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ABSTRACT 

Cardiac imaging is a crucial component in the management of cardiac patients, and as such it 

influences multiple, inter-related parts of the clinical workflow: physician-patient contact, image 

acquisition, image pre- and post-processing, study reporting, diagnostics and outcome predictions, 

medical interventions, and, finally, knowledge-building through clinical research. With the gradual and 

ubiquitous infiltration of artificial intelligence into cardiology, it has become clear that, when used 

appropriately, it will influence and potentially improve –through automation, standardization and 

data integration─ all components of the clinical workflow. The aim of this review is to present a 

comprehensive vision of a full integration of artificial intelligence into the standard clinical patient 

management ─with a focus on cardiac imaging, but applicable to all information handling– and discuss 

current barriers that remain to be overcome before the wide-spread implementation and integration.  
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RESUMEN 
 
La imagen cardiaca es un componente crucial en el abordaje de los pacientes cardiacos, y como tal 

influye en múltiples partes interrelacionadas del flujo de trabajo clínico: el contacto médico-paciente, 

la adquisición de imagen, el pre y pos-procesamiento de imágenes, los informes de estudios, el 

diagnóstico y la prognosis, las intervenciones médicas y, por último, el desarrollo del conocimiento a 

través de la investigación clínica. La incesante infiltración de la inteligencia artificial en cardiología 

pone de manifiesto que, usada apropiadamente, influirá y potencialmente mejorará ─a través de la 

automatización, la estandarización y la integración de datos─ todos los componentes del flujo de 

trabajo clínico. El objetivo de esta revisión es presentar una visión holística de cómo se integra la 

inteligencia artificial en el abordaje clínico del paciente, con especial foco en la imagen cardiaca, pero 

aplicable a toda la gestión de información, y discutir las barreras actuales que aún deben superarse 

para su implementación generalizada. 
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AI: artificial intelligence 

CMR: cardiac magnetic resonance 

CNN: convolutional neural networks 

CT: computed tomography 

DL: deep learning 

DSS: decision support system 

ML: machine learning 

NLP: natural language processing 

 

 
Abreviaturas 
 
AA: aprendizaje automático 

AI: inteligencia artificial 

AP: aprendizaje profundo 

PLN: procesamiento del lenguaje natural 

RM: resonancia magnética cardiaca 

SAD: sistema de apoyo a las decisiones 

TC: tomografía computarizada 

RNC: redes neuronales convolucionales  



 

 

INTRODUCTION 

Artificial intelligence (AI) has proven to be an example of a general-purpose technological 

innovation, with a ubiquitous presence in communications, marketing, economy, and the information 

technology industry. Reflecting technological advances, increased availability of data, and open-

source codes for algorithms, AI solutions have been steadily improving, while bringing unprecedented 

benefits –changing workflows, improving efficiency, refining data handling and guiding services to the 

target users. The interest in integrating AI in various medical sub-fields has been huge –from 

dermatology, oncology, ophthalmology, to cardiology.1  

In cardiology, the need for novel solutions is reflected by data ─cardiovascular diseases have 

steadily maintained their position as a leading cause of morbidity in Europe, with hospitalization rates 

increasing from the year 2000,2 while at the same time, information sources have dramatically 

increased and the generated data has exploded. Therefore, the burden of patient management is 

immense, with an elevated need for appropriate, highly-informative, time and cost-efficient data 

analysis. AI can potentially address opportunities for optimization and personalization throughout the 

imaging workflow ─from the choice of appropriate imaging modality up to the prediction of outcomes. 

Whereas previous reviews have successfully summarized the technological aspects and application of 

AI in different imaging modalities,1,3-9 the aim of the current review is to present a vision of a 

comprehensive integration of AI into the standard clinical patient management –with a focus on 

cardiac imaging. We will also discuss the obstacles to overcome before the widespread integration of 

AI –concerns from the clinical side, as well as technical and ethical challenges. 

 

MANAGEMENT OF CARDIAC PATIENTS AND CARDIAC IMAGING. A MULTITUDE OF OPPORTUNITIES 

FOR AI 

Comprehensive management of patients with cardiac disease necessarily includes cardiac 

information management– with the data used to guide diagnosis, assess risk, guide treatment or 

interventions, and decide on follow-up. Here, cardiac imaging, for example, is a crucial component for 



 

 

cardiac patient management, and as such it is one of multiple, inter-related parts of the clinical 

workflow: the physician-patient communication, image acquisition, imaging data pre- and post-

processing, study reporting, data interpretation, diagnostics and outcome predictions, medical 

interventions, and, finally, knowledge-building through clinical research. AI has strong potential to 

improve each part of the patient management workflow (figure 1). The schematic in figure 2 shows 

an overview of AI fields and sub-fields, together with a selection of algorithms. 

 

The physician-patient contact: data collection, triaging and appropriate imaging use 

With increasing clerical burden and challenges related to electronic healthcare records 

usability, AI offers opportunities of standardizing and improving efficiency in data collection and 

quality of communication (figure 3A), with the aim of reducing menial and time-consuming tasks and 

enabling focus on the patient-physician interaction. Analytical methods of speech and text analysis 

could improve information transfer by guiding communication (providing feedback on delivery of 

information and clarity of content), standardizing medical  history taking, and informing patients in an 

accessible, easy to understand language.10 Patient verbal responses, facial expressions, and tone of 

voice could be analysed to guide interaction, on-site or using tele-medicine.11 Additionally, 

communication can now be performed over electronic patient portals, where AI-based tools, such as 

natural language processing (NLP) and machine learning (ML) can categorize patient free-text 

messages, with the aim of organizing triage and automating responses for urgent cardiovascular 

medical issues.12 

In the ambulatory setting, risk assessment and triaging is conventionally achieved through 

decision support systems (DSS) where AI-based feature extraction from images or clinical reports 

could be integrated to automate input and increase efficiency.13 The possibility to automatically create 

an accurate list of patient diagnoses from clinical notes,14 or identify risk factors from electronic health 

records, such as risk associated with sudden cardiac death in patients with hypertrophic 

cardiomyopathy,15 can serve as examples. Furthermore, ML integration can advance risk assessment 



 

 

in the ambulatory setting of specific patient groups. A boosted decision tree algorithm was used on a 

cohort of 5822 heart failure patients to assess mortality risk.16 The model was externally validated 

yielding similarly satisfying performance, providing proof of generalizability in the heart failure disease 

spectrum. An efficient, widely applicable risk model could help prompt identification and triaging 

towards further investigation and advanced care for appropriate patients.  

An integrated AI/DSS algorithm could also help in choosing the appropriate imaging modality 

that can provide the greatest diagnostic and prognostic information in the least amount of time, while 

maximizing patient safety and minimizing additional testing costs.17 In a recent multicentric study, an 

automated point-of-order DSS, based on decision tree algorithms, has shown to rapidly determine 

cardiac imaging test appropriateness for coronary artery disease (CAD) evaluation.18 Another study 

demonstrated a NLP-based approach for computed tomography (CT) and cardiac magnetic resonance 

(CMR) protocol assignment.19 As these studies show, point-of-order AI/DSS can be an efficient tool to 

guide patient imaging decisions and maximizing efficiency for both the patient and the healthcare 

provider. 

 

Cardiac image acquisition: automation, time-efficiency and safety 

Once the decision regarding the choice of cardiac imaging modality has been made, AI can 

improve the process of image acquisition (figure 3B). In echocardiography, convolutional neural 

networks (CNNs) –a type of deep learning (DL) well-suited for image-oriented tasks─ can automate 

echocardiographic image acquisition by guiding the motion of the probe towards optimal positions, 

such as the 4-chamber view, enabling capture of diagnostic echo images after minimal training.20 

Recently, the US Food and Drug Administration approved the first cardiac software using AI to guide 

ultrasound image acquisition.21 The implications include improved staff education, wider applicability 

of imaging in low-expertise centres, less imaging artefacts and higher reproducibility of exams.  

Novel technology can also improve CMR and CT acquisition ─CMR imaging suffers from long 

acquisition times due to high temporal and spatial resolution. Because of their ability to use large data 



 

 

sets to learn key reconstruction parameters, ML approaches, particularly DL, have been recently 

proposed accelerate CMR scan times.22 Likewise, generative adversarial networks have been applied 

to synthesize cine-like CMR images from real-time CMR sequences (i.e. sequences used as an 

alternative when patients are unable to hold their breath or have arrhythmias during scanning), 

resulting in improved image quality, with clearer images and sharper anatomical distinction.23 CT has 

also seen promising advances from ML aimed at speeding up reconstruction times, but also at 

reducing radiation dose. DL methods have been applied to learn with low-dose CT images and 

reconstruct them to routine-dose CT images, synthesize contrast CT images from non-contrast images, 

reduce noise in low-dose CT scans, enable lower-dose CT and sparse-sampling CT; and reduce metal 

artifacts.24 These examples of AI contributions to image acquisition will prove valuable in medical 

education, time-efficiency, cost-reduction, and patient safety. 

 

Image processing: automation and reproducibility of pre- and post-processing  

After acquisition, raw image data intended for analysis is commonly heterogeneous ─with 

variable image quality, acquired with different settings and with machines from different vendors. 

Therefore, pre-processing ─including anonymization, normalization, and handling of missing data─ is 

a crucial part of the imaging pipeline (figure 3C). Characteristics such as image contrast, brightness 

and resolution affect the robustness and accuracy of image analysis ─normalization can include 

adjustment and standardization of image size,25-29 applying filters to images to remove noise,25 and 

enhancing contrast to help in the process of feature extraction,30 to name a few examples. To prepare 

data for DL, echocardiographic videos can be converted to multidimensional numeric arrays of pixel 

intensities, with dimensions representing time, coordinates in space and encoding of colour 

information.31 Normalization of CT images can also be achieved through a DL, e.g. U-Net based, 

strategy.32 Furthermore, DL has recently addressed more challenging tasks, with CNNs screening for 

motion artefacts or erroneous orientation of the 4-chamber view in the first step of the image analysis 



 

 

pipeline.33,34 ML can also provide solutions for missing data, with innovative imputation methods using 

cardiac imaging data.35  

Overall, pre-processing approaches accomplish uniformization of imaging data, enabling 

improved post-processing and feature extraction, where various feature selection strategies can be 

employed to determine the most interesting features of the dataset. However, regardless of imaging 

modality, processing of data to extract clinical variables (i.e. volumes, wall thickness, deformation, 

valve morphology) is notoriously time-consuming, meticulous, and prone to inter-operator 

differences and error. Image interpretation is highly experience- and observer-dependent, resulting 

in unsatisfactory measurement variability. This can prove problematic for longitudinal patient follow-

up ─for example, in cardio-oncology or heart failure, where reproducible assessment of cardiac 

function is essential; or for multicentric, multi-expert datasets– where variability in measurements 

biases the analysis. Automation of image analysis through ML can therefore be beneficial by saving 

time, increasing accuracy, reproducibility and standardization33,36-38 (figure 3D).  

Identifying cardiac views is the crucial first step in image analysis. When a cardiologist 

recognizes the cardiac view, view-specific cardiac structures can be segmented, measured and 

quantified to assess cardiac function and remodelling. View classification has lately been approached 

mainly through DL methods such as CNNs ─incorporating both spatial and temporal information 

contained in the echo loops, and achieving high accuracy rate of 92.1%.26 More advanced CNN models 

can classify full standard transthoracic echocardiograms ─B-mode, M-mode, Doppler, both still images 

and videos─ from patients with a range of pathologies, technical settings and image quality.27 By 

avoiding idealized training subsets, such models show potential of applicability to a clinical setting, 

with high accuracy of 97.8%.  

Following view recognition, image segmentation is the process of partitioning an image into 

its constituent parts (e.g. each part corresponding to a distinct cardiac structure) to quantify structure 

and function. In two-dimensional echocardiography, ML-based fully automatized left ventricular (LV) 

volume, ejection fraction and longitudinal strain measurements have been shown to be rapid, 



 

 

reproducible and in good agreement with manual measurements.39 Furthermore, an automated 

image interpretation pipeline has been shown feasible, incorporating view identification, image 

segmentation, and the quantification of structure and function.31 Three-dimensional (3D) 

echocardiography could offer a more reproducible quantification of cardiac chambers but requires 

cumbersome manual processing, heavily burdening workflow and applicability. An automated 

adaptive analytics algorithm for simultaneous quantification of ventricular and atrial volumes proved 

reproducible and comparable with manual segmentations and CMR values, however the technology 

is applicable only in patients with sufficient image quality.40 Feasible solutions for automated 3D right 

ventricle assessment have also been demonstrated.36 Additionally, when considering valve 

assessment, automated 3D transoesophageal echocardiography mitral valve geometry quantification 

showed good relation with manual measurements and a significant reduction in measurement time, 

although, again, highlighting the need for high-quality images.41 While challenges in automating 3D 

dataset analysis are still prominent, the present studies demonstrate an incremental shift, showing 

potential to improve workflow limitations in the clinical setting. A comprehensive review of 

automated quantification in echocardiography is available.5  

Similar development in automation has been seen in CMR. A fully automated quantification 

of LV mass, biventricular volumes and ejection fraction has been demonstrated on a heterogeneous 

CMR dataset, showing feasible segmentations and comparable results to manual quantification, albeit 

demonstrating lower agreement in severely altered anatomy and reduced image quality.38 Automated 

CNN-based CMR-image segmentation and quantification has been shown faster, and with similar 

precision, compared to the most precise human techniques, even when challenged with a real-world, 

multicentre, multi-disease scan-rescan data to assess measuring precision.42 Furthermore, integration 

of quality control algorithms, detecting erroneous outputs, has been demonstrated in a cohort of 

healthy volunteers and patients with a wide variety of cardiac diseases.33 Cardiac function and tissue 

characterization can also be addressed –a fully automated phase-contrast CMR aortic flow 

quantification showed a more rapid, feasible alternative for large CMR dataset segmentations and 



 

 

analysis,37 semiautomated quantification43 and synthetic data approaches44 have been suggested to 

automate late gadolinium enhancement segmentation. Synthetic data has also been used to generate 

CMR images based on a reference biomechanical model of the LV to create a “ground truth” for testing 

robustness of segmentation and registration methods.45 

  

Diagnostics and prognosis: data integration and advanced phenotyping  

Following the image analysis and processing, the ensuing steps include integration of the 

derived measures with other data sources, resulting a comprehensive representation of the patient 

in focus. Traditional methods of phenotyping are challenged by unstandardized quantification, 

geometric assumptions, high observer variability, limited set of parameters, and a tendency to 

discretize continuous phenogroups. As shown in figure 4, the combination of information-rich imaging 

(i.e. deformation imaging, 3D datasets, tissue characterization, 4-dimensional flow etc.) and ML 

facilitated the shift from one dimensional descriptors of cardiac function and structure to high-

resolution, multi-parametric phenotyping.4 A relevant message learned through such advanced 

approaches is that cardiac diseases commonly represent a disease spectrum, where a binary 

classification into diseased or healthy does not reflect the underlying complexity. A recent 

unsupervised ML approach, using LV longitudinal myocardial velocity patterns, categorized 

hypertensive and breathless patients into a transition zone of the heart failure with preserved ejection 

fraction spectrum, demonstrating potential pitfalls of conventional clinical diagnostic algorithms, as 

well as the broad spectrum of the heterogeneous heart failure with preserved ejection fraction 

syndrome.46 Moreover, it is precisely the heterogeneity of heart failure, and the non-linearity of 

diastolic function, that can present an appropriate challenge for ML, especially unsupervised 

approaches, which can extract hidden patterns in data and cluster patients regardless of a priori 

knowledge or known clinical labels.47,48 Data from the same patient, both from rest and exercise 

echocardiography, can be integrated using ML to create a spatiotemporal-rest-exercise 

representations of LV function to determine heart failure with preserved ejection fraction.48 Finally, 



 

 

the strong potential of data integration and phenotyping through AI is best illustrated through novel 

approaches combining knowledge from imaging, genomics and proteomics through the combination 

of high-throughput DNA sequencing combined with ML methods to tackle challenges of scalability and 

high-dimensionality of data.4 As a notable example, polygenic risk scores of LV phenotypes have been 

shown predictive of heart failure independently of clinical risk factors, and CMR derived phenotypes 

highly heritable, showing that LV image-derived phenotypes and remodelling are related to the 

underlying genetic basis.49 Moreover, the combination of high-resolution phenotyping and machine-

based data analysis showed that titin truncating variants, previously thought of as irrelevant in the 

general population, are associated with higher LV volumes in CMR analysis and eccentric 

remodelling.50 Proteomics have also been used to identify CAD risk –predicting both high-risk plaques 

and the absence of CAD on coronary CT angiography in patients with suspected disease.51  

The advances in data integration and phenotyping are inherently linked to significant 

improvement in diagnostics and outcome prediction (figure 3E), though most studies using AI are still 

observational, single-centre, and can only be considered hypothesis generating. Nevertheless, AI has 

been used on imaging data to diagnose myocardial infarction, heart failure, CAD, atherosclerosis, 

cardiomyopathies, and valvular heart disease amongst other. DL models demonstrated comparable 

results to cardiologists in detecting the presence and location of ischemic regional wall motion 

abnormalities,52 or high accuracy of detection (AUC, 0.94) of chronic myocardial infarction in non-

contrast enhanced cine CMR images, as compared to late gadolinium enhancement CMR.53 Results 

have also been seen in CT studies, where texture analysis was more objective and reproducible in 

diagnosing chronic myocardial infarction when compared to visual assessment.54 In heart failure, 

unsupervised ML has been used on a large trial dataset to identify phenogroups with distinct clinical 

characteristics related to outcome,55 or to identify patients with heart failure with preserved ejection 

fraction through spatiotemporal variations of LV strain rate during rest and exercise 

echocardiographic data.48 The ability of cardiac imaging to avoid unnecessary invasive procedures 

presents a clear target in CAD. DL applications have shown successful identification of obstructive CAD 



 

 

from single-photon emission CT perfusion imaging.56 In recent multicentre studies, a gradient boosting 

classifier showed that the addition of resting CT perfusion to CT angiography can improve prediction 

of significant ischemia in coronary stenosis,57 while an on-site, ML-based, CT fractional flow reserve 

algorithm improved the performance of CT angiography by reclassifying hemodynamically 

nonsignificant stenosis, performing as well as computational fluid dynamic approaches.58 Calcification 

quantification and plaque characterization have also been increasingly explored, demonstrating that 

radiomic features may be able to discriminate napkin-ring sign plaques,59 a challenging task due to its 

qualitative nature. In valve disease, support vector machines (SVM) and linear discriminant analysis 

have been used to separate patients according to the severity of mitral regurgitation, quantified based 

on textural features extracted from three echocardiographic B-mode views, with > 99% accuracy for 

each of the qualitative levels of regurgitation.25 Likewise, discriminating different cardiomyopathies 

has been a sensible target for the advanced phenotyping capabilities of AI. Radiomic texture analysis 

on CMR T1 images, and a support vector machine classifier, have been applied to discriminate 

between hypertensive heart disease and hypertrophic cardiomyopathy.29 An ensemble ML model 

used speckle-tracking echocardiographic data for automated discrimination of pathological and 

physiological patterns of remodelling seen in hypertrophic cardiomyopathy and athlete’s hearts (AUC, 

0.80).60 A detailed overview of diagnostic applications of AI in cardiac imaging is found in Al’Aref et al.6 

and Martin-Isla et al.8 

 

 Study reporting 

After full data analysis is performed, an AI-fuelled, rapid, precise, and reproducible reporting 

of findings is beneficial for efficient patient management (figure 3F). Here, automatic recognition and 

translation of voice into text ─speech recognition– was one of the first examples of AI integration into 

the imaging workflow. Despite unresolved challenges, application in radiology departments has 

already shown benefits in reducing reporting time and costs, as well as increasing productivity.61 

Furthermore, AI could serve as a “fail-proof” for study reporting ─echocardiography reports can be 



 

 

analysed by artificial neural networks to predict patient mortality and hospital readmissions for heart 

failure patients.62 NLP can help clinical interpretation of reports and report drafting by assessing post-

test risk after myocardial perfusion imaging,63 where underestimation of ischemia in reporting has 

been previously noted. Another crucial challenge is the failure to follow-up imaging 

recommendations, potentially leading to patient health deterioration, failed advanced treatment and 

rise of costs. Scalable and automated follow-up detection NLP algorithms can therefore be useful to 

determine adherence rates for follow-up imaging and define patients who may benefit most from 

potential engagement, with the aim of mitigating risk.64 

  

Medical interventions: guidance from AI and imaging 

AI fields, including ML, NLP, computer vision and robotics, have generated high interest to 

address challenges in the field of interventional cardiology with the aim of improving real-time 

decision making, streamlining workflows in the catheterization laboratory and standardizing catheter 

based procedures through advanced robotics.65 A clear example can be found in the imaging solutions 

for transcatheter aortic valve replacement procedure planning and valve choice. In transcatheter 

aortic valve replacement, CT is the current standard for the determination of prothesis sizing, 

however, automated 3D transoesophageal echocardiography software can allow modelling and 

reproducible quantification of aortic annular and root dimensions with high correlation of 

measurements with CT.66 Furthermore, post- transcatheter aortic valve replacement, there is a lack 

of a solid reference method to assess paravalvular regurgitation which can be addressed using an 

ultrasound simulation-based pipeline.67 In the field of heart failure, unsupervised ML has been applied 

to integrate whole-cycle echocardiographic data and heterogeneous clinical data to predict response 

to cardiac resynchronization therapy.68 DSS and risk assessment after hospital discharge have also 

seen advances ─a boosted ensemble algorithm showed greater prognostic value of predicting CAD 

than current integrated coronary CT angiography risk scores by maximizing usage of stenosis and 

plaque composition information.69 Moreover, a ML integration of clinical and CT angiography data 



 

 

predicted 5-year all-cause mortality (AUC, 0.79), performing significantly better than existing metrics. 

Similar approaches have been proposed in prediction of 3-year major adverse cardiac events in 

patients undergoing single-photon emission CT myocardial perfusion imaging, where ML integration 

of clinical, stress and imaging variables was found to have a superior predictive accuracy as compared 

to visual or automated perfusion assessment in isolation.70 

  

Clinical research: data availability and fully automated data analysis  

The described AI integration and automation of analysis can advance patient care in various 

clinical settings; however, integration also bears relevant implications for clinical research (figure 1, 

figure 4). The quality and size of the available datasets determines the quality of the ML-derived 

results. A major obstacle here is the need for high-quality expert annotations in imaging datasets, as 

labelling carries inherent uncertainties, biases and assumptions. Recently, self-supervised methods 

have been suggested to tackle this problem due to their ability to explore data that has not been 

labelled.71 Additionally, synthetic data, with realistic properties and imaging modality specific noise 

textures, can help bypass the problem by being used in the training procedure of the ML algorithms 

in addition to the real clinical data. As an example, a generative adversarial network has been used 

for the synthesis of realistic CT images based on body phantoms with the goal of increasing the dataset 

size to improve training and performance of vessel segmentation networks.72 Furthermore, many ML 

algorithms are limited by a scarcity of large and heterogeneous datasets ─the majority of available 

studies are confined to single-centre cohorts or cohorts from specific populations, however, ML has 

shown capacity to integrate data from different datasets to achieve a more robust analysis.73 In 

addition, there is increasing initiative to expand the availability of imaging databases, biobanks, 

bioresources and registries for ML training ─an example would be the UK Biobank initiative or the 

REFINE-SPECT  (REgistry of Fast Myocardial Perfusion Imaging with NExt generation SPECT) registry.8 

Nevertheless, data sharing and a lack of efficient methodologies to satisfy all involved stakeholders 

remains a common challenge. Next-generation methods for federated, decentralized ML have been 



 

 

proposed to replace the current paradigm of data sharing and centralized storage –algorithms could 

be distributed to sites or devices where data is kept to perform tasks locally, returning results to the 

central repository to update the main algorithm.74 Ideas to integrate solutions from the financial 

sector, such as blockchain technology, have also been proposed to decentralized databases, secure 

traceable and scalable data exchange, and integrate AI tools that are blockchain-enabled, distributed, 

and tied to a system of incentives that flow to the owner of each data on the basis of its value.75 

Finally, when datasets are available, high-quality analysis needs to be performed. Recent 

reports envision a fully automated analysis - a CNN network, using echocardiographic images, was 

used to identify local cardiac structures, perform automated measurements of structure and function, 

and predict phenotypes that modify cardiovascular risk - based solely on imaging data.28 Another 

recent study performed a retrospective analysis on a 10-year echo database from diverse vendors, 

showing that CNN algorithms can support scalable, low-cost analysis within the healthcare system in 

a reasonable timeframe.31 Importantly, the application of these automated processing tools warrants 

quality control. Manual inspection of each segmentation is not feasible in larger cohorts, therefore 

approaches such as reverse classification accuracy show potential for accurate and fully automatic 

quality control, as shown on a large number of CMR cases from the UK Biobank study.76 Moreover, 

parameters calculated from the automated segmentations, such as stroke volume of the left and right 

ventricle, can be tracked, and exams with disproportionate stroke volumes flagged. Additional ML 

algorithms, such as support vector machines, can be used to classify outputs of ML algorithms as 

abnormal or normal.33 Lastly, research data is not only stored in images. Management of cardiac 

patients produces an immense stream of clinical data, most commonly in non-standardized, 

unstructured reports, not feasible for immediate analysis. As discussed earlier, NLP algorithms can 

play a crucial role, extracting cardiac concepts from multiple centre-derived free-text and semi-

structured reports. The promise of such technologies represents an important link in automation of 

database analysis for clinical research. 

 



 

 

CLINICAL, TECHNICAL AND ETHICAL CONCERNS OF INTEGRATING AI INTO PATIENT MANAGEMENT  

Parallel to all potential benefits, continuous concerns are present regarding overreliance and 

dependence on the capabilities of automation, with fear that they might eventually result in clinician 

deskilling - manual dexterity in echocardiography or loss of skill to analyse and independently interpret 

cardiac imaging studies. However, appropriate application of AI in different parts of the clinical 

workflow aim at enriching, not replacing, current clinical practice. Communication and data collection 

during ambulatory visits can remain unchanged in their essence, but become more efficient, opening 

up time for clinician-patient interaction. Structural or functional quantification can become faster and 

standardised through automation, freeing up considerable time, but always with the option to review 

and adjust segmentations. Furthermore, contrary to deskilling, AI can also be used for educational 

purposes - acquisition guidance can train less-experienced operators, transfer learning frameworks 

teach cardiac anatomy,77 and DL solutions serve as a learning tool as they can achieve better results 

than resident readers when assessing wall motion abnormalities.52 An additional concern fears the 

dismissal of the holistic approach to patient care, predicting that focus will shift towards data features, 

as opposed to the patient complexity behind the data. However, it can be argued that AI might actually 

expand the horizon of the holistic approach through comprehensive multimodality data integration - 

integrating clinical assessment data, imaging data, molecular and genetic data, as well as electronic 

health records, as discussed previously. Such improvements have paved the way towards the concept 

of the “digital twin” –a virtual tool that integrates clinical data acquired over time to create a dynamic 

and comprehensive representation patient at hand78─ streamlining an unprecedented and 

personalized approach to patient care. 

To achieve full potential of AI, generalizability and interpretability will have to be rigorously 

addressed. As opposed to the promise of AI driving a personalized approach to patient care, the 

generalization seen in traditional cohorts or randomized control studies (i.e. population-based 

findings used to treat individuals) is also a problem embedded in AI solutions. An algorithm trained on 

biased data (images from a local cohort or a specific vendor), might not perform well in a real-world 



 

 

setting, hence, the correct interpretation of a case with a pathology/phenotype outside the training 

data is not feasible. Transfer learning, through the combination of CNN-generative adversarial 

network architecture, has been used to improve the performance of DL algorithms when applied to 

data from alternate vendors, providing a solution to the common challenge of applying an algorithm 

to multicentre, multivendor data.79 Combined with internal validation (i.e. multiple split-sample 

regimens like x-fold validation), multicentre and external (i.e. prediction in a new, unrelated dataset) 

validation is crucial in demonstrating generalizability. Furthermore, public availability of the data and 

algorithms, as advocated through open data and open source initiatives, and the replication by other 

research groups, could strengthen the trust in the model, although such approaches are limited by 

commercial interests. Comprehensive quality control of ML algorithms can be achieved through tools 

that enable performance measurement, monitoring, and feedback and accountability mechanisms.80  

In a generalizable, integrated AI algorithm, the need for tools to explore the reasoning behind 

algorithmic outputs will always be paramount for interpretability and crucial for building trust and 

adoptability. When available, an intuitive and motivated explanation of the decision process should 

be presented, backed-up by a highlight of important data to provide pathophysiological interpretation 

and enable understanding on how each of the numerous variables contributed to the final output, 

such as velocity data explaining alterations in diastolic and systolic function in separate patient 

clusters.46 In situations where the applied algorithm is a black box, novel methodologies can help by 

“getting inside the box” - occlusion testing experiments include testing accuracy of classification after 

masking different parts of the input image, while saliency maps show the pixels in the image weighted 

most heavily in the neural network classification decision.27,28 Nevertheless, decisions made by more 

complex algorithms can currently be challenging to interpret, making potential integration into the 

clinical setting an ethical challenge.  

Besides many ethical considerations regarding the use of patient medical data, AI 

encompasses a wider scope. Many ML algorithms are developed and validated, on advanced and 

expensive modalities ─commonly performed in high-income countries and high-level centers.81 



 

 

Patients from low- or middle- income countries are often underrepresented. Therefore, the question 

is if AI can aid in resolving health inequalities, or result in the deepening of existing ones. However, 

when appropriately used, AI can help democratize health care, by reducing costs and bringing imaging 

to regions with limited specialized expertise. For example, some reports demonstrate DL input can 

consist of reduced size medical images, reaching 96-99% savings in files size compared to images 

standardly used in clinical assessment.27 Implications include less storage capacity in resource-poor 

regions, easier data sharing, and utilization of older scanners with lower resolution. However, similar 

to past examples of general-purpose technologies –electricity or computers– the full effects of AI in 

healthcare will not be realized until waves of complementary innovations are developed and 

implemented.82 Likewise, implantation will strongly depend on the attitude of healthcare providers 

and the public towards novel technologies. As an example, attitudes towards data sharing for AI 

development highlight the importance of trust in institutions and clear communication of potential 

benefits.83 Moreover, recent studies revealed patient resistance to AI solutions –patient preference is 

highly towards human interaction rather than automated, even if it means lower performance.84 

Focusing on the uniqueness of each patient in care delivery, perceived personalization of medical care 

by increasing the amount of integrated user information or incorporating cues indicating a patient 

uniqueness could all be highly relevant for the receptiveness to AI.84 

 

CONCLUSION 

After a steady infiltration into healthcare, and a robust set of literature demonstrating proofs-

of-concept and potential benefits of AI implementation in cardiology, the vision of comprehensive 

integration of AI into the standard cardiac patient management and workflow of cardiac information 

is becoming a palpable reality. Regardless of many challenges to face ─technical questions, challenges 

of implementation, appropriateness for specific tasks, and ethical dilemmas─ AI can inevitably bring 

value to patient care. With all the positive consequences AI will offer, the most valuable one could be 

the return of time into the hands of clinicians, resulting in a shift of focus back to the essential, and 



 

 

most valuable, physician-patient relationship –but this time, through an unprecedented, efficient and 

personalized approach.  
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FIGURE LEGENDS 

Figure 1. A scheme showing the potential targets for artificial intelligence integration in a cardiac 

patient management workflow. 

Figure 2. A schematic showing a selection of fields and sub-fields in the topic of artificial intelligence. 

Figure 3. A pipeline showing various parts of the cardiac imaging workflow. Artificial intelligence (AI) 

can be integrated throughout the pipeline with to goal of achieving automation, standardization and 

data integration, as well as improved efficiency and accuracy. 

Figure 4. A scheme showing the process of artificial intelligence (AI) mediated data integration leading 

to improved patient phenotyping, personalized treatment, and clinical research.  
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