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ABSTRACT IN ENGLISH (100 words): 
In this paper, we combine several Multi-Armed bandit algorithms with methodologies 
from finance literature and apply it to portfolio choice problem. Our results show that 
when we combine bandit algorithms with methodologies that take account of the non-
normal distribution of returns, portfolio performance improves. Our results show that if 
contextual bandit algorithms applied to portfolio choice problem, given enough context 
information about the financial environment, they can consistently obtain higher Sharpe 
ratios compared to classical methodologies, which translates to fully automated 
portfolio allocation framework. 
 
ABSTRACT IN CATALAN/ SPANISH (100 words) 
 
En este documento, combinamos varios Multi-Armed bandit algorithms con 
metodologías de la literatura financiera y lo aplicamos al problema de elección de 
cartera.  Nuestros resultados muestran que cuando combinamos estos algoritmos con 
metodologías que tienen en cuenta la distribución no normal de los rendimientos, el 
rendimiento de la cartera mejora.  Adicionalmente, dada la suficiente información sobre 
el contexto del entorno financiero, nuestra investigación muestra que si los 
denominados contextual bandit algorithms se aplican al problema de elección de cartera, 
estos pueden obtener consistentemente mayores Sharpe Ratio en comparación con las 
metodologías clásicas, lo que se traduce en un marco de asignación de cartera 
totalmente automatizado.  
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Abstract  
In this paper, we combine several Multi-Armed bandit algorithms with methodologies from            

finance literature and apply it to portfolio choice problem. Our results show that when we               

combine bandit algorithms with methodologies that take account of the non-normal           

distribution of returns, portfolio performance improves. Our results show that if contextual            

bandit algorithms applied to portfolio choice problem, given enough context information           

about the financial environment, they can consistently obtain higher Sharpe ratios           



compared to classical methodologies, which translates to fully automated portfolio          

allocation framework.1  

Keywords – UCB1, Thompson Sampling, Probabilistic Sharpe Ratio  

1Implementation of all algorithms can be found at https://github.com/guney1 
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1 Introduction  
Historically, there have been many strategies implemented to solve the portfolio           

choice problem. An accurate estimation of optimal portfolio allocation is challenging due to             

the non-deterministic complexities of financial markets. Due to this complexity, investors           

tend to use a mean-variance framework to minimize risk over simply maximizing expected             

returns. In this paper, we will offer a data-driven approach to allocate wealth to a different                

set of portfolios such that it maximizes the Sharpe ratio given its context, which in our case                 

context refers to historical market data. One significant difference that is worth pointing out              

is; Algorithms we experiment in this paper are either non-parametric or take account of the               

third and fourth moments of return distributions. Meaning, either we do not make any              

distribution assumption or we take account of the higher moments than first and second.              

We do not claim the algorithms that are experimented in this paper will yield the same                

results if they are implemented to live trading environments or when they are applied to               

different markets or different assets. Nevertheless, our results show that bandit algorithms            

can learn to act optimally when applied to portfolio choice problem.  

Our approach is mostly based on Markowitz (1952) framework. In simple terms, we             

can summarize our approach as follows; We combine several parametric and           

non-parametric bandit algorithms with our prior knowledge that we obtain from historical            



data. This framework gives us a decision function in which we can choose portfolios to               

include in our final portfolio. Once we have our candidate portfolio weights, we apply the               

first-order condition over portfolio variances to distribute our wealth between 2 candidate set             

of portfolio weights such that it minimizes the variance of the final portfolio.  

The rest of the paper is divided as follows: First, we give a brief literature review                

about methodologies relevant to our approach. Then we provide a detailed description of             

each algorithm that we experimented with. We point out the advantages and drawbacks of              

the proposed methods. Finally, we conclude with experimental results and our remarks            

regarding the result. 
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2 Literature Review  
If we consider the mean-variance framework, there are several drawbacks to this            

approach. Using historical returns to estimate the coming period return is not necessarily             

reliable. Another drawback is that historical variance and covariances do not represent the             

future behavior of a particular asset or portfolio. But maybe the most strict assumption is               

normality, it is well known that returns possess a heavy-tailed and skewed distribution,             

which results in underestimated risk or overestimated returns. In essence, if we can robustly              

estimate return distribution, we can still use the mean-variance framework to some extent             

by incorporating higher moments. If we cannot determine the return distribution accurately,            

we can rely on a non-parametric approach or distribution of different metrics over returns to               

optimize our portfolio. In this paper, we explore the latter approach.  

We start our experiments with Upper Confidence Bound (UCB) algorithm proposed           

by Auer, Peter (2002). This simple method is proposed to deal with exploration and              

exploitation problem. This problem can be seen as getting stuck at a local optimum due to                

not exploring other options. This algorithm gives us a confidence bound for the value              

expectation. We choose options that maximize the confidence bound. In our framework,            

these options are different portfolio choices. For the application of UCB to the portfolio              

choice problem, we follow the framework of Shen (2015). UCB is the non-parametric             

approach we experiment with. We introduce details in the methodology section. Next, we             

combine UCB with some results from finance literature. Previously we pointed out that             

returns do not follow a normal distribution, thus portfolio allocation with mean-variance            

framework underestimates the risk. Mertens (2002) shows that under IID returns, normality            

assumption on returns can be dropped, and the Sharpe ratio still follows a normal              



distribution. Later Christie (2005) generalized Mertens (2002) result and relaxed the           

assumption of IID returns. In Christie (2005) derivation, stationarity and ergodicity of            

returns are sufficient for the normality of the Sharpe ratio. Later on Opdyke (2007) proved               

that Mertens (2002) and Christie (2005) results are identical. Combining all this work, we              

end up with the Sharpe ratio that follows a normal distribution and has a closed-form               

solution for its variance that takes account third and fourth moments of the return              

distribution. We use these results to incorporate our prior knowledge to UCB. We detail the               

implementation in the methodology section. In its essence, Bandit algorithms are decision            

functions that update parameters of their decision function using the data collected from             

experiments. Nothing is holding us back to experiment with different decision functions            

outside of the bandit algorithms 
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circle. Like us, Bailey and de Prado (2012) use results on the distribution of the Sharpe                

ratio, but their approach aims to evaluate hedge fund manager performances. Having this             

in mind, they derive probabilistic Sharpe ratio that estimates the probability of Sharpe ratio              

being above a certain threshold. We can pretend that different portfolio allocation            

strategies are different hedge fund managers and use Bailey and de Prado (2012) results              

as our decision function, which chooses portfolios. Finally, we use Thompson Sampling,            

Thompson (1933), which we aim to learn which allocation strategy is the best given their               

track records; this methodology is also detailed later. 

4 3. Methodology  

3 Methodology  
We start this section by detailing one of our framework’s main components, which             

are orthogonal portfolios. Obtained portfolio candidates will form the action set of most of              

the algorithms that we specify in this section.  

3.1 Orthogonal Portfolios  

We consider daily returns of the 48 value-weighted industry portfolio, which we 

obtained from Professor French website. We consider gross returns which are given by St  

St−1where St  
represent the Closing price at time t. Thus our return matrix is given by R, where each                 

column gives the daily return series of each industry portfolio. Considering k = 48 different               



portfolios for our weight vector, we have:  

ωT 
1 

=X
k i  

ωi = 1  

We refer to the covariance matrix of 48 industry portfolios by Σ. Where each Σ               

estimated from rolling window returns series. Meaning for instance to estimate Σ at time t               

we use a window from t − 1 to t − 121. Next, we consider eigenvalue decomposition of the                   

covariance matrix, that is:  

Σt = HtΛtHTt  

Where Htis an orthogonal eigenvector matrix and Λtis a diagonal matrix with            

eigenvalues through its diagonal, for time t. One thing to point out here is we sort the                 

eigenvalues in descending order, and we arrange the eigenvector matrix accordingly.           

Through this decomposition, we obtain k number of uncorrelated portfolios where           

eigenvalues represent the variances of these portfolios. Furthermore, to meet the           

constraint that portfolio weights should sum up to 1, we normalize each eigenvector by its               

L1 norm. New eigenvectors are given  

by:  

H ̃t,i =Ht,i  
HTt,i1  

Following this, we can calculate the variance of each eigenvector portfolios as 

follows: Σ ̃t = H ̃tΣtH̃  
T

t = Λ ̃t  

Since the vectors are orthonormal variance of each of these portfolios is given by normalized 
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eigenvalues, where return matrix of these portfolios is given by H̃ tRTt  
Using the expression we obtained above, we can decompose the new covariance 

matrix as a sum of k rank-one matrices, that is:  

Σ ̃t =X
l i  

λ ̃t,iH ̃t,iH̃  
T

t,i 

+X
k i=l+1  

λ ̃t,iH ̃t,iH̃  
Tt,i  

Where λt,i refers to ith component of sorted eigenvalue matrix at time t. In other words,                

we followed Principal Component methodology to estimate factors. At its core, we followed             

the arbitrage pricing theory to decompose the market to its factors. We do not know what                



these factors are, but understanding factors is not a necessity for our purposes. So far, we                

followed the same approach as Shen (2015). From the Arbitrage Pricing Theory, we know              

looking at the eigenvalues, we can separate factors as market-wide risks and idiosyncratic             

risks. Some studies consider idiosyncratic risks as pure noise, and it cannot be used to get                

returns above the market. Mainly we aim to use portfolios that have exposure to              

idiosyncratic risk to increase Sharpe ratio. In other words, we try to increase our returns               

without increasing variance too much, such that increase in return compensates the            

increase in standard deviation. Another question remains on how to determine cutoff point l.              

One approach would be to follow Fama and French. (1993) results consider 3 or 5 as a                 

cutoff point. We believe factors might be time-varying, and we choose the cutoff point using               

the following rule:  

l = 1{median(λ)=λi} · i  

Meaning we look at the location of the median eigenvalue, that we obtained using a               

rolling window covariance matrix. Next, we introduce algorithms we experimented with           

and explain their implementations.  

3.2 UCB1  

Hoeffding’s inequality is given by:  

P
 
E(X) > X̄ t + u

 ≤ e−2tu2  

When applied to our setting we have:  

h  
P  

SR(ki) > SR ̂t + 

Ut(ki)
i≤ e−2N

t(ki)Ut(ki)
2 
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SR(ki) refers to the Sharpe ratio of a candidate portfolio, and Ut(ki) refers to              

uncertainty around that particular portfolio’s Sharpe ratio. As a whole, this equation            
represents the upper confidence bound of a given portfolio.  

Setting this bound to some p and solving for Ut(ki), we have:  

p = e−2N
t(ki)Ut(ki)

2  

=⇒ Ut(ki) =  
s  
− log p  
2Nt(ki)  

(3.1)  



Where Nt(ki) refers to number of times certain orthogonal portfolio chosen. Depending on 

the problem, upper confidence bound can differ. In our case, we follow the upper 

confidence bound provided by Shen (2015). Thus we have our policy function: s  

π(ki) = 
ˆ SR(ki) +  

2 log(Nt(k) + τ ) 

τ + Nt(ki)  

Where Nt(k) refers to the number of rounds our algorithm traded, τ refers to the size                

of the training window that we estimate Sharpe ratio and covariance matrix, and Nt(ki) is               

the number of times our orthogonal portfolio kiis selected. Following our policy function, we              
choose the portfolios with the following rule:  

k∗i = arg maxiπ(ki)  

Intuitively, we can think of UCB1 as a decision function that tries to maximize its               

expected return, which is Sharpe ratio. Additionally to that second component of UCB1             

takes account of the uncertainty regarding portfolios not chosen before. As algorithm            

chooses a particular set of portfolio more and more, uncertainty around that particular             

portfolio decreases. On the other hand if algorithm did not chose particular portfolio often,              

UCB1 boosts the chance that particular portfolio will be selected through increasing            

uncertainty around that particular portfolio.  

We apply this policy to obtain our two candidate portfolios. The first candidate             

comes from the set of portfolios that captures the market variation (first l portfolios), and the                

second candidate comes from the portfolios that represent idiosyncratic risk. From here            

we apply the first-order condition to distribute our wealth between 2 portfolios such that it               

minimizes 
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estimated variance, that is:  

λp = θ2pλ ̃ki + (1 − θp)
2
λ̃ kj  

=⇒ θ∗p = arg minθλp =λ ̃kj  

λ ̃ki + λ ̃kj  

Thus we have our final portfolio weights:  

ωp = (1 − θ∗k)H ̃ki∗ + θ∗kH̃ kj∗  

Steps to implement this algorithm are as 
follows:  



Algorithm 1  

Algorithm 1: UCB1  
Inputs: window size τ , return matrix R  
(3.2)  

Initialize: Initialize a reward array and an array that keeps account of how many times a 
certain portfolio chosen  
for t in {whole sample period−τ} do  

Get the covariance matrix of returns from pre-determined window size; Get the 
eigenvalue decomposition, sort the eigenvalues and order the eigenvectors 
accordingly;  
Determine the index of median of eigenvalues l;  
Normalize the eigenvectors by its L1 norm, then obtain new Covariance matrix; 
Calculate the historical Sharpe ratio of each orthogonal portfolio then apply UCB1 
policy function to each portfolio;  
Choose two candidate portfolios by doing argmax over UCB1 policy function, apply first 
order condition;  
Store the return of chosen portfolio and update the number of times each portfolio has 
been chosen for selected portfolios in current round;  

end  
Outputs: The final portfolio weight vector ωp and the portfolio returns at each time t 
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3.3 PW-UCB1  

One drawback of the UCB1 is, it does not take account of our knowledge about               

prior distribution, meaning it starts learning how to do portfolio allocation from 0. In most               

cases this feature of UCB1 is useful due to removing the necessity regarding making a               

distribution assumption. But if we have some knowledge regarding prior distribution, it may             

improve our results. We improve on the results of UCB1 by including our knowledge about               

prior distribution to the algorithm.  

We use results from finance literature to include our prior to UCB1’s policy function. 

Consider the result of Mertens (2002), regarding the distribution of Sharpe ratio:  



"  

(SR
ˆ ) ∼ N  

#  

µSR,1 + 0.5 · SR2 − γ3SR 

+γ4−3  

4SR2  

n − 1  

Using this distribution we can maximize over:  

P(SR ≤ SR ̂i − SR∗)  

Assuming Sharpe ratios are coming from the same distribution, we can see that, the              

greater this probability, the higher the chance a portfolio will achieve a higher Sharpe ratio               

compared to given threshold. Finally, we weight UCB1 policy function to get our new              

policy function, later we choose the candidate portfolios according to the following formula:  

k∗i = arg maxiP(SR ≤ SR ̂i − SR∗)π(ki)  

From here, we again apply First Order Condition and get our final weights. One can               

ask why we are incorporating UCB1 and instead of maximizing the probability of the Sharpe               

ratio. The reason is that we are not considering posterior distribution, but rather the              

unconditional probability distribution of Sharpe ratio. Incorporating UCB1 allows our          

algorithm to explore different portfolios even if there is another portfolio that has higher              

P(SR ≥ SR∗). For SR∗ we use the mean of all candidate portfolio Sharpe ratios, which                

translates to forcing UCB to form a portfolio at least performs better than average of all                

candidate portfolios. But this also means taking more risk, which can result in lower returns               

with specific assets or in times of financial turmoil. This concludes the derivation of the               

probability-weighted UCB1.  

Implementation of this algorithm is same as UCB1, the only difference is to multiply 
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UCB1 policy function by probabilities obtained from above distribution using CDF function 

of standard normal distribution.  

3.4 Probabilistic Sharpe Ratio  

As we mentioned before, Bailey and de Prado (2012) use the same results to derive               

a metric called probabilistic Sharpe ratio to evaluate hedge fund manager performances, we             

again select two candidate portfolios and use the first-order condition over that portfolio,             



but this time our policy function is probabilistic Sharpe ratio proposed by Bailey and de               

Prado (2012). Probabilistic Sharpe ratio is given by:  

P SR(SR∗) = 
Φ  

  

SR
ˆ − 

SR
∗√n − 1  

   

q  

1 − γ3SR
ˆ 

+γ4−1 4SR2  

We again take threshold SR∗ as the mean of all candidate portfolio Sharpe ratios.              

Implementation is again same, the only difference is to replace UCB1 policy function with              

probabilistic Sharpe ratio.  

3.5 Thompson Sampling  

Thompson sampling uses the Beta-Bernoulli model to select actions. In our context,            

we use Thompson sampling to choose different portfolio strategies. Candidate strategies           

given to Thompson Sampling approach are the algorithms introduced so far plus additional             

strategies, namely minimum variance portfolio and equal weight portfolio. We consider           

each strategy outcome at certain t as a success or failure, which results in Bernoulli               

distribution, from there, we know Beta distribution is the conjugate distribution to Bernoulli             

that is:  

P(X = 1|D) ∼ Beta(α, β)  

Where each round we update parameters of beta distribution(α and β), if certain             

candidate strategy achieves maximum return among all candidate strategies in a particular            

period, that round is counted as a success for that strategy and new α is given by: αk,t =                   

αk,t−1 + 1 whereas for other strategies are counted as failures which results in increasing the                

β.  

Implementation is as follows: 
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Algorithm 2  
Algorithm 2: Thompson Sampling  

Inputs: window size τ , return matrix R  
Initialize: Initialize a reward array, the array that keeps account of how many times a certain                
portfolio has been chosen, and 2 additional arrays that keeps track of the number of times                
a strategy succeed or failed respectively  
for t in {whole sample period−τ} do  



Follow all the steps in above algorithms to obtain 3-different set of portfolio weights, 
also include another weights set that gives equal weight to all industry portfolios; Draw 
probabilities for each candidate strategy from beta distribution which alpha and beta 
parameters are the number of times a strategy succeed or failed;  
Choose your final strategy by; arg maxi P(Xi = 1|Data), where Xi = 1 refers to success; 
Store the return of chosen portfolio, update all the arrays;  

end  
Outputs: The final portfolio weight vector ωp and the portfolio returns at each time t  

With this, we conclude the introduction of all algorithms experimented in this paper.             

Implementation of all algorithms conducted in Python, one can find code and results             

presented in this paper at authors’ github page. Next, we move on to experimental results. 
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4 Results  
Our experiments are based on 48 US value-weighted industry portfolios. We           

consider the time range 1974-02 to 2019-12; we avoid 2020 due to Covid-19. The below               

table presents the metrics we used to evaluate strategy performances. Below the table,             

one can observe the evaluation of cumulative wealth through the whole investment period.             

In the appendix, we provide mean annualized Sharpe ratios for every year in our time               

range. As metrics, we use cumulative wealth, the wealth accumulated through years by             

the strategy assuming starting from 1 Dollar. We also report the annualized Sharpe ratios              

in the whole period and mean of yearly annualized Sharpe ratios. Below table reports the               

results of following strategies by order; Minimum Variance Portfolio (MVP), Constant           

Weight Rebalance portfolio (CWR), Equal Weight portfolio (EW), Upper Confidence Bound           

1 (UCB1), Thompson Sampling (TS), Maximum Probabilistic Sharpe ratio (MaxPSR),          

Probability Weighted UCB1 (PW-UCB1).  

Table 4.1: Evaulation Metrics  

Descriptive Statistics  

Annualize
d 
Mea
n  

Returns(%)  
Annualize

d 
St
d  

Dev.(%)  
Annualize

d Mean 
SR  

Yearly  

Annualize
d Mean 
SR  

Cumulativ
e 

Wealt
h  

MVP 8.46 11.22 0.75 0.99 35.32 CWR 13.06 16.17 0.81 1.05 208.6 EW             
12.87 15.81 0.81 1.04 196.53 UCB1 16.31 17.83 0.91 1.07 818.17 TS            
13.67 16.9 0.81 0.96 262.53 MaxPSR 11.93 21.84 0.55 0.74 78.23           



PW-UCB1 17.11 18.61 0.92 1.1 1100.53  

One thing to observe here, even UCB1 and PW-UCB, yield the highest Sharpe             

ratios. They also have the highest standard deviation, which implies bandit portfolios tend             

to take more risk than methodologies that aim to minimize variance, but this was already               

expected due to the exploration component. Our purpose was to see if the bandit strategy               

can increase the return such that it offsets the increase in standard deviation. Thompson              

sampling yields a lower standard deviation because TS also consists of portfolio strategies             

that aim to minimize variance in its action set. 
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Figure 4.1: Algorithm Comparison  

In this part, we include the evaluation of cumulative wealth throughout the whole 

period and in 10 year time intervals. One interesting thing to notice is that bandit 

algorithms’ performance diminishes during periods of high momentum followed by 

turmoil. The drop in the bandit algorithms’ cumulative wealth is more severe 

compared to classic allocation strategies such as EW or MV P. Especially PW-UCB1, 

this also can be seen from standard deviation of the returns. This is due to using the 

rolling window to estimate moments of the return distribution. Since we are weighing 

UCB1 with the Sharpe ratio probability, and since this probability reflects the 120-day 

window, algorithm puts more weights on industries that gain more during high 

momentum periods, such as technology portfolio. During the dot.com 

bubble(1995-2002) period, UCB1 and PW-UCB1 gain a lot by putting more weight on 



technology portfolio, but they suffer the most, during the turmoil that followed high 

momentum period. 
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Figure 4.2: 1974-1994 Algorithm Comparison 
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Figure 4.3: 1994-2020 Algorithm Comparison 
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5 Conclusion  
In this project, we have studied the multi-armed bandit problem as a mathematical             

model for sequential decision making under uncertainty. In particular, we focus on its             

application in financial markets and construct a high-quality portfolio selection algorithm.  

Considering that we did not take into account transaction costs and did only             

backtesting rather than live trading environment, one cannot use the algorithm for real-time             

trading purposes without further improvements. Nevertheless, the results of experiments on           

FF48 showed that portfolio selection strategy based on our algorithm outperforms classic            

strategies such as EW or MVP in terms of annualized mean returns, Sharpe ratio and               



cumulative wealth. The reason is that our algorithm allows dynamic asset allocation with             

the relaxation of strict normality assumption on returns and incorporates Sharpe ratio            

probability to better evaluate performances. Our algorithm may suffer from crashes during            

the turmoils by putting more weight on assets whose past performances are well due              

rolling window estimation of the covariance matrix and returns vector, one can solve this              

issue by using more sophisticated prediction model to estimate returns and the covariance             

matrix. To conclude, our algorithm could appropriately balance the benefits and risks well             

and achieve higher returns by controlling risk when the market is stable. 
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Appendices  

Table .1: Yearly Annualized Sharpe ratios  

MVP CWR EW UCB1 TS MaxPSR PW-UCB1  

1975 0.74 0.56 0.56 0.64 0.25 0.28 0.58  
1976 3.09 2.47 2.47 2.17 1.98 1.84 2.21  
1977 1.81 1.4 1.49 1.8 1.78 0.92 1.79  
1978 -1.22 0.61 0.71 -0.22 -0.65 0.02 -0.2  
1979 -1.44 1.6 1.67 -0.42 -0.06 0.17 -0.48  
1980 0.35 2.06 2.17 0.93 1.42 1.07 1.02  
1981 1.79 1.08 1.08 1.3 0.91 1.36 1.21  
1982 3.09 0.86 0.82 1.57 0.41 0.99 1.85  
1983 3.55 1.59 1.53 2.37 0.79 1.78 2.83  



1984 2.71 0.93 0.85 1.95 1.12 1.7 1.9  
1985 2.96 1.29 1.26 2.1 2.15 1.61 2.1  
1986 2.04 1.94 1.73 2.21 2.35 1.61 2.07  
1987 -0.08 0.52 0.38 1.09 1.3 0.49 1.33  
1988 -0.03 0.58 0.52 0.74 0.73 0.9 1.0  
1989 1.37 1.68 1.81 0.94 0.87 1.48 0.77  
1990 -0.47 0.58 0.77 1.29 0.58 -0.33 1.11  
1991 -0.18 0.83 0.96 1.28 1.25 -0.07 1.16  
1992 1.62 1.85 1.76 1.33 2.39 1.03 1.34  
1993 1.61 1.34 1.02 0.99 1.5 1.17 1.08  
1994 0.9 0.68 0.56 0.49 0.75 0.95 0.48  
1995 1.63 1.62 1.64 1.25 1.36 1.36 1.25  
1996 3.14 2.77 2.63 2.6 2.67 2.77 2.63  
1997 2.17 1.76 1.66 3.02 2.79 1.98 3.16  
1998 0.42 1.04 1.05 1.88 1.36 0.66 1.86  
1999 -1.25 0.55 0.6 0.81 0.71 -0.21 0.42  
2000 -1.67 0.56 0.4 -0.05 0.34 -0.46 -0.18  
2001 -0.62 0.39 0.07 -0.66 -0.6 -0.28 -0.57  
2002 0.04 -0.13 -0.35 0.11 -0.26 -0.27 0.29  
2003 0.67 0.62 0.45 0.59 0.54 0.53 0.85  
2004 2.05 1.78 1.57 1.19 1.54 1.52 1.34  
2005 0.8 1.02 1.01 0.82 1.11 0.67 1.06  
2006 0.94 1.01 1.12 0.65 0.65 0.51 0.82  
2007 1.09 0.98 1.02 0.35 0.09 0.44 0.54  
2008 -1.1 -0.44 -0.5 -0.15 -0.22 -1.17 -0.08  
2009 -0.84 -0.02 -0.15 0.01 0.3 -0.39 -0.02  
2010 0.56 1.18 1.14 0.59 1.26 1.73 0.77  
2011 1.14 0.54 0.62 1.19 1.26 1.15 1.53  
2012 0.76 0.46 0.55 0.54 0.46 0.27 0.43  
2013 1.76 1.78 1.97 1.0 1.05 1.1 0.61  
2014 3.02 1.56 1.85 1.63 0.96 0.81 1.5  
2015 0.93 0.11 0.54 0.51 -0.11 -0.3 0.49  
2016 0.93 0.44 0.6 1.57 1.0 -0.17 1.34  
2017 2.32 1.65 1.66 2.56 2.07 0.55 2.35  
2018 0.54 0.4 0.43 0.56 0.31 0.66 0.65 
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Table .2: 3-Year Moving Average, Annualized Sharpe ratios  

MVP CWR EW UCB1 TS MaxPSR PW-UCB1  

1979 0.6 1.33 1.38 0.79 0.66 0.65 0.78  
1980 0.52 1.63 1.7 0.85 0.89 0.81 0.87  
1981 0.26 1.35 1.42 0.68 0.68 0.71 0.67  
1982 0.51 1.24 1.29 0.63 0.4 0.72 0.68  
1983 1.47 1.44 1.46 1.15 0.69 1.07 1.28  
1984 2.3 1.31 1.29 1.62 0.93 1.38 1.76  
1985 2.82 1.15 1.11 1.86 1.08 1.49 1.98  
1986 2.87 1.32 1.24 2.04 1.36 1.54 2.15  
1987 2.23 1.25 1.15 1.94 1.54 1.44 2.05  
1988 1.52 1.05 0.95 1.62 1.53 1.26 1.68  



1989 1.25 1.2 1.14 1.42 1.48 1.22 1.45  
1990 0.57 1.06 1.04 1.25 1.16 0.83 1.26  
1991 0.12 0.84 0.89 1.07 0.95 0.49 1.07  
1992 0.46 1.1 1.16 1.12 1.17 0.6 1.08  
1993 0.79 1.26 1.26 1.17 1.32 0.65 1.09  
1994 0.7 1.06 1.01 1.08 1.3 0.55 1.03  
1995 1.12 1.26 1.19 1.07 1.45 0.89 1.06  
1996 1.78 1.65 1.52 1.33 1.73 1.45 1.36  
1997 1.89 1.63 1.5 1.67 1.81 1.64 1.72  
1998 1.65 1.58 1.51 1.85 1.79 1.54 1.88  
1999 1.22 1.55 1.52 1.91 1.78 1.31 1.87  
2000 0.56 1.34 1.27 1.65 1.57 0.95 1.58  
2001 -0.19 0.86 0.76 1.0 0.92 0.34 0.94  
2002 -0.62 0.48 0.36 0.42 0.31 -0.11 0.36  
2003 -0.57 0.4 0.24 0.16 0.15 -0.14 0.16  
2004 0.09 0.64 0.43 0.24 0.31 0.21 0.35  
2005 0.59 0.74 0.55 0.41 0.47 0.43 0.59  
2006 0.9 0.86 0.76 0.67 0.72 0.59 0.87  
2007 1.11 1.08 1.03 0.72 0.79 0.73 0.92  
2008 0.76 0.87 0.84 0.57 0.63 0.39 0.73  
2009 0.18 0.51 0.5 0.34 0.39 0.01 0.46  
2010 0.13 0.54 0.53 0.29 0.42 0.22 0.41  
2011 0.17 0.45 0.42 0.4 0.54 0.35 0.55  
2012 0.1 0.34 0.33 0.44 0.61 0.32 0.53  
2013 0.68 0.79 0.82 0.67 0.87 0.77 0.66  
2014 1.45 1.1 1.22 0.99 1.0 1.01 0.97  
2015 1.52 0.89 1.1 0.97 0.72 0.6 0.91  
2016 1.48 0.87 1.1 1.05 0.67 0.34 0.88  
2017 1.79 1.11 1.32 1.45 0.99 0.4 1.26  
2018 1.55 0.83 1.01 1.36 0.84 0.31 1.27 


	Cover_TFM-Ozkaya, G. et al.
	Ozkaya, G. et al

