering that we are looking at polygenic 

traits and that GWAS have more power to detect statistically significant associations in variants at intermediate 
frequencies [6].  

 
3. Number of Risk-Ancestral and Risk-Derived SNVs in the selected disorders and SFS-risk 
distribution  
 

After the initial screening,  we quantified the amount of SNVs of each type (Risk-Derived and Risk-Ancestral) that 
are found in each bin of DAF, the bins were defined using 0.1 step, meaning that there is a total of 10 bins, starting at 
0.0 and ending at 0.9. The obtained table is the primary tool used in the rest of our analysis in this study. Some 
disorders do not have SNVs at certain bins or only have one type of alleles at that bin, 

making difficult to consider these bins in following analyses. Tab 4 represents this information.   
 
 
 
 



 
 

 
DAF            0.0            0.1            0.2            0.3            0.4             0.5             0.6            0.7             0.8            0.9  
Disorder  R-A  R-D  R-A  R-D  R-A  R-D  R-A  R-D  R-A  R-D  R-A  R-D  R-A  R-D  R-A  R-D  R-A  R-D  R-A  R-D  
ADHD  85  102  47  68  90  145  241  283  200  223  96  99  103  151  33  74  8  3  3  1  
ASD  35  59  38  45  631  1191  56  68  39  55  59  59  91  114  11  8  6  10  0  1  
BIP  152  156  325  511  246  364  218  317  308  373  167  242  57  105  36  66  66  131  5  3  
MDD  69  88  246  316  359  424  239  239  483  509  372  336  138  130  135  176  62  55  7  0  
SCZ  586  788  786  1128  868  1231  623  897  519  790  360  472  387  452  311  411  98  117  7  18  
CANN  1  3  29  21  54  61  100  113  9  4  9  15  105  125  7  4  14  16  0  0  
OCD  3  8  0  2  12  14  14  8  16  7  8  2  2  2  5  2  0  0  0  0  
 

Tab. 4. Total number of Risk-Derived and Risk-Ancestral alleles per DAF bin. Main table of the analysis where the amount of Risk-Derived (R-D) 

and Risk-Ancestral (R-A) alleles found in each DAF bin, CANN represents CANNABIS in this table.  

 
Substantial differences were observed between the SFS distributions for each disease when only the statistically 
significant SNVs where considered. Fig 2, Fig 3, Fig 4 and Fig 5 show the SFS distribution for each of the considered 
disorders of the study.  

 

  
 

Fig. 2. Attention deficit hyperactivity disorder and Autism Spectrum Disorder Ancestral State barplot. The barplots show us the amount of Risk-

Ancestral and Risk-Derived alleles that are found in each 0.1 bin of DAF frequency. ADHD shows and enrichment of SNVs in medium frequencies 

while ASD has a huge enrichment at frequency of 0.2, which is strange and can be caused by different genetic events like linkage disequilibrium, among 

others.   

 
ADHD plot shows that the frequency of SNVs at high DAF is small. SNVs at low DAF are a bit more frequently 
identified as statistically significant, and the most at medium frequencies. This result suggests that the distribution of 
SNVs statistically associated to a particular phenotype is a mixture between the genetic architecture of the disease, and 
the statistical power for detecting the associations. For SNVs at low and high DAF the statistical power for detecting 

an association given an effect size is smaller than for SNVs at intermediate frequencies. Since most of the SNVs in the 
population are at low frequency due to the evolutionary processes described previously, the expected proportion 
of statistically significant SNVs at high frequencies should be smaller compared to the fraction of SNVs at low 
frequencies, and both smaller than the proportion of SNVs at intermediate frequencies due to GWAS power. However, 
this expected pattern is not observed in ASD. This phenotype shows a very different and unique pattern that is not 
observed in other disorders, where at DAF=0.2, we see a huge enrichment of significant variants. This may be caused 
by allelic association or linkage disequilibrium where we have dependencies of frequencies at more than 2 loci.   



  
 

Fig. 3. Bipolar Disorder and Cannabis use disorder Ancestral State barplot. This barplots show us the amount of Risk-Ancestral and Risk-Derived 

alleles that are found in each 0.1 bin of DAF frequency. BIP shows a similar pattern to ADHD, where we have more SNVs at low-medium frequencies 

and less at high frequencies. CANNABIS has strange gaps at 0.4 and 0.5 frequency, which is not expected to happen and is quite strange.   

 
BIP shows a similar distribution as ADHD, while in CANNABIS there is a gap with few SNVs at 0.4 and 0.5. This 
result is unexpected, and it probably relates to some kind of ascertainment bias of the study when defining the SNVs. In 
fact, the data for CANNABIS study is a combination of data from 3 different resources, ICC (International Cannabis 
Consortium), UK-Biobank and 23andMe, because of that the genotypes were imputed using 1000 Genomes project 
phase 1 release reference set.  

  
 

Fig. 4. Major Depressive Disorder and Schizophrenia Ancestral State barplot. This barplots show us the amount of Risk-Ancestral and Risk-Derived 

alleles that are found in each 0.1 bin of DAF frequency. MDD and SCZ show the best plots in terms of no missing data, proper distributions and interesting 

patters, where in case of SCZ we can see that the amount of Risk-Ancestral alleles is decreasing for higher DAF.  

 
MDD and SCZ have very good proportions of SNVs per DAF bin. This can be due to the fact that those two disorders 
are the ones with the biggest sample sizes. Consequently, more significant SNVs have been identified. SCZ plot shows 
a very clear decrease in the number of Risk-Ancestral SNVs for higher frequency.   



  
 

Fig. 5.  Obsessive Compulsive Disorder Ancestral State barplot. This barplots show us the amount of Risk-Ancestral and Risk-Derived alleles that 

are found in each 0.1 bin of DAF frequency. As can be seen, there are frequencies where we have no SNVs like 0.8 and 0.9 and at 0.1, we only have 

Risk-Derived SNVs which makes it more difficult for us to use this data for other analysis. The most likely explanation of this is the small sample size 

for the OCD GWAS study as there are less than 10000 individuals in total, and even with a lowered to < 10e-6 p-value threshold, we only get 105 SNVs 

in total.  

 
As can be seen, due to the very small sample size of the OCD GWAS, we have only 105 significant SNVs. 
Moreover, some bins like 0.8 or 0.9 do not have significant SNVs and 0.1 only have 2 Risk-Derived SNVs. Overall, 
these results precluded meaningful results for OCD in some analyses.    

 
Given that the number of SNVs statistically associated depends on both biological and statistical factors, in order 
to control by the statistical power of each study to compare the diseases from an evolutionary point of view, we 
computed the ratio of statistically significant SNVs where the risk allele is the derived against the ones where the risk 
allele is the ancestral for each DAF bin, the resulting ratios can be seen in Tab 5. Fig 6 shows the plot of the logarithm 

of the ratios.      

 

Disorder  0.0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  
ADHD  1.2  1.44  1.61  1.17  1.12  1.03 1.46  2.24  0.375  0.33  
ASD  1.68 1.18  1.88  1.21  1.41  1  1.26  0.72  1.6667  NA  
BIP  1.02  1.57  1.47  1.45  1.21  1.44  1.84  1.83  1.985  NA  
MDD  1.27  1.28  1.18  1  1.05  0.90  0.94  1.30  0.8871  NA  
SCZ  1.34  1.46  1.41  1.43  1.52  1.31  1.16  1.32  1.1939  NA  
OCD  2.66  NA  1.16  0.57  0.43  0.25  1  0.4  NA  NA  
CANNABIS  NA  0.72  1.12  1.13  0.44 1.67  1.19  0.57  1.1429  NA  
 

Tab. 5. Ratio between Risk-Derived and Risk-Ancestral alleles per DAF bin. This table shows us the data we obtained by computing the ratio 

between Risk-Derived and Risk-Ancestral alleles of different disorders per each DAF bin. The NA values occur because some b ins i) do not have 

associated variants, ii) only have alleles of one type, either Risk-Derived or Risk-Ancestral, so the ratio cannot be computed or iii) due to very small 

amount of associated SNVs found in this bin, the obtained ratio is not representative and was not included.  



 
 

Fig. 6. Ratio between Risk-Derived and Risk-Ancestral frequencies. The plot shows the logarithm of the ratio between Risk-Derived and Rik-

Ancestral alleles found at each bin of frequency we have for each disorder. Values above 0 indicate that for a given DAF category there are more SNVs 

where the risk allele is the derived allele whereas negative values indicate that there are more SNVs where the ancestral allele is the risk allele. Notice 

that for some diseases and DAF there were not enough observations of one of the categories and therefore they are not represented.  It can be seen that 

some disorders show a similar pattern. For example, MDD and SCZ show a clear decrease in Risk-Derived and increase in Risk-Ancestral SNVs for 

higher frequencies Similar statement can be done for ASD, ADHD and CANNABIS, even though their patterns are different. BIP on the other hand show 

a completely opposite pattern, where there are more Risk-Derived alleles for higher frequencies than for lower ones. This may imply different selective 

forces acting on different disorders. OCD is very high to discuss as it has very little SNVs and some of the ratios may not be 

representative. Besides that, most of the disorder do not have ratio at 0.9 bin, due to lack of data and the resulting ratios being not representative.   

 
If there were no selective pressures, one can expect that within each DAF category the probability of being the risk 
allele should not depend on its evolutionary status (that is, the log of the ratio should be 0 or close to 0). However, the 

fact that we observe discrepancies in the ratios among diseases and DAF suggests that there are different selective 
pressures between diseases and between DAF categories. If we think in the classical birth-death-fixation process of a 
derived allele, one can expect that derived alleles at low frequencies in the population (i.e. DAF closer to 0) are 
relatively young in the population or are under negative selective pressures. In contrast, derived alleles at high 
frequency (i.e. DAF closer to 1) imply that either they have survived for long in the population or that there have 
been positive selective pressures for increasing its frequency in the population. Therefore, for a given 
disease the differences of the ratio along the DAF profile should reflect the evolutionary history of the disease.   
We can see that most of the considered disorders deviate from the ratio we would expect with no selective 

pressures. More specifically, SCZ and MDD show a very similar pattern, where the ratio tends to decrease for higher 
DAF categories. Taking into account that an event of positive selection would tend to increase the frequency of derived 
allele and that an event of negative selection would tend to decrease the frequency and increase the number of SNVs 
at low frequency, this result is in agreement with the presence of purifying selection ongoing in these phenotypes for 
long time. That is, new (derived) alleles that cause or are associated to an increase in the risk of suffering the 
disease are not tolerated and cleaned from the population over time. Interestingly, a previous study analyzing SCZ by 
means of classical tests of selection suggested that this trait was under positive selection [27] and same conclusions 
were obtained for ASD [23]. Our results would point to positive selective pressures towards the protective alleles 
against SCZ, in agreement with a recent study found evidence supporting a recent negative selection for SCZ risk 

alleles using another type of statistics [30]. Another study of selective pressures for psychiatric disorders detected 
evidences of negative selection for SCZ.  A similar statement can be made about ASD and CANNABIS, even though 
the pattern of these disorders is different compared to SCZ and MDD, but a similar one between them. An interesting 
pattern is seen in ADHD. The frequency of SNVs where the risk is the derived allele increases with the DAF up to 
0.7. This implies that genetic variants associated to the phenotype were more tolerated in the past that nowadays, in 
agreement with a previous study [24] and [31]. However, caution must be taken because the ratios > 0.7 seem to be not 
as representative as the rest. For BIP we see exactly the opposite pattern. For higher DAF we have more Risk-Derived 
SNVs than for low DAFs.   

 
Our results can also be interpreted from a biological point of view. Most of the analyzed phenotypes are associated to a 

lower fitness. It has been seen that patients affected by schizophrenia, autism, and anorexia nervosa had significantly 
less children [32]. Therefore, our results would agree with this empirical observation. However, ADHD patients show 
a mixture of phenotypes which, on average, should also decrease their fitness [36]. In our case, we observed a mixture 
of effects. For DAF close to 0 (I.e. present to current times) our results would agree with a lower fitness of ADHD. 
However, for older times this pattern is reverted. Overall, caution is advised when trying to interpret the evolutionary 
history of a disease based on the fitness that is estimated in the current particular environment. BIP did not show strong 
negative selection in the analysis, while in our study we can even see positive selection for BIP ancestral alleles. Lastly 



vulnerability to depression and substance use disorders may be preserved by balancing selection [32], suggesting that 
common variants depend on other genes or environmental factors and that the causal genes seem to be beneficial in the 
siblings of the affected individuals, which may help to explain the fact for positive selection for the associated SNVs 

in the past.  Lastly OCD shows a unique pattern, but this is explained by small number of associated SNVs, which gives 
lack if ratio at different DAF bins like 0.1, 0.8, 0.9 most likely due to the very small sample size of the related study.  

 
In summary, these results suggest that the different phenotypes are evolving by different evolutionary and 
selective forces. Besides that, we can also see that not all the patterns are similar. The next step in our analysis is to find 
similarities between the patterns and see what disorders have evolved in a similar way.   

 
4. MDS analysis  
 

In order to reduce the dimensionality to classify the diseases according to their evolutionary pattern as defined by the 
frequency of risk alleles associated to either the ancestral state or the derived state at each DAF bin, we used 
MDS. First, we analyzed the results obtained from the squared chi distances from the Tab 6, the resulting map can 

be seen in the Fig 7.   
  

Disorder  ADHD  ASD  BIP  MDD  SCZ  CANNABIS  OCD  

ADHD  0  13.32  15.9  20.38  28.26  14.72  12.43  

ASD  13.32  0  21.82  44.48  24.14  11.80  10.36  

BIP  15.9  21.82  0  58.89  29.08  20.49  16.55  

MDD  20.38  44.48  58.89  0  64  9.564  8.23  

SCZ  28.26  24.14  29.08  64  0  13.60  17.02  

CANNABIS  14.72  11.8  20.49  9.56  13.60  0  5.94  

OCD  12.43  10.36  16.55  8.23  17.02  5.94  0  
 

Tab. 6. Chi-Squared distances computed from original table containing all SNVS. This is the distance matrix that was computed using chi-squared 

on all the possible combination of disorders using a two-way table as shown in Tab 4. The diagonal distances are equal to 0, because we are 

comparing the disorder to itself.    

 

 
Fig. 7. MDS of chi-squared based distances. MDS map computed based on the chi-squared distances of two-way tables done across all the possible 

combination of disorders using data from Tab 6. Based on this map we can see that ASD, ADHD, OCD and CANNABIS are similar, while BIP, MDD 

and SCZ are different from the other disorders.   

 
The first dimension (41.04% of variance explained) places MDD at one side and SCZ at the other. The second 
dimension (20.71%) separates SCZ and BIP. Considering both, we can see that OCD is close to CANNABIS, ADHD 
and ASD.  This means that these four disorders show a similar risk allele profile over all the DAF bins. SCZ, BIP and 
MDD are far from all the points nor they are together if we look at them in Dimension 1. However, looking at MDD in 
Dimension 2 we can see that it is close to the original cluster of OCD, CANNABIS, ADS and ADHD.   
  
The second approach was done by using the ratios that were computed in the previous part of the study using Tab 3, 



those ratios can be seen in Tab 4. First, we computed the Euclidean distances between the ratios. This distance was 
later used in the Classical MDS. Fig 8 shows the projection of the different diseases in the first two dimensions.   
  

  
Fig. 8. MDS of the computed ratios. MDS map computed based on the Risk-Derived/Risk-Ancestral ratios from Tab 5. This map indicates that 

CANNABIS is similar to ASD, MDD is similar to SCZ. ADHD, BIP and OCD are the most different ones.   

 
This map is extremely interesting, as we can see the results we were getting from observing the original ratio plot can 

be also seen here. MDD, SCZ appear close on this map in both dimension 1 (34.49 % of variance explained) and 
2 (18.76% of variance explained), this is interesting considering, that the risk allele ratio profiles over all the 
DAF bins in the original graph are also quite similar. CANNABIS and ASD also seem to be close and their risk 
allele ratios profile across the DAF bins show multiple similarities, it is interesting considering that it has been tested 
that they have strong association on genetic correlation level [19]. OCD is the disorder with less data, which ends up 
giving not complete ratios across the DAF bins, this is most likely the cause for it to be an outlier with 
no neighbors around. BIP and ADHD seem to be close to MDD and SCZ on dimension 1, this can be explained by the 
fact that BIP has a very similar pattern with MDD up to DAF of 0.6, then it is unique. ADHD is also quite similar 

to MDD and SCZ, but because of less data, there is a big drop-off in ratio at high DAFs which may be the reason for 
ADHD to be higher than MDD and SCZ on the map.   
  

5. Putting everything into perspective  
 

From a biological point of view and considering other studies in the field [11], [12], [20] that suggest 
a strong relationship between SCZ with ADHD, MDD, OCD and BIP are also confirmed by our study, besides BIP, 
where we can clearly see, that in both MDS approaches and the original Fig 6, the present SFS-risk pattern is not alike 

the other disorders. So even though similar genetic variants [11], [22] affect those disorders, the evolutionary forces 
that are acting upon them are different. Another interesting fact is that based on other studies ASD has very little 
similarity in genetic variants that underly different disorders besides ADHD [11], but our study shows that the selective 
forces acting on ASD are also very similar to the ones acting on CANNABIS which reinforces the results for the found 
genetic correlation between the disorders [19]. ASD and ADHD do not show similarities in our study, while other 
studies suggest that these two disorders are related and have comorbidities on different levels [37]. Also, from the point 
of view of substance use disorders and in our case CANNABIS, other studies [20], [21], suggest that individuals that 
already have a set of other disorders like MDD, ADHD, BIP among others tend to develop addictions to different 

substances, which may explain the similar evolutionary pattern present in them, as they could be co-evolving.   
Also, our results can be compared with the paper published by Cross-Disorder Group of the Psychiatric Genomics 
Consortium [22], where their group studied eight psychiatric disorders with data also from PGC. The result of their 
meta-analysis across eight disorders (anorexia nervosa, attention-deficit/hyper-activity disorder, autism spectrum 
disorder, bipolar disorder, major depression, obsessive-compulsive disorder, schizophrenia, and Tourette 
syndrome) detected 109 loci associated with at least 2 psychiatric disorders, where 23 loci have pleiotropic effect on 
four or more disorders and 11 loci with antagonistic effects on multiple disorders. Besides that, the SNV-based genetic 
correlation indicates that high correlation between SCZ and BIP, MDD with ASD and ADHD [22], which if compared 
to our study MDD, ASD and ADHD show similar SFS-risk pattern together with SCZ and CANNABIS, while BIP 

shows a completely different behavior. This paper also shows cases the functionality of the associated SNVs that are 
mainly expressed in brain and pituitary, more specifically pleiotropic ones, while non-pleiotropic ones are enriched for 
occipital cortex. Considering this information and other results from Cross-Disorder Group of the Psychiatric 
Genomics Consortium together with the results of our study may be very useful and interesting. It could be possible to 



explain why specific SNVs are present and significant in multiple disorders using the evolutionary information 
obtained for each disorder. This can help to direct the research towards identifying specific causal pathways [32].   

 

4. Conclusions  
 

This study has shown us that psychiatric disorders are the results of different evolutionary trajectories 
and selective pressures. Some of the traits may have been beneficial in the past, but signs 
of purifying selection also seem to appear when looking at the SFSs. Still this statement is not true for all of them, as 
BIP has a very different pattern if compared to the rest, while MDS has shown us that MDD, SCZ are very alike, same 
is true for ASD and CANNABIS that maintained their similarities through different analysis, ADHD is also close to 
them, and OCD has lack of data, which makes it hard to compare it to the rest of disorders. The similarities of 
evolutionary patterns that we find can also be reinforced by other studies of comorbidities [20], temporal relationships 

[21] and genetic similarities lying under the disorders of interest [11].  

 
This study can be repeated using other psychiatric or related disorders and other populations, not only 
European because we know that DAF frequencies of the same SNVs tend to be different in a lot of traits in Asian, 
African and other populations, which can be incredibly interesting and help us even more to understand the underlying 
selective pressures acting on these complex phenotypes in different parts of the world, to see if they are similar or not 
and possibly to understand the reason behind that. Understanding the evolution of those disorders can be later applied in 
the field of evolutionary medicine by looking at the functionality of alleles that are co-evolving or evolving 
with similar patterns in different disorders, which may help with the treatment of the disorders [10].  

 
And finally, this study brings GWAS summary statistic data into a new field of research, where it can be used to shed 
light on the evolutionary history of human diseases. By simply looking for the ancestral status of the associated variants 

from specific GWAS studies of interest we can obtain new information which is extremely important and useful for 
evolutionary biology and medicine [29].  
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