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Abstract. We revisit the competency trap and reexamine when it occurs.

We show that a bias against alternatives that improve with practice does not

require that learning is myopic in the sense of lacking foresight or failing to ex-
plore. The same bias occurs even if learners engage in substantial exploration

and have foresight. In fact, we demonstrate that even a rational and fore-

sighted learner, who follow an optimal strategy for balancing exploration and
exploitation, will learn to prefer alternatives with initially high payoffs that

decrease with practice over alternatives, with identical expected values, that

have initially low payoffs that increase with practice. Our results show that a
bias against alternatives that improve with practice is due to an asymmetry

in error correction rather than to myopic learning. The implication is that a
wide range of selection systems, even optimally designed ones, will be biased

against late-bloomers.
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Mens, Revisiting the competency trap, Industrial and Corporate

Change, Volume 29, Issue 1, February 2020, Pages 183–205, DOI:

10.1093/icc/dtz072] is available online at:
https://academic.oup.com/icc/article-abstract/29/1/183/5675622

1. Introduction

Jim was always interested in illustrations of how sensible learning processes could
lead to suboptimal outcomes. Throughout his career, he collected, developed and
honed a series of ‘small ideas’ (as he liked to call them) about flawed learning.
Each idea is like a parable, providing theorists and practitioners with lessons about
the limitations of adaptation processes in realistic settings. Like parables, small
ideas consist of a simple storyline, containing only a few select elements chosen to
emphasize the basic ideas. The purpose is not to be realistic, but to convey insight.

One of Jim’s small ideas about flawed learning is the ‘competency trap’; a parable
about how competence in an activity may trap people into this activity (Levinthal
and March, 1981; Leavitt and March, 1988). In its simplest version this is a story
about an individual who has to select between two activities (Denrell and March,
2001). The individual is familiar with one of the alternatives, has tried it many
times, and has become proficient in it. The other activity is new, unfamiliar, and
the individual is less proficient in it. When the new activity becomes available,
the individual decides to try it out, to check if it could be better. But the first
time the individual tries the new activity it seems worse. The individual gives the
new activity another try, but again performance is below that of the established
activity. At this point, the individual has had enough and reverts back to the
familiar activity. The problem is that if the individual had persisted with the new
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activity, and had become more proficient in it, performance would have improved.
The new activity does in fact have a higher potential performance than the old
activity, but realizing this potential takes practice. By avoiding the novel activity
based on poor initial performance, the individual will not practice enough and
will never discover the higher potential of the new activity. The individual will
continue believing that the new action is inferior and can claim that the data does
indeed back this up. The irony is that this mistake occurs only if the individual
is competent in the old activity. An individual unfamiliar with both activities,
old and new, will not be biased and will discover the higher potential of the new
activity. Like the little boy in Hans Andersen’s tale of the ‘Emperors New Clothes’,
the incompetent, inexperienced, and ‘foolish’ individual (March, 1971) is the only
one who can see the truth.

The parable of the competency trap illustrates a simple reason for why seem-
ingly objective comparisons can be misleading: what you see is not what you get.
The problem is one of misplaced confidence in performance measures. Measures of
short-run performance do not take into account the long-run potential of activities.
If performance improves with practice, and the amount of practice differs between
activities, short-run measures of the performance of different activities will be mis-
leading as indicators of their long-run potential. The broader implication is that
any learning or adaptation process which reduces the tendency to choose actions
with poor short-run performance will be biased towards activities that do well ini-
tially, even if they have identical long-run potential. ”The short run is privileged
by organizational learning” (Levinthal and March, 1993, p. 101). Several other
theorists have made similar claims that adaptive processes tend to be myopic and
hence will not identify the best practices when those practices tend to do poorly ini-
tially (Nelson and Winter, 1982; Elster, 1984; Levinthal and March, 1993; Sterman,
2000).

The purpose of this paper is to revisit the small idea of the competency trap
and reexamine when it occurs and why. Our focus is on when and why learning
might be biased against alternatives with initially poor payoffs that increase with
practice. Our intention is to sketch a new version of the parable of the competency
trap; a version that illustrates why a simplistic interpretation of why the bias
against the novel alternative occurs is not correct. The simplistic interpretation (an
interpretation we ourselves used to hold) is this: the mistake the individual made
was to behave as if short-run performance reflects long-run potential. That is, the
individual was myopic in the sense of ignoring or failing to consider the long-run
(Levinthal and March, 1993, p. 101). As a result, the individual did not trade-
off the possibility of a high long-run potential against the short-run performance
disadvantage. The bias emerges, according to this argument, because the learner
prematurely avoids alternatives with poor short-run performance. If the individual
had taken into account the fact that the performance of the new activity may
increase, the individual would have realized the need to explore and persist with
the novel activity, even if its performance is poor initially, to find out if it might
be superior. If such exploration was conducted, the argument suggests, then the
learner would not necessarily be biased against the novel alternative. The bias is
thus a result of the assumption that the learning process is myopic in the sense of
ignoring or failing to consider the long-run resulting in insufficient exploration.

Here we show that the assumption that learning is myopic is not the (only) reason
why learning is biased against alternatives with poor short-run performance. The
models developed in this paper show that a bias against alternatives that require
practice holds even for learning algorithms that are not myopic but do consider
the long-run and do engage in substantial exploration. Hence, lack of exploration
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is not the reason why the bias occurs. We also show that even a rational, non-
myopic, learner, who is aware that payoffs may increase with practice, may also
be biased against alternatives with initially low payoffs that increase with practice.
The learner is rational in the sense the decision maker knows the structure of
the task he or she is facing, prior beliefs about unknown parameters are correct,
beliefs are updated according to Bayes rule, and the learner chooses the policy that
maximizes total expected payoff. We show that such a learner will end up being
biased against an alternative with initially low payoffs that increase with practice
even when the learner is rational and, as such, knows that the initial payoffs may
not be representative of the long-term payoffs.

Specifically, a rational learner will be less likely to choose such an alternative and
more likely to choose an alternative with identical total expected value with a payoff
profile that starts out high but decreases with practice. Stated differently, even a
rational learner will behave like the individual in the parable of the competency
trap and will favor the alternative with high initial performance compared to the
alternative with high long-run but poor short-run performance.

This modeling exercise shows that the origin of the bias is not necessarily the as-
sumption that learning is myopic in the sense that it ignores the long-run. Rather,
there are ‘structural features of decision-making’ that lead to the bias. By ‘struc-
tural features of decision-making,’ ’we mean consequences of the process that are
implicit in the decision model itself, rather than a result of behavioral applications
of the model’(Harrison and March, 1984, p. 27). In this case, there is an asymmetry
in the cost of correcting underestimation errors between alternatives whose payoffs
increase versus decrease with practice (Denrell, 2007). If an alternative is initially
believed to be good, the learner will find out whether the payoff decreases or not
without intentionally exploring. If an alternative is initially poor, the only way a
learner will find out more about this alternative is by intentionally exploring. That
is, to learn more about an alternative with initially poor payoffs, and correct any
initial underestimation, the learner has to choose an alternative different from the
alternative which is believed to have a highest expected payoff in the next period.
This asymmetry in the cost of correcting errors of underestimation between alter-
natives that increase or decrease is the source of the bias. Another way to formulate
our results is to say that they show that learning is myopic in a deeper sense: even
rational learning will have to rely on the observed payoffs to make decisions about
whether the stop choosing an alternative or not. An initially increasing alternative,
with poor payoffs initially, is at a disadvantage compared to an initially decreasing
alternative with high payoffs initially, because the initially increasing alternative is
more likely to be initially confused with an alternative that always generates poor
payoffs.

Our results extend the applicability of the logic behind the competency trap to
settings in which managers are not myopic but realize that there may exist favorable
long-term consequences of pursuing an alternative with poor initial payoffs. In many
settings, it is realistic to assume that managers do consider long-term effects. Most
managers do not expect that R & D investments will pay off immediately. Most
managers know that it takes some time before anything useful is generated and
they expect to fund projects that initially do not generate anything valuable for
the organization. Here we demonstrate that even if they do so, they will nevertheless
be biased against alternatives with poor short-run performance.

More generally, the models developed in this paper provide an alternative expla-
nation for (seemingly) myopic behavior. Several scholars have argued that man-
agers tend to behave myopically when faced with inter-temporal decisions (Hayes
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and Abernathy, 1980; Laverty, 1996), favoring activities with high short-term per-
formance and avoid activities with identical net present value but with negative
performance in the short-term. Scholars have attributed such managerial myopia
to incentives based on short-term performance (Narayanan, 1985; Stein, 1989), to
capital markets that emphasize the short-run (Jacobs, 1991; Porter, 1992), and to
inconsistent managerial time preferences and weakness of will (Strotz, 1956; Elster,
1984; Postrel and Rumelt, 1992; Loewenstein, 1996; Bazerman, Tenbrunsel, and
Wade-Benzoni, 1998). The models developed in this paper illustrate that rational
learning can offer an alternative explanation of (seemingly) myopic behavior. My-
opic behavior does not necessarily have to be explained by incentives that ignore
long-term effects or by irrational behavior. We only need to assume that decision
makers cannot be certain, ex ante, whether payoffs will improve with practice or
not. Such an alternative explanation of myopic behavior offers new insight into the
origins of myopic behavior. For example, it has been argued that myopic behavior
may result from incentives that emphasize short-run profitability and ignores long-
run effects. A learning perspective suggests that seemingly myopic behavior can
emerge even if managers have incentives that do focus on long-run performance.
Myopic behavior emerges in our model even if managers try to maximize total
performance.

The structure of this paper is as follows. In the next section we describe the
task the manager is facing and discuss when a learning procedure is biased against
a particular alternative. In section 3, we turn to the issue of what type of learning
policies that generate a bias against alternatives with payoffs that are initially low
but improve with practice. We show that this evaluative bias emerges even for
policies that initially explore substantially. In Section 4, we show this evaluative
bias also emerges if the manager chooses options according to an optimal policy—
a policy in which belief updating follows Bayes’ rule and choices maximize the total
expected payoff. In Section 5, we note that there are settings in which a rational
manager may favor alternatives with payoffs that are initially low but improve with
practice. However, in section 6 we show that if we compare an initially increasing
and an initially decreasing alternative, the optimal policy is, under quite general
conditions, biased against the initially increasing alternative. Section 7 shows that
we get similar results if we consider a setting with binomial payoffs (success or
failure). Section 9 explores the implications for beauty, justice, and truth and
section 10 concludes.

2. Task

We focus on a simple ‘one-armed bandit’ scenario in which a learner can choose,
in each of T periods, either a sure alternative with a known payoff distribution or
an uncertain novel alternative. The learner can only observe, in period t, the payoff
of the alternative chosen in that period. We assume that the sure alternative is
known to generate a payoff equal to zero in each period. The uncertain alternative
generates a payoff drawn from a normal distribution, with variance one. The vari-
ance is known to the learner, but the mean is unknown. The mean may depend
on the number of times it has been tried in the past. Let ui, i = 1, ..., T , be the
mean payoff of the uncertain alternative if it is the ith time this alternative is tried.
Note that this set-up focuses on a comparison between a known alternative and an
unknown alternative. The intention is to formalize the comparison in the initial
parable between a novel alternative and an established, and presumably known,
alternative.

Given this set-up, we wish to evaluate the claim that learning tends to be biased
against alternatives with initially low payoffs that improve with practice. This claim
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refers to a certain subclass of unknown alternatives, with a particular functional
relationship between the mean payoff ui and the trial number i: ui is lower than
the payoff of the known alternative (zero) in the first trials. The claim is that there
is a ‘bias’ against this type of ‘increasing’ unknown alternatives.

To assess this claim, we must specify the learning and choice policy: how does the
learner rely on observed payoffs to estimate the value of the unknown alternative
and when will the learner choose the unknown alternative? Below we consider
several different learning and choice policies, heuristic as well as rational. Before
that, we need to discuss how ‘bias’ should be defined. In particular, when should
a learning algorithm be said to be biased against alternatives with initially low
payoffs that improve with practice?

First, a sensible definition of bias needs to take into account the expected total
value of an alternative. For example, it is not strange that an unknown alternative
with mean payoffs u1 = −5, u2 = −1, u3 = −1 and u4 = −1 is avoided when
compared to a known alternative with a known payoff equal to zero. The expected
value of this unknown alternative is negative in all periods, so it is not strange that
it is often avoided. To make the comparison fair, we should compare alternatives
with identical expected total payoffs.

A possible definition of bias is then that a bias occurs when a learning algorithm
ends up choosing an unknown alternative with total expected value equal to zero

(
∑T
i=1 ui = 0) less than 50% of the time. This definition has a drawback: according

to this definition, a bias would occur even for an uncertain alternative with constant
mean payoffs equal to zero in each period (ui = 0). The reason is the hot-stove
effect (Denrell and March, 2001; Denrell, 2007): such an alternative may generate
a poor payoff and the poor payoff leads to avoidance, which implies that the learner
will not find out about the possibility of high payoffs. This definition is hence too
wide, capturing risk (or ambiguity) aversion as well as bias against alternatives that
improve with practice. The problem is that in a wide range of learning processes,
there is a bias against unknown and uncertain alternatives.

To avoid this problem, we narrow the definition of a bias, and compare the fates
of two types of unknown alternatives. Specifically, we compare two proportions:
a) the proportion of times a learning algorithm ends up choosing an unknown
alternative of type A (which may have payoffs that increase with practice) over
a known alternative and b) the proportion of times a learning algorithm ends up
choosing an unknown alternative of type B (which may have payoffs that decrease
with practice) over a known alternative. Both types A and B are unknown and are
thus disadvantaged compared to the known alternative. Our focus here, however,
is on whether alternatives of a particular class are especially disadvantaged (i.e.,
chosen less frequently).

We compare unknown alternatives with identical total expected values, to make
the comparison fair. To complete the definition, we also need to define over what
periods “chosen less often” should be measured. Are we interested in choices over
all periods 1, ..., T or only the last period? Here we follow Denrell and March
(2001) and focus on the last period T . We are interested in whether the learner
might eventually come to realize, after having observed the high later payoffs, that
an alternative with initially low payoffs is indeed valuable. This completes our
definition of Weak bias:

Definition 1. Consider two finite horizon one-armed bandit problems with T pe-
riods. In the first problem the decision maker decides between a known alternative
(with sure payoff of 0) and an uncertain alternative with unknown payoff distribu-
tion, A. In the second problem, the choice is between the same known alternative
and another uncertain alternative with unknown payoff distribution, B.
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A learning and choice policy is weakly biased against alternative A if the total

expected payoffs of alternatives A and B are identical (
∑T
i=1 uA,i =

∑T
i=1 uB,i), but

the proportion of times alternative A is chosen in period T is lower than proportion
of times alternative Bis chosen in period T .

The weak bias can occur in at least two ways that we wish to distinguish. Suppose
A is such that uA,1 = −1, uA,2 = −1, uA,3 = 5 and B is such that uB,1 = 1,
uB,2 = 1, uB,3 = 1. The total expected values of A and B are the same (equal to
3) but A is worse during all periods except for the last. A large class of learning
policies that are backward-looking and only react to past payoffs, and have no
knowledge of, or make any guesses about, the future will be weakly biased against
A (see Elster, 1978, Ch. 2). The reason is that if the expected total payoffs are the
same over all three periods, and the last payoff is the higher for A (5 versus 1), then
the total expected payoff over the first two periods has to be lower for A. Only the
first two periods impact the choice in period three, however (unless the learning
algorithm knows about or anticipates the outcome in the last period). The reason
for the weak bias in this case is thus simply that A has a lower total expected value
during the periods that matter for the choice in the last period (periods one and
two). The fact that it has a higher expected payoff in period three does not impact
the choice in period three in any way, unless the learning algorithm has foresight
or knows that the payoff in the last period could be high.

To distinguish this reason for a bias from other potential reasons, we define
another type of bias: the strong bias. Its definition excludes the scenario we just
described. For the strong bias, we require that the total expected payoffs of A and
B over periods 1, ..., T −1 be identical. This implies that the expected total payoffs
are identical during the periods that precede the last choice. We also require that
the total expected payoffs be the same in the last period, T , such that the total
expected payoffs over all periods are the same. For example, suppose A is such
that uA,1 = −1, uA,2 = 2, uA,3 = 2 and B is such that uB,1 = 0.5, uB,2 = 0.5,
uB,3 = 2. The total expected payoffs of these two alternatives over periods one and
two are both 1 and their expected payoffs in the last period are both 2. They also
have the same total expected payoff over all three periods (equal to 3). If one of
these alternatives is favored, we will say that there is a strong bias in favor of that
alternative.

More generally, our definition of Strong bias is the following:

Definition 2. Consider the setting of Definition 1. A learning and choice policy is

strongly biased against alternative A over alternative B if
∑T−1
i=1 uA,i =

∑T−1
i=1 uB,i,

and
∑T
i=1 uA,i =

∑T
i=1 uB,i, but the proportion of times alternative A is chosen over

the known alternative in period T is lower than proportion of times alternative B
is chosen over the known alternative in period T .

The two requirements that
∑T−1
i=1 uA,i =

∑T−1
i=1 uB,i and

∑T
i=1 uA,i =

∑T
i=1 uB,i

imply that the average payoffs in the last period have to be identical, uA,T = uB,T .
Consider again the two alternatives A and B introduced just before the definition
(A: uA,1 = −1, uA,2 = 2, uA,3 = 2, B: uB,1 = 0.5, uB,2 = 0.5, uB,3 = 2).
Alternative A is initially poor but increasing. Alternative B is initially ‘flat’, at
a moderate value of 0.5. Both alternatives have the same expected payoff (2) the
third time they are chosen.

Obviously, we make no claim that this set of payoff profiles are commonly occur-
ring or realistic in anyway. Rather, they are quite artificial. What we have done is
defined a set of payoff profiles that have properties such that a bias cannot occur
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simply because a) there is a bias against unknown alternative over known alterna-
tives b) the learning algorithm only relies on payoffs observed before the period in
which the choice is made.

In almost all cases, strong bias implies weak bias. In the following, we therefore
focus on strong bias.

3. Myopic Learning Policies Are Not Necessary For Bias Emergence

To explore when learning leads to strong bias we compare the proportion of
choices of the unknown alternative in two different scenarios

(1) ‘Increasing scenario:’ The learner chooses, in each of three periods, between
a known alternative that generates a payoff equal to zero and an uncertain
alternative with an unknown mean. In this scenario, the mean of the un-
known alternative is initially lower than that of the known alternative but
it increases with the number of times it is tried. Specifically, the mean
payoff of the unknown alternative if it is tried one, two, or three times is
uA,1 = −1, uA,2 = 2, uA,3 = 2. Whenever the uncertain alternative is
chosen it generates a payoff drawn from a normal distribution with mean
uA,j and variance one.

(2) ‘Comparison scenario:’ The learner chooses, in each of three periods, be-
tween a known alternative that generates a payoff equal to zero and an
uncertain alternative with an unknown mean. In this scenario, the mean
payoff of the unknown alternative if it is tried one, two, or three times is
uB,1 = 0.5, uB,2 = 0.5, uB,3 = 2. Whenever the uncertain alternative is
chosen it generates a payoff drawn from a normal distribution with mean
uB,j and variance one.

Both unknown alternatives have the same total expected value over all three periods
and over the first two periods. The unknown alternative in the ‘increasing’ scenario
is characterized by an increasing mean payoff: the mean payoff is initially lower
than that of the known alternative, but higher from the second time it is tried.
Our focus is on the proportion of times the unknown alternative will be chosen in
the last period, i.e., in period three. If there is a strong bias against the increasing
alternative, then the unknown alternative would be chosen less often in period three
in the ‘increasing scenario’ than in the ‘comparison scenario.’

To explore when this happens, suppose first that the learner adopts a myopic
learning rule, in the sense that the learning rule only chooses the unknown alterna-
tive in any given period if it seems superior to the known alternative. Specifically,
suppose the unknown alternative is chosen in period one but only chosen in period
t > 1 if the average observed payoff is equal to or higher than zero.1 This rule im-
plies the learner never trades-off the short-run versus the long-run. In particular,
the learner never explores: he or she never chooses the unknown alternative when
it is believed to be worse than the known alternative in order to learn more about
the payoff distribution of the unknown alternative.

This myopic rule does generate a (strong) bias against the alternative with ini-
tially poor but increasing payoffs. Simulations show that in the ‘increasing’ sce-
nario, the learner chooses the unknown alternative 16 % of the time in period
three (based on 100 000 simulations). In contrast, in the ‘comparison’ scenario, the
learner chooses the unknown alternative 62 % of the time in period three. In this
latter case, the initially ‘flat’ alternative is much more likely to be chosen in the

1This policy implies that the unknown alternative is never chosen again if the known alternative
is once chosen. The reason is that the average remains the same.
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third period. There is thus a ‘Strong Bias’ against the unknown alternative of the
‘increasing scenario’ type.

Does this bias occur because learning is ‘myopic’? To examine this, consider
first what happens if the learner adopts a less myopic and more exploratory policy.
Suppose that the learner keeps track of the average observed payoff of the unknown
alternative and chooses the unknown alternative in period t if the average is larger
than some cutoff ct. Consider the policy (c2 = −1, c3 = 0), i.e., the learner chooses
the unknown alternative in the second period if the first payoff, r1, is equal or
higher than c2 = −1 and then chooses the unknown alternative again in the third
period if the average of the first and second period payoffs, .5r1 + .5r2, is equal
to or more than zero. This policy is exploratory, in the sense that the unknown
alternative will be chosen in period two even if the learner believes that it is worse,
on average, than the known alternative. Even though this policy is exploratory, it
also generates a bias against alternatives with initially poor payoffs. Simulations
show that in the ‘increasing’ scenario, the learner chooses the unknown alternative
47 % of the time in period three (based on 100 000 simulations). By contrast, in
the ‘comparison’ scenario, the learner chooses the unknown alternative 75 % of the
time in period three. The initially ‘flat’ alternative is again much more likely to be
chosen in the third period.

Why does the bias occur? Figure 1 illustrates the underlying mechanism by
plotting when the unknown alternative is chosen in the third period as a function
of the first and second period payoffs. To be chosen in the third period, the first
period payoffs, r1, must be at or above -1. The average after two periods, .5r1+.5r2,
must also be at or above zero. The unknown alternative is thus only chosen in the
third period if the first and second period payoffs fall into region in the upper right
corner. Figure 1 also plots the contours of the joint probability densities for the
first and second period payoffs in the two scenarios. Because the first and second
period payoffs are independently normally distributed with identical variance (one),
the contours are circles centered on the averages (uj,1 and uj,2). The increasing
alternative is centered at r1 = −1 and r2 = 2 while the initially flat alternative is
centered at r1 = 0.5 and r2 = 0.5.

Figure 1 shows that, in the two scenarios, the unknown alternatives are equally
likely to satisfy the constraint that the average after two observations is at or above
zero. This is easily understood: i) the constraint only depends on the sum of the
first and second period payoffs and ii) the distribution of the sum is identical since
the u1 +u2 are identical and the random variables are normally distributed. Figure
1 also shows that the unknown alternative is less likely to satisfy the constraint that
the first period payoff is at or above -1 in the ‘increasing scenario.’ Overall, then,
the unknown alternative is less likely to simultaneously satisfy the two constraints
in the ‘increasing scenario.’

The reason for the bias against the initially increasing alternative is thus that it
is less likely to satisfy the constraint that the first period payoff should be no less
than -1. This argument clearly holds for policies other than (c2 = −1, c3 = 0). For
example, the same argument holds for any policy of the form (c2 = −k, c3 = 0).
For example, suppose (c2 = −2, c3 = 0). Simulations show that in the ‘increasing’
scenario, the learner chooses the unknown alternative 71 % of the time in period
three (based on 100 000 simulations). By contrast, in the ‘comparison’ scenario,
the learner chooses the unknown alternative 76 % of the time in period three.

The same basic argument holds for any policy of the form (c2, c3) whenever c2
and c3 are finite cutoff levels. For example, suppose the policy is (c2 = 1, c3 = 1).
This policy only selects the unknown alternative if it is believed to be quite a lot
better than the known alternative. Again, it generates a bias against the increasing
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Figure 1. When the unknown alternative is chosen in the third
period as a function of the first and second period payoffs when
the policy is (c2 = −1, c3 = 0).

alternative (unknown alternative chosen 2 % of the time in the ‘increasing scenario,’
versus 26 % of the time in the ‘comparison scenario’). The only case that does not
lead to a bias against the initially increasing alternative is if there is no threshold
after the first period (c2 = −∞). That is, suppose the learner always chose the
unknown alternative at least two times. Then there is no bias: the proportion of
times the unknown alternative is chosen in the third period is the same in both
scenarios.

This conclusion is not limited to the particular payoff sequences we compared,
nor to normally distributed alternatives, but holds generally for any 3 period payoff
sequences with similar characteristics, as formulated in the following theorem:

Theorem 1. Suppose that

(1) the unknown alternative belongs to one of two types, A and B,
(2) the payoff of the unknown alternative of type j, if chosen for the ith time, is

drawn from a random variable with distribution uj,i+ ej,i where ej,i are for
all i and j independently drawn from a density f(ej,i) with infinite support,
i.e., ej,i ∈ (−∞,+∞) and mean zero,

(3) uA,1 < uB,1, uA,1 + uA,2 = uB,1 + uB,2, and uA,3 = uB,3,
(4) the learner always chooses the unknown alternative in period one, chooses

it in period two if the first payoff is larger than c2, and chooses it in the
third period if the average observed payoff is larger than c3.

Then, unless c2 = −∞, this learning procedure is strongly biased against Alternative
A.

A similar argument also holds if there are more than three periods. To state
this argument, we first define when alternative A is ‘cumulatively dominated’ by
alternative B in the sense that low payoffs tends to occur early on for alternative
A:
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Definition 3. Suppose
∑T−1
i=1 uA,i =

∑T−1
i=1 uB,i. Moreover, for all periods j ∈

[1, T − 2],
∑j
i=1 uA,i <

∑j
i=1 uB,i. Then alternative A is strictly cumulatively

dominated by alternative B.

Theorem 2. Suppose

(1) the unknown alternative belongs to one of two types, A and B,
(2) the payoff of the unknown alternative of type j, if chosen for the ith time, is

drawn from a random variable with distribution uj,i+ ej,i where ej,i are for
all i and j independently drawn from a density f(ej,i) with infinite support,
i.e., ej,i ∈ (−∞,+∞) and mean zero,

(3) alternative A is strictly cumulatively dominated by alternative B.
(4) the learner always chooses the unknown alternative in period one and chooses

it in period t > 1 if the average observed past payoff is larger than ct = kt.

Then, unless all cutoffs c2, ..., cT−1 are equal to −∞, this learning procedure is
strongly biased against Alternative A.

These results imply that a bias against alternatives that are initially poor but
improve with the number of selections will emerge for a large class of learning
policies, not only ‘greedy’ or ‘myopic’ policies. As Theorem 2 shows, the bias
emerges even if the learner explores during many initial periods. Suppose, for
example, that there are 10 periods and the learner always choose the unknown
alternative during periods one through eight, but then only chooses the unknown
alternative in period nine if the average, after eight observed payoffs, is above
some cutoff. Then the bias against alternatives with initially poor payoffs occurs.
This is true even if the alternative with initially poor payoffs has higher average
payoff, compared to the initially flat alternative, in period eight. The relevant
payoff, however, is the sum of all payoffs during the first eight periods. The initially
increasing alternative has a lower total expected payoff during the first eight periods
(see the definition of cumulatively dominated). If there is some cutoff during these
periods, the initially poor alternative will be at a disadvantage. The bias only
disappears if the learner explores in all periods until the last.

4. Even a Farsighted Rational Learner may be Biased

Theorem 2 shows that a bias against alternatives with initially low payoffs hold
for a wide range of policies, even those which initially engage in substantial explo-
ration. But Theorem 2 only applies to a class of heuristic policies, that rely on
the average payoff observed prior to each choice. Does the bias against alternatives
with poor initial payoffs also hold if the learner is rational and anticipates that an
alternative may be poor initially but improves with practice? A rational learner
will not simply rely on the average payoff observed so far to decide whether the
alternative should be discontinued or not. He or she will also make inferences about
the type of the uncertain alternative based on the pattern of observed payoffs: if the
payoff is initially low but increases with practice this suggests that the alternative
of the kind that increases with practice. Such inferences can also impact whether
the learner will explore or not: if the learner suspects that the alternative may im-
prove with practice the learner may decide to explore during some initial periods,
to check whether the payoffs improve. In this section, we demonstrate that even
a rational learner may be biased against alternatives with low initial payoffs that
improve with practice, even if the learner is aware that their payoff may increase.
Whether or not a bias occurs, however, depends on the set of payoff sequences the
learner believes are possible.
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4.1. Model setup. As before, we consider a one-armed bandit problem. The
learner can choose, in each of T = 3 periods, either a known alternative or an
unknown alternative. The learner only observes, in period t, the payoff of the
alternative chosen in that period. We assume that the known alternative is known
to generate a payoff equal to zero in each period.

The unknown alternative generates a payoff drawn from a normal distribution
with variance one. The mean of the unknown alternative depends on the number
of times it has been selected in the past. Let ui, i = 1, ..., T = 3, be the mean
payoff of the unknown alternative if it is the ith time this alternative is selected.
We assume that the unknown alternative is one of three possible types:

(1) Type A: Initially Increasing: uA,1 = −1, uA,2 = 2, and uA,3 = 2.
(2) Type B: Initially Flat: uB,1 = 0.5, uB,2 = 0.5, and uB,3 = 2.
(3) Type C: Always Poor: uC,1 = −2, uC,2 = −2, and uC,3 = −2.

The type of the unknown alternative is drawn at the start of period one and remains
the same during all three periods. Each type is equally likely to be drawn (drawn
with probability 1/3).

Finally, we assume the learner is rational: he or she updates beliefs using Bayes
rule and selects alternatives according to an optimal policy that maximizes the

(undiscounted) sum of the payoffs during the T = 3 periods:
∑T=3
t=1 rt, where rt is

the payoff generated in period t.

4.2. Comment. We have assumed that the learner knows that the unknown alter-
native can be of the type that has an initially low average payoff but which increases
with practice. This is not the only possibility, however. If it were - if the unknown
alternative was known to be of the initially increasing type - then the learner would
know the expected value of the unknown alternative and would know that it was
always best to select it over the known alternative. The learner also knows that
the unknown alternative may always be poor (of type C). It is this possibility that
makes the decision problem non-trivial and makes learning essential: based on the
observed payoffs the learner has to try to infer the type of the unknown alterna-
tive. Finally, there is the possibility that the unknown alternative is initially flat
(type B). This type has the same total expected payoff as the initially increasing
alternative (type A), both over all three periods and in periods one and two. We
are interested in whether a rational learner will display a bias against the initially
increasing alternative over the initially flat alternative

4.3. Optimal policy. The optimal policy maximizes the (undiscounted) sum of

the payoffs during the T = 3 periods,
∑T=3
t=1 rt. It can be computed by backward

induction, starting from the last period. It works as follows (see Appendix B for
the formal details):

Suppose the learner has chosen the unknown alternative in periods one and
two. Given the observed payoffs, it is easy to compute the expected payoff from
choosing the unknown alternative in period three. The expected payoff is simply the
sum, over the three possible types, of the product of uj,3 (the expected payoff the
third selection given that the alternative is of type j) and the probability that the
unknown alternative is of type j given the observed payoffs. The optimal policy, in
period three, is then to select the unknown alternative if its expected payoff is above
zero, the value of the known alternative. The expected payoff, at the beginning of
period three, is thus the maximum of zero and the period three expected payoff of
the unknown alternative.

We can then calculate the value of choosing the unknown alternative in the
second period, given the observed payoff in the first period. The value of choosing
the unknown alternative in the second period is the sum of the immediate payoff



REVISITING THE COMPETENCY TRAP 12

plus the expected value in the third period. The immediate payoff in period two
is the expected payoff given the observed payoff in the first period. To find the
expected value in the third period, we have to integrate over the possible values
of the second period payoff. We now know the value of choosing the unknown
alternative in period two and three, given the observed payoff in period one. We
can then find the value of the observed payoff in period one that makes the learner
indifferent between choosing the unknown or the known alternative in period two.

Finally, note two features of the optimal policy. First, the unknown alternative
should be chosen in the first period because, intuitively, i) the expected value from
choosing it during all three periods is zero, and ii) there is a positive probability that
the learner concludes, after two periods, that the unknown alternative is unlikely
to be of the always poor type, in which case the expected value from choosing
the unknown is higher than the known. Second, the unknown alternative is only
chosen in period three if it has been chosen in the period two. Intuitively, this is
because the immediate payoff of choosing the unknown alternative in period three
after avoiding it in period two is the same as the immediate payoff of choosing it in
period two. If it is avoided in period two, it should also be avoided in period three.
It may be chosen in period two, however, and then avoided in period three.

4.4. The optimal policy generates a bias against initially poor alterna-
tives. If we calculate the optimal policy, we find it is of the following form: 1)
Always choose the unknown alternative in period 1; 2) choose the unknown alter-
native in period two if the observed payoff in period one was more than -2.185; 3) if
the unknown alternative has been chosen twice, then choose the unknown alterna-
tive in period three if the payoffs in the first and second period are sufficiently large.
Figure 2 illustrates the form of the optimal policy. The unknown alternative is only
chosen in the third period if the first and second period payoffs fall into the region
in the upper right corner. Figure 2 also plots the contours of the joint probability
densities for the first and second period payoffs when the unknown alternative is
initially increasing (type A) or when it is initially flat (type B). Because the first
and second period payoffs are independently normally distributed with identical
variance (one), the contours are circles centered on the averages (uj,1 and uj,2).
The increasing alternative is centered at r1 = −1 and r2 = 2 while the initially flat
alternative is centered at r1 = 0.5 and r2 = 0.5.

Figure 2 suggests that the initially increasing alternative is less likely to be chosen
in the third period because it is less likely to satisfy the constraint on the first period
payoff (being larger than -2.185). This is also the case: simulations show that the
learner chooses the unknown alternative 87.5 % of the time in period three when
it is of the ‘initially increasing’ type. In contrast, the learner chooses the unknown
alternative 96.6 % of the time in period three when it is of the ‘initially flat’ type
(based on 100 000 simulations). The unknown alternative is chosen more often in
period three when it is of the ‘initially increasing’ type. There is thus a ‘Strong
Bias’.

This illustration shows that even an optimal policy can lead to a bias against an
alternative with initially low average payoffs which increase with practice. Notice
that this bias occurs even if the learner is aware that the unknown alternative may
be of this type. Moreover, the bias also implies that the learner is more likely to
underestimate the expected value of the unknown alternative if it is of the initially
increasing type compared to when it is of the initially flat type. This happens
even if the learner knows these two alternatives are equally likely and have equal
expected total payoff. Why then does the bias occur? For very much the same
reason that it occurs for the heuristic policies: the initially increasing alternative
is less likely to satisfy the constraint that the initial payoff is above -2.185. Why
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Figure 2. Region in which the unknown alternative is chosen in
the third period as a function of the first and second period payoffs
when the learner follows an optimal policy when the ‘always poor’
alternative has expected payoff -2.

then does the first period payoff have to satisfy this constraint? The reason is that
alternatives which generate lower payoffs in the first period are likely to be of the
always bad type, which the learner wants to avoid.

4.5. A second period advantage for the initially increasing alternative. A
more detailed examination of the shape of the optimal policy, in Figure 2, shows a
subtle difference between the reason why the bias occurs under the optimal policy
and the reason it occurs under the heuristic policy considered in section 3.

In the heuristic policy considered in section 3, and illustrated in Figure 1, the
initially increasing and the initially flat alternatives were equally likely to satisfy
the constraint after two periods. The reason was that the choice only depended on
the sum (average) of the past payoffs. In the third period, this sum was identically
distributed for the initially increasing and the initially flat alternatives (because
the sum of the expected payoffs over period one and two were equal).

Under the optimal policy, illustrated in Figure 2, the initially increasing alter-
native is more likely to satisfy the constraint after two periods than the initially
flat alternative. The reason for this asymmetry is evident from Figure 2: Given
two observations, the initially flat alternative is more likely to be confused with the
always poor alternative than the initially flat alternative. This can be seen from
the fact that the contour lines for the initially flat and the always poor alternatives
overlap more than the contour lines do for the initially increasing and the always
poor alternatives. The intuitive reason for this is that the initially increasing pay-
off has a high second period average payoff, which is very unlikely to be confused
with a payoff generated by the always poor alternative. Thus, even if its initial
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payoff is low, and thus makes it more likely to be confused with the always poor
alternative after one observation, this alternative has a payoff profile that makes it
more distinguishable from the always poor alternative after two observed payoffs
than the initially flat alternative. Because the two alternatives differ in how similar
they are to the always poor alternatives, the optimal policy is not symmetric in the
first and second period payoffs. For example, the unknown alternative satisfies the
constraint after the second period if second period payoff is -4 and the first period
payoff is a bit larger than -2.5. If the first period payoff is -4, however, the second
period payoff only has to be a bit larger than 0.8 to satisfy the constraint after the
second period. The second period payoff thus matters more than the first.

5. A Rational Learner Can Favour an Initially Increasing
Alternative

Unlike the heuristic policy, the optimal policy is not always biased against the
initially increasing alternative. In fact, the optimal policy may be biased against
the initially flat alternative and favour the initially increasing alternative. Such a
reverse bias occurs if the optimal policy is a bit more exploratory than what was
the case in the numerical example of the previous section. The optimal policy is
more exploratory, in turn, if the always poor alternative is not as bad. To illustrate
this, consider a set-up identical to that of the previous section except for the mean
payoff of the Always Poor type. The three types are:

(1) Initially Increasing: u1 = −1, u2 = 2, and u3 = 2.
(2) Initially Flat: u1 = 0.5, u2 = 0.5, and u3 = 2.
(3) Always Poor: u1 = −1.5, u2 = −1.5, and u3 = −1.5.

As before, the type of the unknown alternative is drawn at the start of period one
and remains the same during all three periods. Each type is equally likely to be
drawn (with probability 1/3).

The only difference to the setting of the previous section is that the Always
Poor alternative is better than it was. This implies that the optimal policy will be
more exploratory: the learner can afford to experiment more. This intuition can be
confirmed by examining Figure 3 which shows the shape of the optimal policy for
this problem. The optimal policy is to always choose the unknown alternative in
period one, choose it after period one if the payoff in period one is more than -3.1,
and choose it in period three if the first and second period payoffs are sufficiently
high.

Simulations show that this optimal policy generates a bias against the initially
flat alternative. In the ‘increasing’ scenario, the learner chooses the unknown al-
ternative 96.6 % of the time in period three (based on 100 000 simulations). In
contrast, in the ‘comparison’ scenario, the learner chooses the unknown alternative
94.5 % of the time in period three. The initially ‘flat’ alternative is thus less likely
to be chosen in period three and there is a ‘Strong Bias’ against it. The reason
for this bias in favor of the initially increasing alternative is that this alternative
is less likely to be confused with the always poor alternative than the initially flat
alternative, if the payoffs in both periods one and two have been observed. Hence,
if the unknown alternative is chosen in periods one and two, then it is more likely to
satisfy the constraint for selection in period three if it is of the initially increasing
type. It is still less likely to satisfy period one constraint, but in this case this
constraint only applies to payoffs below -3.1 and thus matters less.

This example illustrates a phenomenon that did not occur with the heuristic
model: a bias in favor of the initially increasing alternative which occurs because it
is less likely to look like an alternative which is always poor. It is important to note,
however, that this advantage of the initially increasing alternative has nothing to do
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Figure 3. Region in which the unknown alternative is chosen in
period three as a function of the first and second period payoffs
when the learner follows an optimal policy and the ‘always poor’
alternative has expected payoff -1.5.

with the temporal order of the expected payoffs. The same advantage would hold
for an alternative with expected payoffs of the first two periods in reverse order,
i.e., high initial and low middle period payoff.

6. Rational Learners have a Bias Against Initially Increasing over
Initially Decreasing Alternative

In sections 4 and 5, the unknown alternative was one of three types: initially
low payoffs that increased with practice, initially flat payoffs, or consistently low
payoffs. We showed that whether or not there is a bias against the initially increas-
ing alternative over the initially flat alternative depended on how exploratory the
optimal policy was. In this section we show that if we instead compare an initially
increasing and an initially decreasing alternative, the optimal policy is, under quite
general conditions, biased against the initially increasing alternative. That is, the
proportion of times the unknown alternative will be chosen in period three is lower
if the unknown alternative is of the initially increasing type compared to when it
is of the initially decreasing type.

To illustrate this, suppose the unknown alternative can be of these three types,
each equally likely:

(1) Initially Increasing: u1 = −1, u2 = 2, and u3 = 2.
(2) Initially Decreasing: u1 = 2, u2 = −1, and u3 = 2.
(3) Always Poor: u1 = −2, u2 = −2, and u3 = −2.

Note that the mean payoffs for initially increasing and initially decreasing alterna-
tives during the first two periods are identical numbers but in reverse order.

Figure 4 shows the shape of the optimal policy. As shown, the constraint af-
ter two observed payoffs is symmetrical in the first and second period payoffs: if
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Figure 4. Region in which the unknown alternative is chosen in
period three as a function of the first and second period payoffs
when the learner follows an optimal policy.

(r1, r2) = (a, b) satisfies the constraint then so does (r1, r2) = (b, a). The impli-
cation is that the initially increasing and the initially decreasing alternatives are
equally likely to satisfy the constraint after two observations. Because the initially
increasing alternative is less likely to satisfy the constraint after the first payoff, it
will be less likely to be chosen in period three. Simulations confirm this bias against
the initially increasing alternative: if the unknown alternative is of the Initially In-
creasing type, the learner chooses it 86.5 % of the time in period three (based on
100 000 simulations). In contrast, if the unknown alternative is of the Initially Flat
type, the learner chooses it 98.3 % of the time in period three.

The emergence of this bias can be demonstrated quite generally:

Theorem 3. Suppose the unknown alternative can be of three possible types, each
equally likely:

(1) Initially Increasing: uI,1 = b, uI,2 = a, uI,3 = a,
(2) Initially Decreasing: uD,1 = a, uD,2 = b, uD,3 = a,
(3) Always Poor: uP,1 = c, uP,2 = c, uP,3 = c,

where a > b > c, a > 0, a+ b > 0, and c < 0. Then the optimal policy implies that
the proportion of times the unknown alternative is chosen over the known alternative
in period three is lower when it is of the Initially Increasing type than when it is of
the Initially Decreasing type.

The size of the bias depends on the value of the known alternative. If the value
of the known alternative is lower, the optimal policy is more exploratory and the
learner tends to persist longer with the unknown alternative and will be less likely
to discard the initially increasing alternatives based on failure in early periods. For
example, if the value of the known alternative is -1, the cutoff after the first period is
-3.25. This is lower than when the known has a value of zero (in this case the cutoff
is at -2.16). When the value of the known alternative is -1, the learner chooses the
initially increasing type 97.9% of the time in period three and chooses the initially
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decreasing type 99.2% of the time (based on 100 000 simulations). These results
illustrate how even an optimal policy leads to a competency trap in the sense that
more competent actors, who have a known alternative with a higher payoff, will be
more biased against a new alternative with initially increasing payoff.

7. Binomial Payoffs

The same basic result - that an optimal policy has a bias against an alternative
with increasing payoffs over an alternative with identical expected value but a
decreasing sequence of payoffs - also hold if payoffs are binary, either equal to one
or to zero. In this case it is also possible to compute the optimal policy if there are
more than three periods. To illustrate this, consider the case with T = 10 periods.
In each of ten periods the learner can choose between a known and an unknown
alternative. The learner can only observe, in period t, the payoff of the alternative
he or she chose in period t. Each alternative can succeed (generate a payoff equal
to +1) or fail (generate a payoff equal to zero). The known alternative succeeds, in
every period it is tried, with a known probability, pk = 0.5. The probability that
the unknown alternative will succeed may depend on the number times it has been
chosen: the probability of a success when the unknown alternative is chosen for the
ith time is equal to pi, i = 1, ..., 10. The learner does not known the sequence pi,
i = 1, ..., T but knows that it is equally likely to be of one of four types:

(1) Always Good: pi = 0.9 for i = 1, .., 10.
(2) Initially Increasing: pi = 0.51 + (i−1) 0.9−0.51

9 for i = 1, ..., 9 and p10 = 0.9.

(3) Initially Decreasing: pi = 0.9− (i− 1) 0.9−0.5
9 for i = 1, ..., 9 and p10 = 0.9.

(4) Always Poor: pi = 0.1 for i = 1, .., 10.

Note that the probability of a success for the initially increasing alternative starts
at pi = 0.51 and increases to 0.9 in period nine. The probability of a success for
the initially decreasing alternative starts at pi = 0.9 and decreases to 0.51 > 0.5
in period nine. Both of these alternatives have the same success probability equal
to 0.9 in the last period. Figure 5A plots how the success probabilities vary with
the number of times the unknown alternative has been chosen. Note that the value
0.51 was chosen so that the success probability of the initially decreasing alternative
never falls below the success probability of the known alternative, which is 0.5. Note
also that both the initially increasing and the initially decreasing alternatives have
the same success probability in the last period, to ensure that their expected payoffs
are identical over both the first nine periods and over all ten periods, consistent
with the scope of our definition of ‘Strong Bias’ (Definition 2).

We assume that the learner wants to maximize the (undiscounted) sum of all

payoffs:
∑10
t=1 rt, where rt is the payoff (success or failure) obtained in period t.

The optimal policy can again be computed by dynamic programming, starting from
the last period. Given the optimal policy, we can simulate the proportion of time
a learner who follows the optimal policy will choose the unknown alternative if it
is of the initially increasing type or the initially decreasing type. Figure 5B plots
how the choice probabilities evolve over time. As shown, a learner who follows an
optimal policy is less likely to choose the unknown alternative when it is of the
initially increasing type than when it is of the initially decreasing type. In period
ten, the learner chooses the initially decreasing type almost all the time (97.2%)
but only chooses the initially increasing type 75.6% of the time (based on 100 000
simulations). Again, this bias in favor of the initially decreasing alternative emerges
even though these alternatives have identical expected values (both over the first
nine periods and over all ten periods) and even though the learner knows these
types are equally likely.
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Figure 5. A) The success probabilities for the four different types
of the unknown alternative. B) The probability of choosing the
unknown alternative over the known alternative in period t if it is
of the initially increasing or the initially decreasing type.

If the success probability of the known alternative is lower, the bias against the
initially increasing alternative is less strong. For example, if pk = 0.4, the learner
chooses the initially decreasing type 98.4% of the time in period ten and chooses
the initially increasing type 87.2% of the time (based on 100 000 simulations). If
pk = 0.2, the learner chooses the initially decreasing type 99.4% of the time in
period then and chooses the initially increasing type 96.2% of the time (based on
100 000 simulations). Just as in the previous section, these results show that more
competent actors, who have a known alternative with a high payoff, will be more
biased against a new alternative with initially increasing payoff.

8. Caveat

The results in this paper rely on one important assumption: the learner does not
get any information about the payoff sequences of the unknown alternative if the
learner chooses the known alternative. This assumption may not hold: the learner
may be able to observe the choices and payoffs of others. If individuals were able
to learn about the unknown alternatives even if they did not choose it, the bias
against the initially increasing alternative may disappear.

For example, consider the setting of section 3, with normally distributed payoffs.
Suppose the learner chooses the unknown alternative in the first period, but only
chooses it in the second period if the payoff in the first period is higher than zero.
Suppose, however, that the learner will observe, in period two, what the payoff
would have been from choosing the unknown alternative a second time, even if the
learner chose the known alternative in period two. Finally, in the third period the
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learner chooses the unknown alternative if the average observed payoff is above zero.
In this case, there is no bias against an initially increasing alternative. To explain
this, compare the two unknown alternatives: Initially Increasing (uA,1 = −1, uA,2 =
2, uA,3 = 2) and Initially Flat (uB,1 = 0.5, uB,2 = 0.5, uB,3 = 2). The distribution
of the sum of the first two payoffs is identical, with expected value ui,1 + ui,2 = 1
and variance two. As a result, the probability that the average observed payoff is
above zero after two observations is identical for the two alternatives. If the two
initial payoffs are always observed, these two alternatives are equally likely to be
chosen in period three.

Analyzing the case with a rational learner is more complex. Suppose the learner
can observe, in period two, what the payoff would have been from choosing the
unknown alternative a second time, even if the learner chose the known alternative
in period two. The learner can then update his or her estimate of whether the
unknown alternative is of the initially increasing type. Still, if the learner chooses
the unknown alternative in the third period, it will only be the second time the
learner selects this alternative, not the third, which may impact whether the learner
chooses it or not.

9. Beauty, Justice, and Truth

We have shown that the bias against alternatives with increasing payoffs holds
quite generally, for a large class of policies, not only greedy or myopic policies.
Indeed, the bias occurs even if a learner is rational and farsighted, aware of the
possibility that payoffs may be increasing. Our results show that the bias is more
general than what prior results have suggested. Our results also show that the bias
is not is not a consequence of the ‘myopic’ character of learning, if myopia is defined
as lack of awareness of the possibility that payoffs may be increasing or if myopia is
defined as a greedy policy which does not explore. Our results show that learning
is myopic in a deeper sense: even rational learning will have to rely on the observed
payoffs to make decisions about whether to stop choosing an alternative or not.
An initially increasing alternative, with poor payoffs initially, is at a disadvantage
compared to an initially decreasing alternative, with high payoffs initially. The
disadvantage occurs because the initially increasing alternative is, initially, more
likely to be confused with an alternative that always generates poor payoffs.

What are relevant practical implications of these results? Following Jim, we
choose not to speculate on this. As Jim liked to say: “I am not now, nor have I
ever been, relevant.” Instead of commenting on relevance, we instead try to explain
why the ideas have some beauty, do matter for justice, and contain a grain of truth.

9.1. Beauty. The results are beautiful partly because the finding that even highly
exploratory policies generate a bias against initially increasing alternatives is a bit
surprising at first. Myopia, in the sense of a greedy policy or lack of foresight, is not
needed. In hindsight, the reason for the bias seems clear: the initially increasing
alternative is less likely to make the initial cutoff, if there is one. Figure 1 provides
a simple visual proof. If two alternatives have the same probability distribution of
the sum of the first two payoffs, they are equally likely to make the cut-off after two
payoffs have been observed. To be selected in period three, however, an alternative
also has to make the initial cut-off, after period one. If there is any initial cut-off,
any alternative with a low expected value in period one will be at a disadvantage.

It is pleasing that the reason why the optimal policy generates a bias is essentially
the same (see Figure 4). If two payoffs have been observed, the initially increasing
and the initially decreasing alternatives are equally likely to make the cutoff and
be chosen in period three. To be selected in period three, however, an alternative
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also has to make the initial cut-off, after period one and any alternative with a low
expected value in period one will be at a disadvantage.

The result that even the optimal policy generates a bias is initially surprising.
Why would a rational decision-maker, who knows that an alternative may be poor
initially, and knows that the expected values of the initially increasing and the
initially decreasing alternatives are equal be biased against the initially increasing
alternative? But the reason for the bias under the optimal policy turns out to
be very similar to why a myopic policy generates a bias: as long as there is any
initial cut-off, any alternative with a low expected value in period one will be at a
disadvantage. This insight existed in conjectural form even before this paper. For
example, Denrell and March (2001) state that

...one way of avoiding a bias against alternatives that require prac-
tice is rapid learning of competence and slow learning of choices
-longer experimentation with alternatives that seem poor. The lat-
ter would clearly be a good idea save for the obvious complication
that in a world in which seemingly poor alternatives most often are
poor, extended periods of experimentation with apparently poor
alternatives is usually a very costly strategy. (Denrell and March,
2001, p. 527)

That is, unless the learner persists for a long time with an alternative that requires
practice it will on, average, appear to be worse than an alternative with opposite
(decreasing) payoff profile.

The result that even the optimal policy generates a bias is also a bit mysterious,
even if the mechanism is understandable. Why would it be rational to be biased
against late bloomers? Why are decreasing alternatives advantaged? The reason is
an asymmetry in the cost of correcting underestimation errors (Denrell, 2007). If an
alternative is initially believed to be good, but may eventually decrease in payoff, the
learner will find out whether the payoff decreases or not without exploring (Posen
and Levinthal, 2012). If an alternative is initially poor, the only way a learner will
find out more about this alternative is by exploring. That is, to learn more about an
alternative with initially poor payoffs, and correct any initial underestimation, the
learner has to choose an alternative different from the alternative which is believed
to have a highest expected payoff in the next period. This asymmetry in the cost of
correcting errors of underestimation between alternatives that increase or decrease
is the source of the bias.

The result that even the optimal policy generates a bias is also interesting be-
cause it implies that ‘debiasing’ people will not eliminate the bias (Le Mens &
Denrell, 2011). Even an optimally designed system will show this bias. The only
way to eliminate the bias is to engage in substantial exploration, so that there
is no cut-off before the last period. Usually, this is not an optimal policy. The
fact that rational learners will show the bias also has the interesting implication
that irrational individuals may be most likely to avoid the bias. That is, the in-
dividual who do discovers the advantages of initially increasing alternatives may
be those who overestimate them. Managers who have an irrational belief in the
value of persistence will be more likely to discover when persistence does in fact
pay off (Hirschman, 1967; Denrell and March, 2001). As the Polish philosopher
Lezek Kolakowski noted, when crossing a desert occasional hallucinations may be
necessary. Kolakowski writes that a strongly held conviction in the value of the
eventual destination acts like

....a Fata Morgana which makes beautiful lands arise before the eyes
of the members of a caravan and thus increases their efforts to the
point where, in spite of all their sufferings, they reach the next tiny
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waterhole. Had such tempting mirages not appeared, the exhausted
caravan would inevitably have perished in the sandstorms, bereft of
hope. (Kolakowski, 1961, pp. 127-128, quoted in Hirschman, 1967,
p. 32).

In a similar way, an entrepreneur with a strong conviction in the eventual suc-
cess of his or her business, is more likely to persist despite initial failures. For
example, Bowers interviewed one entrepreneur who has endured endless setbacks
in his entrepreneurial career, but says that he is driven by his belief in his product.
(Bowers, 2005, p.131). Even if this belief is initially irrational, the false belief may
lead to persistence that allows the entrepreneur to confirm the belief. The model
also implies that young people, without any good alternatives, are more likely to
discover the potential value of alternatives with poor initial payoffs. Being young,
they lack practice with any alternative. The value of the known alternative is thus
low, which leads to exploration, which minimizes the chances of underestimating
an alternative with initially increasing payoffs.

9.2. Justice. The results matter for justice because they show that late bloomers
are at a disadvantage. The precocious individual, who is doing well initially, will be
favored, even if the two individuals are equally productive over time. The results
show that even an optimal selection system, designed to optimize the productivity
of the chosen individuals, will have a bias against the late-bloomer. The bias is
arguably unjust, because equally productive people, as measured over their life-
time or career, are not given equal chances. How can the injustice be eliminated?
By avoiding early selection, i.e., by extending the period of initial exploration.

More generally, being aware of the possibility that payoffs increase with practice
is important to avoid injustices due to premature stopping due to naive interpre-
tation of poor early results. In an interview, Jim explained the implications of the
competency trap as follows

Some of my grandchildren say to me, “We’re not very good at
mathematics, so we’re not going to take any more mathematics.”
I say, “Wait a minute. Mathematics is a practice sport. If you’re
not very good at it, you take more of it.” That’s counterintuitive,
and it goes against the main logic of experiential learning, not to
mention grandchildren’s sentiments about control over their own
lives. (James March, Interviewed by D. Coutu, Coutu, 2006, p.
86)

Jim notes that initial performance is not necessarily a good indicator of eventual
performance, because math belongs to the set of activities for which performance
increases with practice. Knowing this, and noting that their peers may differ in
how much they have practiced, his grandchildren may interpret their experience
differently and make different choices; choices that would not have considered if
they had been sure that performance reflects a stable math talent.

9.3. Truth. When is the mechanism outlined here the correct, or most important,
reason for seemingly myopic behavior, when is it of marginal importance, and
when is it wrong? To examine these questions, one first needs to examine how this
mechanism could be distinguished empirically from others. One possibility is to
examine the impact of access to information about foregone payoffs, i.e., access to
information about what the unknown alternative would have paid even in periods
when one did not choose it. If the mechanism outlined here contributes to a bias
against alternatives with initially increasing alternatives, access to such information
should reduce the bias, following the arguments in section 8. One can also compare
the strength of any bias in settings where decision-makers are informed about the
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payoff profile of the unknown alternative to a setting where they do not know its
payoff profile but have to learn it. In the former case, bias cannot be attributed to
learning but may be the result of discounting. If the bias is equally strong in the
two settings, learning does not seem to play an important role.

10. Conclusion

Perhaps this paper is an illustration of the competency trap. We started working
on these models a long time ago. As a result of substantial practice with this type of
modelling, and with the relevant literature, we have become relatively proficient in
this activity. We know we can write this type of paper. Other possible theoretical
or empirical projects may not seem as attractive in comparison. At least initially,
we would not be as proficient and our effort would not seem to add much to the
literature. Disappointed by such initial failures, we might continue to refine our
models rather than branch out or try out some new techniques.

If this paper is an example of the competency trap, it is at least comforting to
know that even rational learners can fall into the same trap, in the sense of being
biased against an alternative with initially poor payoffs that may be increasing.
Life is short and so are our careers; we cannot spend too much of it developing new
tools we may not use very often or that may not suit us, especially if the payoff
initially seems low. On the other hand, if the payoff from some alternative model
or technique seems high early on, it does make sense to give it a try, even if it is
possible that its promise will be illusory and its payoff will decrease over time.
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Figure 6. The area of the integral in the proof if Theorem 1.

Appendix A: Proofs of Theorems 1 and 2

Proof of Theorem 1: Let j denote the type of the unknown alternative (j = A
or j = B). The probability of choosing the unknown alternative in period three is

(1) P (r1 + r2 > c3 ∩ r1 > c2) = P (ej,1 + uj,1 + ej,2 + uj,2 > c3 ∩ uj,1 + ej,1 > c2),

where ei,j are noise terms with mean zero independently drawn from density f(ej,i).
This can be rewritten as

(2) P (ej,1 + ej,2 > c3 − uj,1 − uj,2 ∩ ej,1 > c2 − uj,1).

This probability, in turn, can be calculated as the following integral

(3)

∫
(ej,1,ej,2)∈D

f(ej,1)f(ej,2)dej,1dej,2

where D is the region in which ej,1+ej,2 > c3−uj,1−uj,2∩ej,1 > c2−uj,1. Figure 6
illustrates the region and also shows the contour lines for the joint normal density,
1
2π e
−0.5e21e−0.5e

2
2 . Nothing in this proof depends on the shape of these contour lines,

however.
Now, the line defined by ej,1 +ej,2 = c3−uj,1−uj,2 is always the same whenever

the sum of the expected payoffs, uj,1 +uj,2, remains the same. But, the line defined
by ej,1 = c2 − uj,1 will be pushed towards the right when uj,1 is lower. Note that
we assumed uA,1 < uB,1. It follows that the line defined by eA,1 = c2−uA,1 will be
pushed towards the right compared to the line defined by eB,1 = c2 − uB,1. Hence,
the region that satisfies eA,1 + eA,2 > c3 − uA,1 − uA,2 ∩ eA,1 > c2 − uA,1 is smaller
than the region that satisfies eB,1 + eB,2 > c3−uB,1−uB,2 ∩ eB,1 > c2−uB,1. The
only exception is when c2 = −∞, in which case the value of uj,1 does not matter.

Proof of Theorem 2: The proof is similar to the proof of Theorem 1. The
probability of choosing the unknown alternative in period T is

(4) P (r1 + ...+ rT−1 > cT−1 ∩ ... ∩ r1 > c2).

This can be written as

(5) P (

T−1∑
i=1

ei > cT−1 −
T−1∑
i=1

uj,i ∩ ... ∩ e1 > c2 − uj,1),
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where e1, ..., eT−1 are independently distributed noise terms drawn from density
f(ei). This probability can be calculated as the following integral

(6)

∫
(e1,...,eT )∈D

T−1∏
i

f(ei)de1...deT ,

where D is the region in which
∑T−1
i=1 ei > cT−1 −

∑T−1
i=1 uj,i ∩ ... ∩ e1 > c2 − uj,1.

The plane defined by
∑T−1
i=1 ei > cT−1−

∑T−1
i=1 uj,i is identical for alternatives A

and B whenever
∑T−1
i=1 uA,i =

∑T−1
i=1 uB,i, but the region over which the integral is

computed is smaller for alternative A because
∑j
i=1 uA,i <

∑j
i=1 uB,i for all periods

j ∈ [1, T − 2]. In summary, the probability of choosing the unknown alternative
in period T, when it is A, is lower than when it is B. In other words, the learning
procedure is strongly biased against Alternative A.

The only exception is when all cutoffs c2, ..., cT−1 are equal to −∞, in which
case the regions over which the integral is computed are identical. In this case, the
probability of choosing the unknown alternative in period T, is the same whether
it is A or B.

Appendix B: Calculation of the Optimal Policy

We first calculate the optimal policy in period three, given that the unknown
alternative has been chosen in periods one and two. Let τ denote the type of the
unknown alternative (τ ∈ 1, 2, 3). Given the observed payoffs in period one, r1, and
two, r2, the expected value of choosing the unknown alternative in period three is

(7) EC3(r1, r2) = p(τ = 1 | r1, r2)u1,3+p(τ = 2 | r1, r2)u2,3+p(τ = 3 | r1, r2)u3,3.

where p(τ = j | r1, r2) is the posterior probability that the unknown alternative is
of type j given the observed payoffs and the prior probabilities, pj . Using Bayes
theorem and the properties of the normal distribution we have

(8) p(τ = j | r1, r2) =
pje
−0.5(r1−uj,1)

2

e−0.5(r2−uj,2)
2∑3

i=1 pie
−0.5(r1−ui,1)2e−0.5(r2−ui,2)2

The optimal policy, in period three given that the unknown alternative has been
chosen in periods one and two, is to select the unknown alternative whenever
EC3(r1, r2) > 0.

Once we know the value of choosing the unknown alternative in period three,
we can calculate the value of choosing the unknown alternative in period two,
given an observed payoff in period one. Consider then period two and suppose
the unknown alternative was selected in period one. The value of choosing the
unknown alternative in period two is the sum of the immediate expected payoff
plus the expected value in period three.

The immediate expected payoff in period two is the expected payoff given the
observed payoff in period one, r1. To calculate this, we first calculate the posterior
probability that the unknown alternative is of type j given that the payoff observed
in period one was r1:

(9) p(τ = j | r1) =
pje
−0.5(r1−uj,1)

2∑3
i=1 pie

−0.5(r1−ui,1)2

The immediate expected payoff of choosing the unknown alternative in period two
is

(10) π2(r1) =

3∑
j=1

p(τ = j | r1)uj,2.
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The expected value in period three of choosing the unknown alternative in period
two is: max[EC3(r1, r2), 0], i.e., either the unknown is chosen in period three or the
known alternative is chosen, depending on which has the highest expected value.
We need to calculate the expected value of max[EC3(r1, r2), 0] given the observe
first period payoff, r1. To calculate this, we integrate over the possible values of r2:

(11) val(r1) =

∫
r2

max[EC3(r1, r2), 0]f(r2|r1)dr2,

Here f(r2|r1) is the posterior density of period two payoff given the observed payoff

in period one. This conditional density equals f(r2 | r1) =
∑3
j=1 p(τ = j | r1)f(r2 |

τ = j), i.e., it is a mixture density, where the density of each type is weighted by
its posterior density. Overall then,

(12) val(r1) =

3∑
j=1

(
p(τ = j | r1)

∫
r2

max[EC3(r1, r2), 0]f(r2 | τ = j)dr2

)
.

The total value of choosing the unknown alternative in period two and following
an optimal policy thereafter is

(13) EC2(r1) = π2(r1) + val(r1).

We can compute EC2(r1) for each value r1 by numerical integration. If the function
EC2(r1) only crosses the zero line once at r1 = r∗1 , is negative below r1 = r∗1
and positive above, then the optimal policy is to select the unknown alternative
whenever r1 > r∗1 . That is, r∗1 is a threshold such that if period one payoff is larger
than r∗1 then the optimal policy is to select the unknown alternative in period two
but if the period one payoff is below r∗1 the optimal policy is to select the known
alternative in period two.

Finally, we can compute the expected value of selecting the unknown alternative
in period one. This value is

(14) EC1 =

3∑
j=1

uj,1pj +

3∑
j=1

(
pj

∫
r2

max[val(r1), 0]f(r1 | τ = j)dr1

)
,

where pj is the prior that the unknown alternative is of type j. The first term
is the expected payoff in period one and the second term is the expected value of
following an optimal policy after period one. If EC1 < 0 the optimal policy is to
always select the known alternative, if EC1 ≥ the optimal policy is to select the
unknown alternative in period one.

Abstract C: Proof of Theorem 3

Proof of Theorem 3: We first show that there is just one value r1 < r∗1 such that
if r1 < r∗1 then the known alternative is chosen in period two and if r1 > r∗1 then
the unknown alternative is chosen in period 2. This is equivalent to showing that
there is a unique r∗1 such that if r1 = r∗1 , then EC2(r1) = 0 and if r1 < r∗1 , then
EC2(r1) < 0 and if r1 > r∗1 , then EC2(r1) > 0. Using equations 9, 11, 13, we can
write

(15) EC2(r1) =

3∑
j=1

p(τ = j | r1) (uj,2 + gj(r1)) ,

where

gj(r1) =

∫
r2

max[EC3(r1, r2), 0]f(r2 | τ = j)dr2



REVISITING THE COMPETENCY TRAP 28

From this, EC2(r1) = 0 if only if

(16)

3∑
j=1

p(τ = j | r1)

p(τ = 3 | r1)
(uj,2 + gj(r1)) = 0,

We can rewrite this equation as

(17)
e−0.5(r1−b)

2

e−0.5(r1−c)2
(b+ g1(r1)) +

e−0.5(r1−a)
2

e−0.5(r1−c)2
(a+ g2(r1)) + (c+ g3(r1)) = 0

We wish to show that the left hand side of 17 is an increasing function of r1.
Consider first gj(r1), which is a function of EC3(r1, r2). To demonstrate that
EC3(r1, r2) is increasing in r1, note that

(18) EC3(r1, r2) = (1− p(τ = 3 | r1, r2))a+ p(τ = 3 | r1, r2)c,

where

(19) p(τ = 3 | r1, r2) =
1

1 + e−0.5(r1−a)2e−0.5(r2−b)2

e−0.5(r1−c)2e−0.5(r2−c)2
+ e−0.5(r1−b)2e−0.5(r2−a)2

e−0.5(r1−c)2e−0.5(r2−c)2

.

Taking the derivative with respect to r1 shows that the assumptions a > c and
b > c imply that p(τ = 3 | r1, r2) is decreasing in r1. This, in turn, implies that
EC3(r1, r2) is increasing in r1. It follows that g1(r1), g2(r1), g3(r1) are increasing
in r1.

Next, the assumption that b > c implies that e−0.5(r1−b)2

e−0.5(r1−c)2
is increasing in r1 and

the assumption that a > c implies that e−0.5(r1−a)2

e−0.5(r1−c)2
is increasing in r1. Overall, it

follows that the LHS of equation 17 is increasing in r1.

Moreover, e
−0.5(r1−b)2

e−0.5(r1−c)2
and e−0.5(r1−a)2

e−0.5(r1−c)2
converge to zero as r1 → −∞. In addition,

EC3(r1, r2) converges to c as r1 → −∞ implying that g3(r1) converges to to zero
as r1 → −∞. Because c < 0, it follows that if r1 is sufficiently low the LHS of
equation 17 will be negative. Because EC3(r1, r2) converges to a as r1 → +∞,
g1(r1), g2(r1), g3(r1) converge to a as r1 → +∞. Because a > 0 and a + b > 0,

and e−0.5(r1−b)2

e−0.5(r1−c)2
as well as e−0.5(r1−a)2

e−0.5(r1−c)2
are positive, it follows that if r1 is sufficiently

high, the LHS of equation 17 will be positive. It follows there is a unique value r∗1
that satisfies the desiderata stated above.

The optimal policy selects the unknown alternative in period one. It selects
the unknown alternative in period two if r1 > r∗1 . Finally, it selects the unknown
alternative in period three, given that the unknown alternative has been chosen in
periods one and two, whenever EC3(r1, r2) > 0. Because a > 0, it follows that
there exists a region such that EC3(r1, r2) > 0.

Note, next, that p(τ = 3 | r1, r2) is symmetric in r1 and r2: p(τ = 3 | r1, r2) =
p(τ = 3 | r2, r1). It follows that the unknown alternatives of type I and type D
are equally likely to satisfy the constraint EC3(r1, r2) > 0. In other words, if the
unknown alternative has been chosen in the first two periods, then the likelihood
it is chosen in period 3 when it is of type I (increasing) is the same as when it is of
type D (decreasing).

If the unknown alternative is of type I (increasing), its mean payoff is b. If it
is of type D (decreasing) its mean payoff is a. Because we assumed that a > b,
we have that r1 is more likely to be above the threshold r∗1 if the alternative is of
type D. Overall, the probability of selecting the unknown alternative in period 2 is
lower if it is of the increasing type. This, and the symmetry argument about period
3 jointly imply that the unknown alternative is less likely to be chosen in period 3
if it is of the type I as compared to when it is of the decreasing type D.
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