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Abstract

Recently, reinforcement learning (RL) has attracted some attention in the research

field of physically-based rendering. This thesis explores a deeper connection between

both fields. In particular, we identify the light transport equations (LTE) used in

physically-based rendering with the Bellman expectation equations used in optimal

control. With this identification, we formulate an optimal control problem that

can be used for scene rendering based on the framework of linearly-solvable Markov

decision processes. This formulation provides a novel perspective on the use of RL

techniques for rendering.

Keywords: Computer Graphics, Optimal Control, Light transport, Bellman equa-

tion





Chapter 1

Introduction

Recently, machine learning is attracting a lot of attention in the research field of

physically based rendering. The goal of this Thesis is to explore the use of machine

learning for light transport simulation, with the objective, if possible, to provide an

advance to some technique. Reinforcement learning is one of the fields in ML that

is really popular nowadays, Alexander Keller proposed an adaptation for computing

light transport using reinforcement learning [1], uing RL strategies like Sarsa for

the light transport problem. This implies several assumptions related with Optimal

Control theory and Bellman Optimality. In this thesis, our main purpose is to

explore different strategies of dynamic programming and control theory models like

“Markov Decission Processes” .

1.1 Structure of the Thesis

The next chapter introduces the required background to related to light transport

and optimal control theory. Chapter 3 describes the identification between the

Bellman equations and LTE. Experimental results on a simple scene are presented

in Chapter 4. Chapter 5 conludes this thesis.
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Chapter 2

Background

This chapter provides a review of the necessary concepts from both lights transport

and Markov Decision Processes.

2.1 Light Transport

The synthesis of photorealistic images by a computer requires the application of

light transport simulation. The light transport (LTE) equation, a Fredholm integral

equation of the second kind, models the distribution of light on a 3D environment.

For computing the pixel colors, the LTE is usually approximated using Monte Carlo

estimators. These estimators are used to sample light transport paths. For that,

the contributions of light paths that begin on a camera sensor are averaged after

interacting with the scene end up finding a light source. This could be compared

with the trajectory of photons in real world when we see an object. Computers are

only able to process a really small part of all the amount of interactions that light

does in reality. So, we try to efficiently compute contributive light paths to have

the best possible estimation of the light transport. Lot of research in light transport

simulation have been focusing in importance sampling. IS improves the sampling

process of light paths.

2
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2.1.1 Radiometric quantities

Radiometry studies the physical measurement of the electromagnetic radiation, the

basis for understanding the Global Illumination problem. The Light Transport

problem is specified using radiometric quantities, we will show the basic ones.

Flux or Radiant Power (Φ)

This fundamental quantity expresses the total energy that flows through (from/to)

a surface. It is the power of an electromagnetic radiation measured in Watts (W)

(joules/second).

Φ = lim
∆t7→0

∆Q

∆t
=
∂Q

∂t
, (2.1)

where Q refers to the radiant energy in joules (J). This energy Q, corresponds

to the amount of energy that carry the photons emitted by a light source. (See

subsection A.1.1)

Irradiance (E) and Radiosity (B)

If we measure the flux density over an area we get a new quantity, the flux per unit

area ∂Φ/∂A. When the flux density is arriving to a surface, we call it irradiance

(E). Or radiosity (B)/radiant exitance (M) when the flux is leaving the surface.

The SI unit of this quantity is watts per unit area (W/m2). It can be generalized

as,

E =
∂Φ

∂A
. (2.2)

Radiance (L)

Radiance captures the appearance of real world objects and is the quantity which

our eyes are sensitive. We aim to compute the radiance arriving to an observer in

a photo-realistic environment. We define it as the irradiance or radiant exitance

arriving/leaving a surface dA over a solid angle dw. L is the flux per unit projected
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area dA⊥ and per unit solid angle dw:

L =
∂2Φ

∂w∂A cos θ
=

∂2Φ

∂w∂A⊥
, (2.3)

Where ∂A⊥ is the area of the surface or object projected in the direction per-

pendicular to ∂ω. Solid angles dw can be thought as planar angles in 3D (See

subsection A.1.2 for detailed explanation).

2.1.2 The light transport equation (LTE)

BRDF (Bidirectional Reflection Distribution function fr)

We assume that the light entering a surface at point p with incident direction Ψ,

leaves the surface at the same point p with direction Θ. Given this assumption,

the light reflection is described by the bidirectional reflectance distribution function

(BRDF) [2]. The BRDF is defined as the differential of outgoing radiance in a

direction Θ, with respect to a differential of irradiance along incident direction Ψ.

The BRDF is denoted as fr(x,Ψ→ Θ):

fr(x,Ψ→ Θ) =
dL(x→ Θ)

dE(x← Ψ)
, (2.4)

dL(x→ Θ)

L(x← Ψ) cos (Nx,Ψ)dwΨ

. (2.5)

Hemispherical formulation

This formulation it is based on the energy conservation and can be derived directly

from the BRDF equation. To get to this derivation, let us define the emitted ra-

diance as Le(x → Θ) and the reflected radiance Lr(x → Θ). Using the principle

of conservation of energy, we state that the exitant radiance at a surface point x

in a direction Θ, is the sum of emitted radiance Le(x → Θ) and reflected radiance
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Lr(x→ Θ) at this point x in direction Θ. From Equation 2.4 of the BRDF we get:

fr(x,Ψ→ Θ) =
dL(x→ Θ)

dE(x← Ψ)
,

Lr(x→ Θ) =

∫
Ω

fr(x,Ψ→ Θ)L(x← Ψ) cos (Nx,Ψ)dwΨ,

for a concrete incident (Ψ) and outgoing (Θ) directions. Then the outgoing radiance

L(x → Θ) is formulated as the emitted radiance Le plus the reflected radiance Lr.

The hemispherical equation is expressed as:

L(x→ Θ) = Le(x→ Θ) + Lr(x→ Θ),

L(x→ Θ) = Le(x→ Θ) +

∫
Ω

fr(x,Ψ→ Θ)L(x← Ψ) cos (Nx,Ψ)dwΨ. (2.6)

As we can observe at Equation 2.6, the rendering equation is formed by different

parts. The emitted radiance, is the outgoing radiance from the own material a part

from the reflected light, for example, area light sources or fluorescence materials. The

reflected radiance, derived from the BRDF, is the integration over the hemisphere of

the incident radiance with respect to the BRDF function. In the integrand we find

this BRDF function that defines how the incident radiance is going to be reflected.

Then, we find the cosine of the angle between the incident direction and the surface

normal. The cosine term compensates the angle between the direction of the incident

radiance and the surface where it is arriving, and allows to express the power per unit

projected area dA⊥, one of the derivatives of radiance. Finally, the term L(x← Ψ)

is the incident radiance arriving to the point from all the scene. L(x ← Ψ) is the

term of the equation being evaluated. and the unknown quantity of the rendering

equation.

Our starting point is thus the radiance equation. For clarity, we will use the following
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equivalent notation to refer to the LTE equation

L(x, ω) = Le(x, ω) +

∫
S+(x)

L(h(x, ωi),−ωi)fr(ωi, x, ω) cos θidωi. (2.7)

2.2 Optimal Control and Reinforcement Learning

Optimal control theory is a field in mathematical optimization with a long history

and is concerned with the problem of designing a controller to minimize a measure of

a dynamical system’s behavior over time [3]. Reinforcement learning (RL) appeared

more recently as a paradigm of machine learning at the intersection of psychology of

animal learning and optimal control [4]. Optimal control and RL face very similar

challenges and both disciplines make emphasis on different aspects of sequential de-

cision making problems. For example, while optimal control traditionally considers

methods that require complete knowledge of the system to be controlled, RL puts

more emphasis on the idea of trial-and-error learning from environment interactions.

Despite these differences, both fields share many theories and solution methods, in

particular dynamic programming and Markov decision processes (MDPs), which we

briefly present next.

2.2.1 Markov Decision Processes

Markov decision processes (MDP) are useful mathematical models that formalize

sequential decision problems in the presence of uncertainty [5, 6]. The standard

MDP model obeys the following steps: a state is observed, a control is applied to

that observed state, a price is paid for exerting such control, and the state is updated

probabilistically. This process is repeated. We define:

• A set of states X .

• A set of admissible controls U(x) at each state.

• The system dynamics, a transition probability p(x′|x, u), for u ∈ U(x).
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• An instantaneous cost function g(x, u).

• And (optionally) a final cost function gf (x) evaluated at the final state(s).

A control law or policy, denoted by π(u|x) maps states to controls. Policies can be

stochastic if the applied control at state x is chosen from U(x) according to some

probability distribution, or deterministic if one action is applied to a given state

with probability one (Dirac-delta policies). For a fixed policy π, either stochastic or

deterministic, the dynamics becomes autonomous, and the MDP can be described

as a Markov process with transition probability

pπ(x′|x) =
∑
u∈U(x)

p(x′|x, u)π(u|x). (2.8)

From such a process, one can sample sequences of states and controls, also called

trajectories τ = (x0, u0, x1, u1 . . . , xf ). In the so-called first-exit formulation, the

states are either non-terminal N or terminal T states. A trajectory finishes when

one of a set of terminal states xf ∈ T is reached for the first time and has probability

p(τ |x0) =

tf−1∏
t=0

pπ(xt+1|xt). (2.9)

Associated to a trajectory τ there is an additive cost, which accumulates through

all state-control pairs in the trajectory

C(τ |x0) = gf (xf ) +

tf−1∑
t=0

g(xt, ut). (2.10)

Policy Evaluation: we first define the policy evaluation (a.k.a. prediction) prob-

lem, which corresponds to estimate the expectation of Equation (2.10), where ex-

pectation is taken over trajectories generated according to (2.9)

Jπ(x) = Ex′∼p(·|x,u)
u′∼π(·|x′)

[C(τ |x)] , for x ∈ N , (2.11)
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and Jπ(x) = gτ (x), for terminal states x ∈ T .

This function is known as the cost-to-go starting at state x and applying the policy π

thereafter. The Bellman expectation equations are a set of self-consistent equations

that allow to compute Jπ recursively. In the first-exit formulation of an MDP, these

equations (one per each non-terminal state) become

Jπ(x) = E u∼π(·|x)
x′∼p(·|x,u)

[
g(x, u) + Jπ(x′)

]
, for x ∈ N , (2.12)

and Jπ(x) = gτ (x), for terminal states x ∈ T .

Equivalently, one can consider cost-to-go defined for state-control pairs (also known

as Q-functions)

Jπ(x, u) = g(x, u) + Ex′∼p(·|x,u)
u′∼π(·|x′)

[Jπ(x′, u′)] . (2.13)

The prediction problem can be solved iterating the above linear equations, which is

a form of dynamic programming. We can use linear algebra and express them using

vector-matrix notation. We define

• A vector j stacking all Jπ of non-terminal states.

• A cost matrix G for each g(x, u) at non-terminal states and end-cost vector

g = g(xf ) for terminal states.

• Two matrices PN = pπ(x′|x) for x′ ∈ N , and PT = pπ(x′|x) for x′ ∈ T .

The cost-to-go for a fixed policy can be solved analytically

j = G+ PN j + PT g (2.14)

= (I − PN )−1(G+ PT g). (2.15)

Policy Optimization: The control problem is to find the optimal policy, the one
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that minimizes the expected cost-to-go

J∗(x) = min Jπ(x), (2.16)

π∗(x) = argmin
π
Jπ(x), (2.17)

that can again be written recursively as a set of equations, known as the Bellman

optimality equations

J∗(x) = min
u

E u∼π(·|x)
x′∼p(·|x,u)

[
g(x, u) + J∗(x′)

]
. (2.18)

In this case, the presence of the min function makes the system non-linear, rendering

the control problem fundamentally harder than the prediction problem.

Value iteration is a dynamic programming algorithm that computes the optimal cost-

to-go by iterating the Bellman optimality equations until a fixed point is reached.

An alternative procedure is policy iteration, which alternates a policy evaluation

step with a policy improvement step. One can perform policy evaluation using the

formulation of Equation (2.14) to solve a system of the form Aπj = bπ; then, the

policy has to be improved and the process repeated.

In the next section, we introduce a subclass of problems that makes certain assump-

tions on the underlying MDP that greatly simplify the policy optimization problem.

2.2.2 Linearly-Solvable MDPs

Linearly-Solvable MDPs (or LMDPs) were introduced by Todorov [7] in the discrete-

time case, and Kappen [8] in the continuous time formulation. The main idea is to

consider an MDP where

• The system dynamics is defined as a probability distribution over next states

(the passive dynamics), a Markov chain that characterizes how the system
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evolves in the absence of control

p(x′|x) = p(x′|x, u = 0). (2.19)

• The controls are also another Markov chain, i.e., probability distributions over

next states that are constrained by the passive dynamics in the sense that

transitions not allowed by p are also forbidden for u

u(x′|x) = pπ(x′|x), u(x′|x) = 0, for p(x′|x) = 0. (2.20)

• The instantaneous cost consists of two terms: a state-dependent term that

penalizes “bad” states g(x), and an control term that penalizes controls u that

deviate from p in an entropic/information sense.

g(x, u) = g(x) + λ
∑
x′

log
u(x′|x)

p(x′|x)
, (2.21)

where the term λ balances both terms. For first-exit problems, we set g(x) = gf (x).

The controller u is thus free to reshape p in any way, but pays a price for deviating

from it while at the same time should avoid visiting “bad” states.

This class of optimal control problems is also known under other names: Kullback-

Leibler control (as derived for probabilistic graphical models [9]), path-integral con-

trol (as derived in the continuous-time case [10, 11]), and is closely related to max-

imum entropy RL [12].

LMDPs have the interesting property that the Bellman optimality equations are

linear in the cost-to-go, reducing significantly the complexity of the control prob-

lem to the same as the prediction problem. Effectively, the max operator can be

removed after an adequate (log) transformation of the state cost, and because all

the stochasticity (noise) is controllable.

We show the formulation for first-exit problems only, for more details see [13]. We

have
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• A vector z with one element per state, representing the log-transformed cost-

to-go, or desirability function z(x) = exp(−J(x)).

• A stochastic matrix P encoding the passive dynamics p(x′|x), where the row

index corresponds to x and the column index to x′

• A diagonal matrix Q with elements exp(−λg(x)) along its main diagonal.

The optimal cost-to-go (or desirability function) can be obtained starting from a

randomly initialized vector z and iterating the following fixed point equation

z← QPz, (2.22)

which transform z to the leading eigenvector of QP . From z, the optimal control

and cost-to-go can be computed as [13]

u∗(x′|x) =
p(x′|x)z(x′)

Ex′∼p(·|x)

[
z(x′)

] , (2.23)

J∗(x) = −λ log z(x). (2.24)

In addition to leading to a linear Bellman equation, LMDPs enjoy several compu-

tational advantages and theoretical properties, such as compositionality of optimal

control laws [14, 15, 16], convexity of the inverse optimal control problem [17], or

fast rates in the online learning setting [18]. LMDPs have been applied in numer-

ous settings for robotics [19, 20, 21], multi-agent systems [22, 23, 24], or for finding

policies in other complex scenarios such as power grids [25], online forums [26],

crowd-sourcing [27], or consequential rankings [28].

In the next chapter the connection between the light transport equation and optimal

control will become clear.



Chapter 3

Light Transport and Stochastic

Optimal Control

This chapter presents a formulation of the Light Transport as an optimal control

problem. We can identify the light transport equations defined in (2.7) and the

Bellman expectation equations (2.13) defined for general MDPs that we repeat here

for clarity

LTE : L(x, ω) = Le(x, ω) +

∫
S+(x)

L(h(x, ωi),−ωi)fr(ωi, x, ω) cos θidωi.

Bellman : Jπ(x, u) = g(x, u) + Ex′∼p(·|x,u)
u′∼π(·|x′)

[Jπ(x′, u′)] .

We see that the (state-action) cost-to-go Jπ(x, u) corresponds to the exiting radiance

L(x, ω) on a surface point x following ongoing direction ω. The expectation over

trajectories appears as an integral. More precisely:

• The state space X is continuous and corresponds to 3D coordinates.

• Controls are also continuous and correspond to directions ω.

• The instantaneous cost function g(x, ω) corresponds to the emitted radiance

Le(x, ω).

12
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• The dynamics is deterministic p(x′|x, ω) = δ(x′, h(x, ωi)) and corresponds to

the ray-casting function h.

• Thanks to the previous knowledge about the light transport problem, the pol-

icy could be different depending on the component. In our case, the policy

we want to optimize is stochastic with density function defined as the Bidirec-

tional Reflection Distribution function (BDRDF) fr(x, ω, ωi).

• The set of terminal states correspond to the light sources in the scene.

Strictly speaking this identification only takes place after proper discretization of

the LTE integral. We postpone this issue and elaborate on this later.

This result has an important implication: the radiance at a point in the scene can

be computed by solving a linear system of equations. This is a novel result, to the

best of our knowledge.

3.1 Linearly-Solvable MDP formulation

Since the dynamics is deterministic, the MDP considered above satisfies the condi-

tions to be written as a LMDP. This has additional implications in terms of solution

methods for rendering. We define the new state as the concatenation of coordinates

x and direction ω, and denote it as x = (x, ω). Let us define the two formulation

(optimal control and light transport) together.

3.1.1 State space representation

In computer graphics, there are multiple data structures to represent radiance and

other terms of the LTE. For our purpose, we base our structure in a variation of

the irradiance volumes [29] and the representation that is used by Keller for its RL

approach [1]. For us, the discrete state space is placed into the scene as shown in

Figure 1: a number of points are sampled for each surface proportionally to its area.

For each sampled point x, we stratify an hemisphere centered at x. The point x

paired with a stratum k is a discrete state x = (x, ω).
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Figure 1: Happy Smiley

Figure 2: Unit square grid
mapped to hemispherical co-
ordinates

Each stratum captures the passive dynamics from a set of possible incident directions

S2(θ, φ) in its region. The hemisphere region of the stratum will define a constant

reflectance value over its directions. This results in a piece-wise distribution of the

dynamics over S+ at this point. We decided to uniformly stratify the hemisphere

into same area regions for each state. This is done by mapping a uniform grid from

the unit square, like Figure 2. If the states at a point x held different area regions,

the dynamics discretization would be affected by the different da of the stratum’s.

The commonly used latitude-longitude mapping produce different areas for the same

bunch of directions, induced by the nature of the solid angle (subsection A.1.2) and

the hemispherical coordinates subsection A.2.1. To avoid this distortion when rep-

resenting the passive dynamics, we use the hemispherical mapping proposed by [30].

This mapping allows to preserve the uniform areas of a unit square grid into the

hemisphere.

The resolution of the discretised state space is tuned by two components. The num-

ber of points at each surface, and the number of stratum’s at each point. Changing

each of the two components varies linearly the size of the discretization. If we fix

to k either of the two components of the resolution, the size increase from the other

component with the order of O(kn), linearly proportional to a value k. If we take

into the account the two components, the size of the data increases quadratically to

the order of O(mn), where m is the number of points and n the states per point.

This is one of the main points that justifies our data structure. The state space

size increases linearly with the number of points or stratum’s. Usually, the data

structures used for representing radiance or other quantities, increase exponentially
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to the number of points in the scene.

3.1.2 The Passive Dynamics

In the light transport equation, we defined as the passive dynamics a uniform density

over the (discretized) volume weighted by the BDRDF (the cos θ at the hemispherical

formulation)

p(x′ = (x′, ω′) | x = (x, ω)) =


ε if x = x′, or G(x, x′) = 0

1
Z(ω)

( cos θ
π
fr(ω

′, x, ω)) for x′ = (h(x, ω′),−ω′)

0 otherwise,

(3.1)

where Z(ω) =
∑

ωi

cos θ
π
fr(ω

′, x, ω) sums over all discretized directions and ensures

that the passive dynamics is properly normalized. ε = 0.00005 and G(x, x′) is the

geometry term from the LTE area formulation, at appendix.

3.1.3 The State-Cost function

For simplicity we assume that the emitted radiance is constant for all surfaces.

This means that we can set the state-cost term to a constant g(x) = 1. In our

environment, only the light sources emit radiance and will correspond to zero state

cost. The immediate cost of a state is being determined by the emitted radiance

to the whole scene from the light sources. Our optimal control formulation, tries to

maximize the radiance being reflected from a point x to x′.

Similarly to an application of [13] for shortest path finding, the diagonal matrix Q

will have exp(−λ · 0) = 1 for terminal states and exp(−λ · 1) > 0 for non-terminal

ones. Although we will experiment with different values of λ, we choose initially to

be the sum of the power per unit area dA from all the scene light sources. Then, the

total power sum is scaled with exponents of 10: {0.001, 0.01, 0.1, 1...}. We compute

the solution for different values of λ to obtain different densities of z.
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3.1.4 Combining passive dynamics and state-costs and the

power method

Following the iterative method subsection 2.2.2, for n states, we represent the de-

sirability z(x) and the immediate cost g(x) with the (n, 1) column vectors z and Q .

The passive dynamics p (x’|x) is stored as a n-by-n matrix P , where the row index

correspond to x and the column to the next state x’. The vector z is initialized with

random values between [0, 1) before the iteration begins.

The construction of the matrix P is the challenging part. To represent the formu-

lated passive dynamics in P , we compute the product cos θ
π
fr(ω

′, x, ω) for each pair

of states x and x’. Notice that many transitions x → x’ are forbidden, resulting

in a very sparse matrix. This sparsity comes from the fact that the stratum is a

bunch of incoming directions. Since the stratum determines each state, lots of state

tuples are non valid due to the nature of reflections in light transport. It was already

of our interest to produce a sparse matrix, so only contributing directions will be

taken into account. The values of matrix P are assigned following equation 3.1. For

a self-transition of a state with itself (x = x’), a small enough probability value is

given to keep the Markov chain non-periodic, a condition required by the theory.

Due to the state space data structure, the visibility term V (x, x′) between points of

the scene geometry is included the matrix P . We evaluate the geometry term G for

each pair of states (x, x’) to determine if going from state x to x’ is possible. See the

LTE area formulation for more details about the geometry term. subsection A.1.1.

3.1.5 From the Optimal Controls to Light-Tracing

The optimal control u∗(x′|x) is given in closed form

u∗(x′|x) =
p(x′|x)z(x′)

Ex′∼p(·|x)

[
z(x′)

] , (3.2)

once it is computed from the iterative method. An estimate of L(x, ω) can be then

computed as L(x, ω) = −λ log(z(x)).
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Each row vector u∗(·|x) of u∗ is a discrete probability distribution for reaching

x’ from x under the optimal dynamics (the one that provides the best tradeoff

between maximizing the distance to the light source and deviating from the passive

dynamics). Then, each state x stores a discrete pdf. The pdf stores a probability

for each outgoing stratum for a point and an incident direction. For only using u*

to compute the radiance, the integral from the LTE is approximated like:

∫
S+(x)

L(h(x, ωi),−ωi)fr(ωi, x, ω) cos θidωi ∼=
π

n

n∑
k=0

L(y,−ωk)fr(ωk, x, ω) cos θk
u(x′k|x)

,

(3.3)

where y = h(x, ωi) .Direction ωk is obtained by sampling the pdf stored at the point

x of state x. For doing this we use the inversion method, see chapter B. We sample

N times the inverse CDF and we obtain the next state and its probability. ωk is

sampled according to the direction between x and x’.



Chapter 4

Experimental Results

This chapter presents an integration and implementation of the previously described

models in a path tracing algorithm. Optimal control models, usually have an state

space representing all the possible states of the problem. This part will be the one

more challenging to implement. It is important to define an appropriate structure

to represent the light distribution over all the locations. The irradiance volume [29],

widely used on light transport, is one of the best candidates. For doing this, we

setup different scenes environments to be rendered under the different formulations

proposed.

4.1 Optimal control computation and results

4.1.1 Convergence of the power method

We first evaluate empirically the speed of convergence of z to the largest eigenvector

that determines the solution of the equation. We check the convergence of z at each

iteration by computing the norm of the difference between two consecutive iterations

zi and the previous z(i−1) . We compute z by iterating the power method until a

maximum number of iterations or a distance tolerance is reached. The tolerance

used for the results is ρ = 1x10−40. To see the convergence we visualize how the

distance varies respect to the iteration number. The way the convergence changes

18
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in function of δ, is a hint for knowing if the power method is converging to a proper

solution. The uniformity of the solutions with respect the matrix P should depend

on delta.

Figures 3 and 4 are the convergences for a state space with 32 points sampled per

surface and 8 states per point. We can observe that for high deltas the method

converges really fast, and the opposite for small ones. This results have been tested

for different number of states, but changing the resolution has its interest at the

render task. At the log scale, for each delta we can better see the number of iterations

it takes to reach the tolerance.

However, we need to set the adequate delta to obtain the desired uniformity for the

distributions of u∗. To find the range of deltas suitable for converging our problem

we look around the range λ = [0.1, 1.5]. Fig.3 and fig.4 show that the method

converges fast to set of distributions, then keeps iterating doing until the tolerance

is reached. However an enough small tolerance is achieved at 50 − 100 iterations.

Small λ show a slow convergence and uniform distributions with respect to the

passive dynamics. As the delta keeps growing, converges faster and the

Figure 3: Convergence of z. Figure 4: z distance in log scale.

4.2 u* render results

The results show that estimating the radiance using the u* for sampling the direc-

tions converges to a visual solution. However, artifacts can be detected.If we look

at Figure 6, we can see how low resolutions of the state space strongly affects the

artifacts. The artifacts are generated by the discretisation of the problem, the state
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space data structure, and the power method. Due to λ = 1 and the scene geometry,

the points more at the back part of the scene, have more possible next states. As we

increase the resolution, the artifacts start disappearing from the back to the front.

For example, let us take a look to the points pointing to the camera at the nearest

box. They have a lot of possible directions that will not be contributive. The nature

of the power method and the chosen λ, results in a certain distribution for these

points. This distribution has strong probabilities for just a few next states and 0

for a lot of possible directions.

At Figure 7, we can see how increasing the resolution increases the convergence,

this fact gives us the intuition that with precise modifications u* could be used for

slightly increase the convergence of usual MC methods. To obtain MC noisy im-

ages, which are better for human eye. We relax the discretization effects by mixing

the optimal control with stochastic Monte Carlo. For adapting the method to the

typical rendering tasks, we setup an Octree data structure for saving the points and

its respective optimal distributions. Then, a routine for constructing the CDF’s for

each point state x is performed. Relaxing the distribution as desired for obtaining

more or less uniform distributions.
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Figure 5: For seeing the distributions of u∗ and its variation through different deltas,
we look for a concrete state s and check the distribution for going to all x’, u∗ (x, ·) .
This results in a discrete PDF for each state represented by a n-row vector ux. See
in this figure an example.

(a) λ = 0.01

(b) λ = 0.1

Figure 6: Small state space with only 2048 states. The image is computed with 16
samples per pixel. For such small number of states, the u* gets too much affected
by the visibility between states. Notice that the part of the scene from where less
points are observable, is bad estimated. The positioning of the light source at the
back part of the ceiling also affects.
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(a) Pure MC. The domain is uniformly sam-
pled.

(b) u* sampled. 4096 states with 64 points
per surface and 8 states per point.

(c) u* sampled. 8192 states with 128 points
per surface and 8 states per point.

(d) u* sampled. 8192 states with 64 points
per surface and 16 states per point.

Figure 7: The renders are done with 16 samples per pixel. Only Indirect illumina-
tion. In this case, the λ and resolutions are precisely chosen to obtain better visual
results. MC noisy images and avoid fast converged pixel values.



Chapter 5

Discussion and Conclusions

In this work, we have identified an equivalence between Optimal control and light

transport. We open the possibility of exploring more adequate Optimal Control

methods that can end unifying both disciplines. At least, a theoretical formulation is

given, which can allow to understand better the use of methods derive from Optimal

Control theory. Through the results, we show that there is an underlying between

estimation and control from LMDPs, that also has a counterpart in rendering. The

sampling methods used for rendering such as importance sampling, etc... can be

viewed as optimization problems, where a cumulative radiance is maximised with

a proper Optimal control formulation. Is not common in rendering to address the

problem using algebraic methods such as finding the largest eigenvector of a matrix.

A similar identification has been recently introduced in the literature between the

light transport equation with a particular action-value update used in reinforcement

learning. This connection has been done superficially and is focused in a particular

algorithm for reinforcement learning. Our identification, is rooted in the bellman

equations, providing a deeper relationship between the equations. Also, we can

think about Optimal Control as a possible way for solving some Fredholm integrals

of the second kind. The LTE follows this integrals schema. Additionally, with some

adaptations and tuning of the power method, it seems that we could obtain a way

to improve pure MC with a MC boosted by the linear-MDP solution. In conclusion,

23
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We provide an Optimal control formulation of the LTE solved by a linear method.

Which implies a more precise definition of the resemblance between the equations

of the two fields. The method and optimal policy obtained, converge into a correct

solution. This leads us to confirm our firsts hypothesis.
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Appendix A

Radiometry and Light Transport

In photorealistic rendering we often integrate the radiometric quantities explained

in Chapter 2.1. I will present an explanation of the integrals that we will evaluate

and some tricks to simplify the task.

Figure 8: The unit projected area dA⊥ is perpendicular to the direction w in which
the solid angle Ω is centered.

A.1 Radiometry further concepts

A.1.1 Computation of energy Q

Energy Q = hc/λ,is computed using the velocity of light c, the plank constant h,

the wavelength of the photon λ.

30
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A.1.2 Solid angles

A.2 Projected area

In Equation 2.3 we introduced the differential projected area (dA⊥). This differential

is obtained by applying a cosine term to the differential area dA. This term stems

from the way we measure radiance. We measure radiance counting the photons

passing through a small surface (dA⊥) perpendicular to direction w. The direction

w is the one where the solid angle is centered. An intuitive idea about this is the

fact that the flux arriving to a large surface is distributed diffusely so we have to

take into account the larger area. Figure 8 shows the concept of projected area.

From these we state the following relation:

• Differential projected area: dA⊥ = cosθdA.

The angle θ is the angle between the surface normal n and the direction w of the

solid angle.(Figure 8)

A.2.1 Integrating over the hemisphere

In realistic rendering, we often work on the hemisphere centered around a point. In

this project we mostly integrate the functions over the hemisphere. All the possible

directions from a surface point is what we want to represent with the hemisphere.

In fact an hemisphere is a 2D space formed by all the directions with origin at

the center of the hemisphere. To parameterize this directions we use hemispherical

coordinates.
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Figure 9: Hemispherical coordinates. Direction Θ = (ϕ, θ)

In hemispherical coordinates a direction is defined by two angles, see Figure 9. The

range of values for the angles θ and ϕ are:

ϕ ∈ [0, 2π] ,

θ ∈ [0, π/2] .

The angle ϕ represents the azimuth, and is measured respect to the axis placed in the

tangent plane of point x. Notice that ϕ moves around a complete circumference, this

is why its range of values goes from 0 to 2π. Angle θ represents the elevation respect

the normal vector at surface point x, this can be represented with just a fourth part

of circumference values. Now that we have defined directions on the hemisphere, we

can obtain a 3D point adding a distance r along the direction Ω. Using trigonometry

we can transform between Cartesian(XYZ) and Spherical coordinates easily:

x = r cosϕ sin θ, y = r sinϕ cos θ, z = r cos θ. (A.1)

In rendering algorithms, we often integrate functions that are defined over the di-

rections of a surface point. This means that the integral evaluations are expressed

per unit hemisphere, so the radius r is equal to 1. When r = 1 we are , in fact,

defining directions or points exactly on the hemisphere .

There is a remarkable difference between spherical coordinates and Cartesian. For

a concrete differential solid angle dΘ, its corresponding area on the hemisphere is
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larger near the horizon and smaller at the poles. The differential adds a sin θ factor

to take the area differences into account. Following this, we define a differential solid

angle as:

dwΘ = sin θdθdϕ.

Then the integration for a function f(Θ) = f(θ, ϕ) over an hemisphere is expressed:

∫
Ω

f(Θ)dwΘ =

∫ 2π

0

∫ π/2

0

f(θ, ϕ) sin θdθdϕ. (A.2)



Appendix B

Monte Carlo

B.1 Inversion Method, sampling a PDF.

Consists in sampling according to a given PDF using the inverse cumulative dis-

tribution function of p(x). This is done by evaluating the CDF−1 of p(x). This

method requires to compute analytically the CDF and its inverse. The process to

compute a sample y from a PDF follows the steps below:

1. Compute the CDF P(x) integrating the PDF : P (Y ) =
∫ Y
−∞ p(x)dx.

2. Compute the inverse CDF P−1(Y ).

3. Sample a uniformly distributed random variable X.

4. Finally, compute sample y evaluating P−1(Y ) with X sample: y = P−1(X).

This method is used to generate multidimensional samples for evaluating the ren-

dering integral. And the random variable that it is used for this is the canonical

uniform random variable ξ, a continuous uniformly distributed random variable.
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